JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
No difference in the incidence of malaria in human-landing mosquito catch collectors and non-collectors in a Senegalese village with endemic malaria.
PUBLISHED: 05-13-2015
The human landing catches is the gold standard method used to study the vectors of malaria and to estimate their aggressiveness. However, this method has raised safety concerns due to a possible increased risk of malaria or other mosquito-borne diseases among the mosquito collectors. The aim of this study was to evaluate the incidence of malaria attacks among mosquito collectors and to compare these results with those of non-collectors in a Senegalese village.
Authors: Brian M. Luna, Jennifer Juhn, Anthony A. James.
Published: 07-04-2007
Reverse genetic approaches have proven extremely useful for determining which genes underly resistance to vector pathogens in mosquitoes. This video protocol illustrates a method used by the James lab to inject dsRNA into female A. aegypti mosquitoes, which harbor the dengue virus. The technique for calibrating injection needles, manipulating the injection setup, and injecting dsRNA into the thorax is illustrated.
21 Related JoVE Articles!
Play Button
Hybridization in situ of Salivary Glands, Ovaries, and Embryos of Vector Mosquitoes
Authors: Jennifer Juhn, Anthony A. James.
Institutions: University of California, Irvine, University of California, Irvine.
Mosquitoes are vectors for a diverse set of pathogens including arboviruses, protozoan parasites and nematodes. Investigation of transcripts and gene regulators that are expressed in tissues in which the mosquito host and pathogen interact, and in organs involved in reproduction are of great interest for strategies to reduce mosquito-borne disease transmission and disrupt egg development. A number of tools have been employed to study and validate the temporal and tissue-specific regulation of gene expression. Here, we describe protocols that have been developed to obtain spatial information, which enhances our understanding of where specific genes are expressed and their products accumulate. The protocol described has been used to validate expression and determine accumulation patterns of transcripts in tissues related to mosquito-borne pathogen transmission, such as female salivary glands, as well as subcellular compartments of ovaries and embryos, which relate to mosquito reproduction and development. The following procedures represent an optimized methodology that improves the efficiency of various steps in the protocol without loss of target-specific hybridization signals. Guidelines for RNA probe preparation, dissection of soft tissues and the general procedure for fixation and hybridization are described in Part A, while steps specific for the collection, fixation, pre-hybridization and hybridization of mosquito embryos are detailed in Part B.
Immunology, Issue 64, Molecular Biology, Biochemistry, Genetics, Developmental Biology, Hybridization in situ, RNA localization, salivary glands, ovary, embryo, mosquito
Play Button
Fluorescent in situ Hybridization on Mitotic Chromosomes of Mosquitoes
Authors: Vladimir A. Timoshevskiy, Atashi Sharma, Igor V. Sharakhov, Maria V. Sharakhova.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) is a technique routinely used by many laboratories to determine the chromosomal position of DNA and RNA probes. One important application of this method is the development of high-quality physical maps useful for improving the genome assemblies for various organisms. The natural banding pattern of polytene and mitotic chromosomes provides guidance for the precise ordering and orientation of the genomic supercontigs. Among the three mosquito genera, namely Anopheles, Aedes, and Culex, a well-established chromosome-based mapping technique has been developed only for Anopheles, whose members possess readable polytene chromosomes 1. As a result of genome mapping efforts, 88% of the An. gambiae genome has been placed to precise chromosome positions 2,3 . Two other mosquito genera, Aedes and Culex, have poorly polytenized chromosomes because of significant overrepresentation of transposable elements in their genomes 4, 5, 6. Only 31 and 9% of the genomic supercontings have been assigned without order or orientation to chromosomes of Ae. aegypti 7 and Cx. quinquefasciatus 8, respectively. Mitotic chromosome preparation for these two species had previously been limited to brain ganglia and cell lines. However, chromosome slides prepared from the brain ganglia of mosquitoes usually contain low numbers of metaphase plates 9. Also, although a FISH technique has been developed for mitotic chromosomes from a cell line of Ae. aegypti 10, the accumulation of multiple chromosomal rearrangements in cell line chromosomes 11 makes them useless for genome mapping. Here we describe a simple, robust technique for obtaining high-quality mitotic chromosome preparations from imaginal discs (IDs) of 4th instar larvae which can be used for all three genera of mosquitoes. A standard FISH protocol 12 is optimized for using BAC clones of genomic DNA as a probe on mitotic chromosomes of Ae. aegypti and Cx. quinquefasciatus, and for utilizing an intergenic spacer (IGS) region of ribosomal DNA (rDNA) as a probe on An. gambiae chromosomes. In addition to physical mapping, the developed technique can be applied to population cytogenetics and chromosome taxonomy/systematics of mosquitoes and other insect groups.
Immunology, Issue 67, Genetics, Molecular Biology, Entomology, Infectious Disease, imaginal discs, mitotic chromosomes, genome mapping, FISH, fluorescent in situ hybridization, mosquitoes, Anopheles, Aedes, Culex
Play Button
An Experimental Model to Study Tuberculosis-Malaria Coinfection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium berghei
Authors: Ann-Kristin Mueller, Jochen Behrends, Jannike Blank, Ulrich E. Schaible, Bianca E. Schneider.
Institutions: University Hospital Heidelberg, Research Center Borstel.
Coinfections naturally occur due to the geographic overlap of distinct types of pathogenic organisms. Concurrent infections most likely modulate the respective immune response to each single pathogen and may thereby affect pathogenesis and disease outcome. Coinfected patients may also respond differentially to anti-infective interventions. Coinfection between tuberculosis as caused by mycobacteria and the malaria parasite Plasmodium, both of which are coendemic in many parts of sub-Saharan Africa, has not been studied in detail. In order to approach the challenging but scientifically and clinically highly relevant question how malaria-tuberculosis coinfection modulate host immunity and the course of each disease, we established an experimental mouse model that allows us to dissect the elicited immune responses to both pathogens in the coinfected host. Of note, in order to most precisely mimic naturally acquired human infections, we perform experimental infections of mice with both pathogens by their natural routes of infection, i.e. aerosol and mosquito bite, respectively.
Infectious Diseases, Issue 84, coinfection, mouse, Tuberculosis, Malaria, Plasmodium berghei, Mycobacterium tuberculosis, natural transmission
Play Button
2D and 3D Chromosome Painting in Malaria Mosquitoes
Authors: Phillip George, Atashi Sharma, Igor V Sharakhov.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Immunology, Issue 83, Microdissection, whole genome amplification, malaria mosquito, polytene chromosome, mitotic chromosomes, fluorescence in situ hybridization, chromosome painting
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
Play Button
High Yield Purification of Plasmodium falciparum Merozoites For Use in Opsonizing Antibody Assays
Authors: Danika L. Hill, Emily M. Eriksson, Louis Schofield.
Institutions: Walter and Eliza Hall Institute of Medical Research, University of Melbourne.
Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibitor, and an assay of merozoite opsonin-dependent phagocytosis using the pro-monocytic cell line THP-1. E64 prevents schizont rupture while allowing the development of merozoites which are released by filtration of treated schizonts.  Ethidium bromide labelled merozoites are opsonized with human plasma samples and added to THP-1 cells. Phagocytosis is assessed by a standardized high throughput protocol. Viable merozoites are a valuable resource for assessing numerous aspects of P. falciparum biology, including assessment of immune function. Antibody levels measured by this assay are associated with clinical immunity to malaria in naturally exposed individuals. The assay may also be of use for assessing vaccine induced antibodies.  
Immunology, Issue 89, Parasitic Diseases, malaria, Plasmodium falciparum, hemozoin, antibody, Fc Receptor, opsonization, merozoite, phagocytosis, THP-1
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
Play Button
Toxicological Assays for Testing Effects of an Epigenetic Drug on Development, Fecundity and Survivorship of Malaria Mosquitoes
Authors: Atashi Sharma, Troy D. Anderson, Igor V. Sharakhov.
Institutions: Virginia Tech.
Insecticidal resistance poses a major problem for malaria control programs. Mosquitoes adapt to a wide range of changes in the environment quickly, making malaria control an omnipresent problem in tropical countries. The emergence of insecticide resistant populations warrants the exploration of novel drug target pathways and compounds for vector mosquito control. Epigenetic drugs are well established in cancer research, however not much is known about their effects on insects. This study provides a simple protocol for examining the toxicological effects of 3-Deazaneplanocin A (DZNep), an experimental epigenetic drug for cancer therapy, on the malaria vector, Anopheles gambiae. A concentration-dependent increase in mortality and decrease in size was observed in immature mosquitoes exposed to DZNep, whereas the compound reduced the fecundity of adult mosquitoes relative to control treatments. In addition, there was a drug-dependent decrease in S-adenosylhomocysteine (SAH) hydrolase activity in mosquitoes following exposure to DZNep relative to control treatments. These protocols provide the researcher with a simple, step-by-step procedure to assess multiple toxicological endpoints for an experimental drug and, in turn, demonstrate a unique multi-prong approach for exploring the toxicological effects of water-soluble epigenetic drugs or compounds of interest against vector mosquitoes and other insects.
Infectious Diseases, Issue 95, Anopheles gambiae, malaria mosquito, DZNep, SAH, toxicological assay, epigenetics, vector control
Play Button
A Multi-detection Assay for Malaria Transmitting Mosquitoes
Authors: Yoosook Lee, Allison M. Weakley, Catelyn C. Nieman, Julia Malvick, Gregory C. Lanzaro.
Institutions: School of Veterinary Medicine, University of California - Davis, School of Veterinary Medicine, University of California, Davis.
The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays.
Infectious Diseases, Issue 96, Mosquito, SNP genotyping, multiplex assay, iPLEX, MALDI-TOF, insecticide resistance, speciation islands, species diagnosis, parasite detection, blood source detection, host preference, infection status
Play Button
A Simple Chelex Protocol for DNA Extraction from Anopheles spp.
Authors: Mulenga Musapa, Taida Kumwenda, Mtawa Mkulama, Sandra Chishimba, Douglas E. Norris, Philip E. Thuma, Sungano Mharakurwa.
Institutions: Malaria Institute at Macha, Johns Hopkins Bloomberg School of Public Health.
Endemic countries are increasingly adopting molecular tools for efficient typing, identification and surveillance against malaria parasites and vector mosquitoes, as an integral part of their control programs1,2,3,4,5. For sustainable establishment of these accurate approaches in operations research to strengthen malaria control and elimination efforts, simple and affordable methods, with parsimonious reagent and equipment requirements are essential6,7,8. Here we present a simple Chelex-based technique for extracting malaria parasite and vector DNA from field collected mosquito specimens. We morphologically identified 72 Anopheles gambiae sl. from 156 mosquitoes captured by pyrethrum spray catches in sleeping rooms of households within a 2,000 km2 vicinity of the Malaria Institute at Macha. After dissection to separate the head and thorax from the abdomen for all 72 Anopheles gambiae sl. mosquitoes, the two sections were individually placed in 1.5 ml microcentrifuge tubes and submerged in 20 μl of deionized water. Using a sterile pipette tip, each mosquito section was separately homogenized to a uniform suspension in the deionized water. Of the ensuing homogenate from each mosquito section, 10 μl was retained while the other 10 μl was transferred to a separate autoclaved 1.5 ml tube. The separate aliquots were subjected to DNA extraction by either the simplified Chelex or the standard salting out extraction protocol9,10. The salting out protocol is so-called and widely used because it employs high salt concentrations in lieu of hazardous organic solvents (such as phenol and chloroform) for the protein precipitation step during DNA extraction9. Extracts were used as templates for PCR amplification using primers targeting arthropod mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH) subunit 4 gene (ND4) to check DNA quality11, a PCR for identification of Anopheles gambiae sibling species10 and a nested PCR for typing of Plasmodium falciparum infection12. Comparison using DNA quality (ND4) PCR showed 93% sensitivity and 82% specificity for the Chelex approach relative to the established salting out protocol. Corresponding values of sensitivity and specificity were 100% and 78%, respectively, using sibling species identification PCR and 92% and 80%, respectively for P. falciparum detection PCR. There were no significant differences in proportion of samples giving amplicon signal with the Chelex or the regular salting out protocol across all three PCR applications. The Chelex approach required three simple reagents and 37 min to complete, while the salting out protocol entailed 10 different reagents and 2 hr and 47 min' processing time, including an overnight step. Our results show that the Chelex method is comparable to the existing salting out extraction and can be substituted as a simple and sustainable approach in resource-limited settings where a constant reagent supply chain is often difficult to maintain.
Infection, Issue 71, Immunology, Infectious Diseases, Genetics, Molecular Biology, Microbiology, Parasitology, Entomology, Malaria, Plasmodium falciparum, vector, Anopheles, Diptera, mosquitoes, Chelex, DNA, extraction, PCR, dissection, insect, vector, pathogen
Play Button
Protocol for Production of a Genetic Cross of the Rodent Malaria Parasites
Authors: Sittiporn Pattaradilokrat, Jian Li, Xin-zhuan Su.
Institutions: National Institutes of Health, Xiamen University.
Variation in response to antimalarial drugs and in pathogenicity of malaria parasites is of biologic and medical importance. Linkage mapping has led to successful identification of genes or loci underlying various traits in malaria parasites of rodents1-3 and humans4-6. The malaria parasite Plasmodium yoelii is one of many malaria species isolated from wild African rodents and has been adapted to grow in laboratories. This species reproduces many of the biologic characteristics of the human malaria parasites; genetic markers such as microsatellite and amplified fragment length polymorphism (AFLP) markers have also been developed for the parasite7-9. Thus, genetic studies in rodent malaria parasites can be performed to complement research on Plasmodium falciparum. Here, we demonstrate the techniques for producing a genetic cross in P. yoelii that were first pioneered by Drs. David Walliker, Richard Carter, and colleagues at the University of Edinburgh10. Genetic crosses in P. yoelii and other rodent malaria parasites are conducted by infecting mice Mus musculus with an inoculum containing gametocytes of two genetically distinct clones that differ in phenotypes of interest and by allowing mosquitoes to feed on the infected mice 4 days after infection. The presence of male and female gametocytes in the mouse blood is microscopically confirmed before feeding. Within 48 hrs after feeding, in the midgut of the mosquito, the haploid gametocytes differentiate into male and female gametes, fertilize, and form a diploid zygote (Fig. 1). During development of a zygote into an ookinete, meiosis appears to occur11. If the zygote is derived through cross-fertilization between gametes of the two genetically distinct parasites, genetic exchanges (chromosomal reassortment and cross-overs between the non-sister chromatids of a pair of homologous chromosomes; Fig. 2) may occur, resulting in recombination of genetic material at homologous loci. Each zygote undergoes two successive nuclear divisions, leading to four haploid nuclei. An ookinete further develops into an oocyst. Once the oocyst matures, thousands of sporozoites (the progeny of the cross) are formed and released into mosquito hemoceal. Sporozoites are harvested from the salivary glands and injected into a new murine host, where pre-erythrocytic and erythrocytic stage development takes place. Erythrocytic forms are cloned and classified with regard to the characters distinguishing the parental lines prior to genetic linkage mapping. Control infections of individual parental clones are performed in the same way as the production of a genetic cross.
Infectious Disease, Issue 47, Genetic cross, genetic mapping, malaria, rodent
Play Button
Protocol for Mosquito Rearing (A. gambiae)
Authors: Suchismita Das, Lindsey Garver, George Dimopoulos.
Institutions: Johns Hopkins University.
This protocol describes mosquito rearing in the insectary. The insectary rooms are maintained at 28°C and ~80% humidity, with a 12 hr. day/night cycle. For this procedure, you'll need mosquito cages, 10% sterile sucrose solution, paper towels, beaker, whatman filter paper, glass feeders, human blood and serum, water bath, parafilm, distilled water, clean plastic trays, mosquito food (described below), mosquito net to cover the trays, vacuum, and a collection chamber to collect adults.
Cellular Biology, Issue 5, mosquito, malaria, infectious disease
Play Button
Protocol for Plasmodium falciparum Infections in Mosquitoes and Infection Phenotype Determination
Authors: Zhiyong Xi, Suchismita Das, Lindsey Garver, George Dimopoulos.
Institutions: Johns Hopkins University.
Once a gene is identified as potentially refractory for malaria, it must be evaluated for its role in preventing Plasmodium infections within the mosquito. This protocol illustrates how the extent of plasmodium infections of mosquitoes can be assayed. The techniques for preparing the gametocyte culture, membrane feeding mosquitoes human blood, and assaying viral titers in the mosquito midgut are demonstrated.
Cellular Biology, Issue 5, mosquito, malaria, genetics, injection, RNAi, Plasmodium, TIssue Culture, Cell Culture, Insect
Play Button
Maintaining Wolbachia in Cell-free Medium
Authors: Courtney Gamston, Jason Rasgon.
Institutions: Johns Hopkins University.
In this video protocol, procedures are demonstrated to (1) purify Wolbachia symbionts out of cultured mosquito cells, (2) use a fluorescent assay to ascertain the viability of the purified Wolbachia and (3) maintain the now extracellular Wolbachia in cell-free medium. Purified Wolbachia remain alive in the extracellular phase but do not replicate until re-inoculated into eukaryotic cells. Extracellular Wolbachia purified in this manner will remain viable for at least a week at room temperature, and possibly longer. Purified Wolbachia are suitable for micro-injection, DNA extraction and other applications.
Cellular Biology, Issue 5, mosquito, Wolbachia, infectious disease
Play Button
Population Replacement Strategies for Controlling Vector Populations and the Use of Wolbachia pipientis for Genetic Drive
Authors: Jason Rasgon.
Institutions: Johns Hopkins University.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.
Cellular Biology, Issue 5, mosquito, malaria, genetics, infectious disease, Wolbachia
Play Button
Predicting the Effectiveness of Population Replacement Strategy Using Mathematical Modeling
Authors: John Marshall, Koji Morikawa, Nicholas Manoukis, Charles Taylor.
Institutions: University of California, Los Angeles.
Charles Taylor and John Marshall explain the utility of mathematical modeling for evaluating the effectiveness of population replacement strategy. Insight is given into how computational models can provide information on the population dynamics of mosquitoes and the spread of transposable elements through A. gambiae subspecies. The ethical considerations of releasing genetically modified mosquitoes into the wild are discussed.
Cellular Biology, Issue 5, mosquito, malaria, popuulation, replacement, modeling, infectious disease
Play Button
Dissection of Midgut and Salivary Glands from Ae. aegypti Mosquitoes
Authors: Judy Coleman, Jennifer Juhn, Anthony A. James.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
The mosquito midgut and salivary glands are key entry and exit points for pathogens such as Plasmodium parasites and Dengue viruses. This video protocol demonstrates dissection techniques for removal of the midgut and salivary glands from Aedes aegypti mosquitoes.
Cellular Biology, Issue 5, mosquito, malaria, dissection, infectious disease
Play Button
Protocol for RNAi Assays in Adult Mosquitoes (A. gambiae)
Authors: Lindsey Garver, George Dimopoulos.
Institutions: Johns Hopkins University.
Reverse genetic approaches have proven extremely useful for determining which genes underly resistance to vector pathogens in mosquitoes. This video protocol illustrates a method used by the Dimopoulos lab to inject dsRNA into Anopheles gambiae mosquitoes, which harbor the malaria parasite. The technique manipulating the injection setup and injecting dsRNA into the thorax is illustrated.
Cellular Biology, Issue 5, mosquito, malaria, genetics, injection, RNAi, Dengue, Transgenic, Population Replacement, Genetic Drive
Play Button
Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes
Authors: Anthony A. James.
Institutions: University of California, Irvine (UCI).
In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.
Cellular Biology, Issue 5, mosquito, malaria, dengue fever, genetics, infectious disease, Translational Research
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
Play Button
Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae
Authors: Xin Zhang, Keshava Mysore, Ellen Flannery, Kristin Michel, David W. Severson, Kun Yan Zhu, Molly Duman-Scheel.
Institutions: Kansas State University, Indiana University School of Medicine, University of Notre Dame, University of Notre Dame, Kansas State University.
Vector mosquitoes inflict more human suffering than any other organismand kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field.
Molecular Biology, Issue 97, vector biology, RNA interference, Anopheles gambiae, Aedes aegypti, dsRNA, siRNA, knockdown, ingestion, mosquito, larvae, development, disease
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.