JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Potential of the Desert Locust Schistocerca gregaria (Orthoptera: Acrididae) as an Unconventional Source of Dietary and Therapeutic Sterols.
PUBLISHED: 05-14-2015
Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locust, Schistocerca gregaria, focusing on those with potential importance as dietary and therapeutic components for humans. Using coupled gas chromatography-mass spectrometry (GC-MS), we analyzed and compared the quantities of sterols in the different sections of the gut and tissues of the locust. In the gut, we identified 34 sterols which showed a patchy distribution, but with the highest composition in the foregut (55%) followed by midgut (31%) and hindgut (14%). Fed ad libitum on wheat seedlings, five sterols unique to the insect were detected. These sterols were identified as 7-dehydrocholesterol, desmosterol, fucosterol, (3?, 5?) cholesta-8, 14, 24-trien-3-ol, 4, 4-dimethyl, and (3?, 20R) cholesta-5, 24-dien-3, 20-diol with the first three having known health benefits in humans. Incubation of the fore-, mid- and hindgut with cholesterol-[4-13C] yielded eight derivatives, three of these were detected in the gut of the desert locust after it had consumed the vegetative diet but were not detected in the diet. Our study shows that the desert locust ingests phytosterols from a vegetative diet and, amplifies and metabolizes them into derivatives with potential salutary benefits and we discuss our findings in this context.
Honey bees obtain nutrients from pollen they collect and store in the hive as beebread. We developed methods to control the pollen source that bees collect and convert to beebread by placing colonies in a specially constructed enclosed flight area. Methods were developed to analyze the protein and amino acid composition of the pollen and beebread. We also describe how consumption of the beebread was measured and methods used to determine adult worker bee hemolymph protein titers after feeding on beebread for 4, 7 and 11 days after emergence. Methods were applied to determine if genotype affects the conversion of pollen to beebread and the rate that bees consume and acquire protein from it. Two subspecies (European and Africanized honey bees; EHB and AHB respectively) were provided with the same pollen source. Based on the developed methods, beebread made by both subspecies had lower protein concentrations and pH values than the pollen. In general, amino acid concentrations in beebread made by either EHB or AHB were similar and occurred at higher levels in beebread than in pollen. Both AHB and EHB consumed significantly more of the beebread made by AHB than by EHB. Though EHB and AHB consumed similar amounts of each type of beebread, hemolymph protein concentrations in AHB were higher than in EHB. Differences in protein acquisition between AHB and EHB might reflect environmental adaptations related to the geographic region where each subspecies evolved. These differences could contribute to the successful establishment of AHB populations in the New World because of the effects on brood rearing and colony growth.
21 Related JoVE Articles!
Play Button
Multi-unit Recording Methods to Characterize Neural Activity in the Locust (Schistocerca Americana) Olfactory Circuits
Authors: Debajit Saha, Kevin Leong, Nalin Katta, Baranidharan Raman.
Institutions: Washington University in St. Louis .
Detection and interpretation of olfactory cues are critical for the survival of many organisms. Remarkably, species across phyla have strikingly similar olfactory systems suggesting that the biological approach to chemical sensing has been optimized over evolutionary time1. In the insect olfactory system, odorants are transduced by olfactory receptor neurons (ORN) in the antenna, which convert chemical stimuli into trains of action potentials. Sensory input from the ORNs is then relayed to the antennal lobe (AL; a structure analogous to the vertebrate olfactory bulb). In the AL, neural representations for odors take the form of spatiotemporal firing patterns distributed across ensembles of principal neurons (PNs; also referred to as projection neurons)2,3. The AL output is subsequently processed by Kenyon cells (KCs) in the downstream mushroom body (MB), a structure associated with olfactory memory and learning4,5. Here, we present electrophysiological recording techniques to monitor odor-evoked neural responses in these olfactory circuits. First, we present a single sensillum recording method to study odor-evoked responses at the level of populations of ORNs6,7. We discuss the use of saline filled sharpened glass pipettes as electrodes to extracellularly monitor ORN responses. Next, we present a method to extracellularly monitor PN responses using a commercial 16-channel electrode3. A similar approach using a custom-made 8-channel twisted wire tetrode is demonstrated for Kenyon cell recordings8. We provide details of our experimental setup and present representative recording traces for each of these techniques.
Neuroscience, Issue 71, Neurobiology, Biomedical Engineering, Bioengineering, Physiology, Anatomy, Cellular Biology, Molecular Biology, Entomology, Olfactory Receptor Neurons, Sensory Receptor Cells, Electrophysiology, Olfactory system, extracellular multi-unit recordings, first-order olfactory receptor neurons, second-order projection neurons, third-order Kenyon cells, neurons, sensilla, antenna, locust, Schistocerca Americana, animal model
Play Button
Extracting DNA from the Gut Microbes of the Termite (Zootermopsis Angusticollis) and Visualizing Gut Microbes
Authors: Eric Matson, Elizabeth Ottesen, Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Termites are among the few animals known to have the capacity to subsist solely by consuming wood. The termite gut tract contains a dense and species-rich microbial population that assists in the degradation of lignocellulose predominantly into acetate, the key nutrient fueling termite metabolism (Odelson & Breznak, 1983). Within these microbial populations are bacteria, methanogenic archaea and, in some ("lower") termites, eukaryotic protozoa. Thus, termites are excellent research subjects for studying the interactions among microbial species and the numerous biochemical functions they perform to the benefit of their host. The species composition of microbial populations in termite guts as well as key genes involved in various biochemical processes has been explored using molecular techniques (Kudo et al., 1998; Schmit-Wagner et al., 2003; Salmassi & Leadbetter, 2003). These techniques depend on the extraction and purification of high-quality nucleic acids from the termite gut environment. The extraction technique described in this video is a modified compilation of protocols developed for extraction and purification of nucleic acids from environmental samples (Mor et al., 1994; Berthelet et al., 1996; Purdy et al., 1996; Salmassi & Leadbetter, 2003; Ottesen et al. 2006) and it produces DNA from termite hindgut material suitable for use as template for polymerase chain reaction (PCR).
Microbiology, issue 4, microbial community, DNA, extraction, gut, termite
Play Button
Extracellular Wire Tetrode Recording in Brain of Freely Walking Insects
Authors: Peiyuan Guo, Alan J. Pollack, Adrienn G. Varga, Joshua P. Martin, Roy E. Ritzmann.
Institutions: Case Western Reserve University.
Increasing interest in the role of brain activity in insect motor control requires that we be able to monitor neural activity while insects perform natural behavior. We previously developed a technique for implanting tetrode wires into the central complex of cockroach brains that allowed us to record activity from multiple neurons simultaneously while a tethered cockroach turned or altered walking speed. While a major advance, tethered preparations provide access to limited behaviors and often lack feedback processes that occur in freely moving animals. We now present a modified version of that technique that allows us to record from the central complex of freely moving cockroaches as they walk in an arena and deal with barriers by turning, climbing or tunneling. Coupled with high speed video and cluster cutting, we can now relate brain activity to various parameters of the movement of freely behaving insects.
Neuroscience, Issue 86, Central complex, Free walking, Climbing, Brain recording, Tetrode, Fan-shaped body
Play Button
The Use of Gas Chromatography to Analyze Compositional Changes of Fatty Acids in Rat Liver Tissue during Pregnancy
Authors: Helena L. Fisk, Annette L. West, Caroline E. Childs, Graham C. Burdge, Philip C. Calder.
Institutions: University of Southampton.
Gas chromatography (GC) is a highly sensitive method used to identify and quantify the fatty acid content of lipids from tissues, cells, and plasma/serum, yielding results with high accuracy and high reproducibility. In metabolic and nutrition studies GC allows assessment of changes in fatty acid concentrations following interventions or during changes in physiological state such as pregnancy. Solid phase extraction (SPE) using aminopropyl silica cartridges allows separation of the major lipid classes including triacylglycerols, different phospholipids, and cholesteryl esters (CE). GC combined with SPE was used to analyze the changes in fatty acid composition of the CE fraction in the livers of virgin and pregnant rats that had been fed various high and low fat diets. There are significant diet/pregnancy interaction effects upon the omega-3 and omega-6 fatty acid content of liver CE, indicating that pregnant females have a different response to dietary manipulation than is seen among virgin females.
Chemistry, Issue 85, gas chromatography, fatty acid, pregnancy, cholesteryl ester, solid phase extraction, polyunsaturated fatty acids
Play Button
Laboratory Estimation of Net Trophic Transfer Efficiencies of PCB Congeners to Lake Trout (Salvelinus namaycush) from Its Prey
Authors: Charles P. Madenjian, Richard R. Rediske, James P. O'Keefe, Solomon R. David.
Institutions: U. S. Geological Survey, Grand Valley State University, Shedd Aquarium.
A technique for laboratory estimation of net trophic transfer efficiency (γ) of polychlorinated biphenyl (PCB) congeners to piscivorous fish from their prey is described herein. During a 135-day laboratory experiment, we fed bloater (Coregonus hoyi) that had been caught in Lake Michigan to lake trout (Salvelinus namaycush) kept in eight laboratory tanks. Bloater is a natural prey for lake trout. In four of the tanks, a relatively high flow rate was used to ensure relatively high activity by the lake trout, whereas a low flow rate was used in the other four tanks, allowing for low lake trout activity. On a tank-by-tank basis, the amount of food eaten by the lake trout on each day of the experiment was recorded. Each lake trout was weighed at the start and end of the experiment. Four to nine lake trout from each of the eight tanks were sacrificed at the start of the experiment, and all 10 lake trout remaining in each of the tanks were euthanized at the end of the experiment. We determined concentrations of 75 PCB congeners in the lake trout at the start of the experiment, in the lake trout at the end of the experiment, and in bloaters fed to the lake trout during the experiment. Based on these measurements, γ was calculated for each of 75 PCB congeners in each of the eight tanks. Mean γ was calculated for each of the 75 PCB congeners for both active and inactive lake trout. Because the experiment was replicated in eight tanks, the standard error about mean γ could be estimated. Results from this type of experiment are useful in risk assessment models to predict future risk to humans and wildlife eating contaminated fish under various scenarios of environmental contamination.
Environmental Sciences, Issue 90, trophic transfer efficiency, polychlorinated biphenyl congeners, lake trout, activity, contaminants, accumulation, risk assessment, toxic equivalents
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
Play Button
Simultaneous Long-term Recordings at Two Neuronal Processing Stages in Behaving Honeybees
Authors: Martin Fritz Brill, Maren Reuter, Wolfgang Rössler, Martin Fritz Strube-Bloss.
Institutions: University of Würzburg.
In both mammals and insects neuronal information is processed in different higher and lower order brain centers. These centers are coupled via convergent and divergent anatomical connections including feed forward and feedback wiring. Furthermore, information of the same origin is partially sent via parallel pathways to different and sometimes into the same brain areas. To understand the evolutionary benefits as well as the computational advantages of these wiring strategies and especially their temporal dependencies on each other, it is necessary to have simultaneous access to single neurons of different tracts or neuropiles in the same preparation at high temporal resolution. Here we concentrate on honeybees by demonstrating a unique extracellular long term access to record multi unit activity at two subsequent neuropiles1, the antennal lobe (AL), the first olfactory processing stage and the mushroom body (MB), a higher order integration center involved in learning and memory formation, or two parallel neuronal tracts2 connecting the AL with the MB. The latter was chosen as an example and will be described in full. In the supporting video the construction and permanent insertion of flexible multi channel wire electrodes is demonstrated. Pairwise differential amplification of the micro wire electrode channels drastically reduces the noise and verifies that the source of the signal is closely related to the position of the electrode tip. The mechanical flexibility of the used wire electrodes allows stable invasive long term recordings over many hours up to days, which is a clear advantage compared to conventional extra and intracellular in vivo recording techniques.
Neuroscience, Issue 89, honeybee brain, olfaction, extracellular long term recordings, double recordings, differential wire electrodes, single unit, multi-unit recordings
Play Button
Macrophage Cholesterol Depletion and Its Effect on the Phagocytosis of Cryptococcus neoformans
Authors: Arielle M. Bryan, Amir M. Farnoud, Visesato Mor, Maurizio Del Poeta.
Institutions: Stony Brook University.
Cryptococcosis is a life-threatening infection caused by pathogenic fungi of the genus Cryptococcus. Infection occurs upon inhalation of spores, which are able to replicate in the deep lung. Phagocytosis of Cryptococcus by macrophages is one of the ways that the disease is able to spread into the central nervous system to cause lethal meningoencephalitis. Therefore, study of the association between Cryptococcus and macrophages is important to understanding the progression of the infection. The present study describes a step-by-step protocol to study macrophage infectivity by C. neoformansin vitro. Using this protocol, the role of host sterols on host-pathogen interactions is studied. Different concentrations of methyl--cyclodextrin (MCD) were used to deplete cholesterol from murine reticulum sarcoma macrophage-like cell line J774A.1. Cholesterol depletion was confirmed and quantified using both a commercially available cholesterol quantification kit and thin layer chromatography. Cholesterol depleted cells were activated using Lipopolysacharide (LPS) and Interferon gamma (IFNγ) and infected with antibody-opsonized Cryptococcus neoformans wild-type H99 cells at an effector-to-target ratio of 1:1. Infected cells were monitored after 2 hr of incubation with C. neoformans and their phagocytic index was calculated. Cholesterol depletion resulted in a significant reduction in the phagocytic index. The presented protocols offer a convenient method to mimic the initiation of the infection process in a laboratory environment and study the role of host lipid composition on infectivity.
Immunology, Issue 94, Infection, phagocytosis, Cryptococcus, cholesterol, cyclodextrin, macrophages
Play Button
Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae
Authors: Xin Zhang, Keshava Mysore, Ellen Flannery, Kristin Michel, David W. Severson, Kun Yan Zhu, Molly Duman-Scheel.
Institutions: Kansas State University, Indiana University School of Medicine, University of Notre Dame, University of Notre Dame, Kansas State University.
Vector mosquitoes inflict more human suffering than any other organismand kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field.
Molecular Biology, Issue 97, vector biology, RNA interference, Anopheles gambiae, Aedes aegypti, dsRNA, siRNA, knockdown, ingestion, mosquito, larvae, development, disease
Play Button
DNBS/TNBS Colitis Models: Providing Insights Into Inflammatory Bowel Disease and Effects of Dietary Fat
Authors: Vijay Morampudi, Ganive Bhinder, Xiujuan Wu, Chuanbin Dai, Ho Pan Sham, Bruce A. Vallance, Kevan Jacobson.
Institutions: BC Children's Hospital.
Inflammatory Bowel Diseases (IBD), including Crohn's Disease and Ulcerative Colitis, have long been associated with a genetic basis, and more recently host immune responses to microbial and environmental agents. Dinitrobenzene sulfonic acid (DNBS)-induced colitis allows one to study the pathogenesis of IBD associated environmental triggers such as stress and diet, the effects of potential therapies, and the mechanisms underlying intestinal inflammation and mucosal injury. In this paper, we investigated the effects of dietary n-3 and n-6 fatty acids on the colonic mucosal inflammatory response to DNBS-induced colitis in rats. All rats were fed identical diets with the exception of different types of fatty acids [safflower oil (SO), canola oil (CO), or fish oil (FO)] for three weeks prior to exposure to intrarectal DNBS. Control rats given intrarectal ethanol continued gaining weight over the 5 day study, whereas, DNBS-treated rats fed lipid diets all lost weight with FO and CO fed rats demonstrating significant weight loss by 48 hr and rats fed SO by 72 hr. Weight gain resumed after 72 hr post DNBS, and by 5 days post DNBS, the FO group had a higher body weight than SO or CO groups. Colonic sections collected 5 days post DNBS-treatment showed focal ulceration, crypt destruction, goblet cell depletion, and mucosal infiltration of both acute and chronic inflammatory cells that differed in severity among diet groups. The SO fed group showed the most severe damage followed by the CO, and FO fed groups that showed the mildest degree of tissue injury. Similarly, colonic myeloperoxidase (MPO) activity, a marker of neutrophil activity was significantly higher in SO followed by CO fed rats, with FO fed rats having significantly lower MPO activity. These results demonstrate the use of DNBS-induced colitis, as outlined in this protocol, to determine the impact of diet in the pathogenesis of IBD.
Medicine, Issue 84, Chemical colitis, Inflammatory Bowel Disease, intra rectal administration, intestinal inflammation, transmural inflammation, myeloperoxidase activity
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
Play Button
Dietary Supplementation of Polyunsaturated Fatty Acids in Caenorhabditis elegans
Authors: Marshall L. Deline, Tracy L. Vrablik, Jennifer L. Watts.
Institutions: Washington State University, Washington State University.
Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.
Biochemistry, Issue 81, Caenorhabditis elegans, C. elegans, Nutrition Therapy, genetics (animal and plant), Polyunsaturated fatty acids, omega-6, omega-3, dietary fat, dihomo-gamma-linolenic acid, germ cells
Play Button
Investigating the Microbial Community in the Termite Hindgut - Interview
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter explains why the termite-gut microbial community is an excellent system for studying the complex interactions between microbes. The symbiotic relationship existing between the host insect and lignocellulose-degrading gut microbes is explained, as well as the industrial uses of these microbes for degrading plant biomass and generating biofuels.
Microbiology, issue 4, microbial community, diversity
Play Button
Layers of Symbiosis - Visualizing the Termite Hindgut Microbial Community
Authors: Jared Leadbetter.
Institutions: California Institute of Technology - Caltech.
Jared Leadbetter takes us for a nature walk through the diversity of life resident in the termite hindgut - a microenvironment containing 250 different species found nowhere else on Earth. Jared reveals that the symbiosis exhibited by this system is multi-layered and involves not only a relationship between the termite and its gut inhabitants, but also involves a complex web of symbiosis among the gut microbes themselves.
Microbiology, issue 4, microbial community, symbiosis, hindgut
Play Button
Testing the Physiological Barriers to Viral Transmission in Aphids Using Microinjection
Authors: Cecilia Tamborindeguy, Stewart Gray, Georg Jander.
Institutions: Cornell University, Cornell University.
Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insect gut to the hemolymph (the insect blood ) and then must pass through the salivary gland, in order to be transmitted back to a new plant. An aphid may take up different viruses when munching on a plant, however only a small fraction will pass through the gut and salivary gland, the two main barriers for transmission to infect more plants. In the lab, we use physalis plants to study PLRV transmission. In this host, symptoms are characterized by stunting and interveinal chlorosis (yellowing of the leaves between the veins with the veins remaining green). The video that we present demonstrates a method for performing aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut is preventing viral transmission. The video that we present demonstrates a method for performing Aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut or salivary gland is preventing viral transmission.
Plant Biology, Issue 15, Annual Review, Aphids, Plant Virus, Potato Leaf Roll Virus, Microinjection Technique
Play Button
Testing Nicotine Tolerance in Aphids Using an Artificial Diet Experiment
Authors: John Sawyer Ramsey, Georg Jander.
Institutions: Cornell University.
Plants may upregulate the production of many different seconday metabolites in response to insect feeding. One of these metabolites, nicotine, is well know to have insecticidal properties. One response of tobacco plants to herbivory, or being gnawed upon by insects, is to increase the production of this neurotoxic alkaloid. Here, we will demonstrate how to set up an experiment to address this question of whether a tobacco-adapted strain of the green peach aphid, Myzus persicae, can tolerate higher levels of nicotine than the a strain of this insect that does not infest tobacco in the field.
Plant Biology, Issue 15, Annual Review, Nicotine, Aphids, Plant Feeding Resistance, Tobacco
Play Button
Testing Protozoacidal Activity of Ligand-lytic Peptides Against Termite Gut Protozoa in vitro (Protozoa Culture) and in vivo (Microinjection into Termite Hindgut)
Authors: Claudia Husseneder, Amit Sethi, Lane Foil, Jennifer Delatte.
Institutions: Louisiana State University Agricultural Center.
We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic peptide efficiently kills termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into hindgut of workers), but is less bacteriacidal than the lytic peptide alone. The loss of protozoa leads to the death of the termites in less than two weeks. In the future, we will genetically engineer microorganisms that can survive in the termite hindgut and spread through a termite colony as "Trojan Horses" to express ligand-lytic peptides that would kill the protozoa in the termite gut and subsequently kill the termites in the colony. Ligand-lytic peptides also could be useful for drug development against protozoan parasites.
Microbiology, Issue 46, Isoptera, Coptotermes formosanus, Formosan subterranean termite, termite control, paratransgenesis, symbionts, anaerobic, fluorescence
Play Button
Studying the Neural Basis of Adaptive Locomotor Behavior in Insects
Authors: Matthias Gruhn, Philipp Rosenbaum, Hans-Peter Bollhagen, Ansgar Bueschges.
Institutions: University of Cologne.
Studying the neural basis of walking behavior, one often faces the problem that it is hard to separate the neuronally produced stepping output from those leg movements that result from passive forces and interactions with other legs through the common contact with the substrate. If we want to understand, which part of a given movement is produced by nervous system motor output, kinematic analysis of stepping movements, therefore, needs to be complemented with electrophysiological recordings of motor activity. The recording of neuronal or muscular activity in a behaving animal is often limited by the electrophysiological equipment which can constrain the animal in its ability to move with as many degrees of freedom as possible. This can either be avoided by using implantable electrodes and then having the animal move on a long tether (i.e. Clarac et al., 1987; Duch & Pflüger, 1995; Böhm et al., 1997; Gruhn & Rathmayer, 2002) or by transmitting the data using telemetric devices (Kutsch et al, 1993; Fischer et al., 1996; Tsuchida et al. 2004; Hama et al., 2007; Wang et al., 2008). Both of these elegant methods, which are successfully used in larger arthropods, often prove difficult to apply in smaller walking insects which either easily get entangled in the long tether or are hindered by the weight of the telemetric device and its batteries. In addition, in all these cases, it is still impossible to distinguish between the purely neuronal basis of locomotion and the effects exerted by mechanical coupling between the walking legs through the substrate. One solution for this problem is to conduct the experiments in a tethered animal that is free to walk in place and that is locally suspended, for example over a slippery surface, which effectively removes most ground contact mechanics. This has been used to study escape responses (Camhi and Nolen, 1981; Camhi and Levy, 1988), turning (Tryba and Ritzman, 2000a,b; Gruhn et al., 2009a), backward walking (Graham and Epstein, 1985) or changes in velocity (Gruhn et al., 2009b) and it allows the experimenter easily to combine intra- and extracellular physiology with kinematic analyses (Gruhn et al., 2006). We use a slippery surface setup to investigate the timing of leg muscles in the behaving stick insect with respect to touch-down and lift-off under different behavioral paradigms such as straight forward and curved walking in intact and reduced preparations.
Neuroscience, issue 50, insect, walking, turning, optomotor response
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
Play Button
Identification of Metabolically Active Bacteria in the Gut of the Generalist Spodoptera littoralis via DNA Stable Isotope Probing Using 13C-Glucose
Authors: Yongqi Shao, Erika M Arias-Cordero, Wilhelm Boland.
Institutions: Max Planck Institute for Chemical Ecology.
Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction1, boosting the immune response2, pheromone production3, as well as nutrition, including the synthesis of essential amino acids4, among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing 13C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA5. The incorporation of 13C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled (12C) one. In the end, the 13C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the 12C-unlabeled similar one6. Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, 13C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.
Microbiology, Issue 81, Insects, Sequence Analysis, Genetics, Microbial, Bacteria, Lepidoptera, Spodoptera littoralis, stable-isotope-probing (SIP), pyro-sequencing, 13C-glucose, gut, microbiota, bacteria
Play Button
Therapeutic Effectiveness of a Dietary Supplement for Management of Halitosis in Dogs
Authors: Alessandro Di Cerbo, Federica Pezzuto, Sergio Canello, Gianandrea Guidetti, Beniamino Palmieri.
Institutions: Azienda Ospedaliero-Universitaria Policlinico di Modena, Universtity of Modena and Reggio Emilia, Sanypet S.p.a, AIRMO Center Milan.
Halitosis is a common complaint involving social and communicational problems in humans and also affects the pet-owner relationship. In this randomized placebo-controlled crossover clinical evaluation, we assessed the effectiveness of a dedicated dietary supplement to improve chronic halitosis in 32 dogs of different breeds and ages. This protocol describes how to evalute the presence of oral volatile suphur compunds, e.g. methyl mercaptan, hydrogen sulfide and dimethyl sulfide, by means of a portable gas chromatograph device coupled with a syringe, which was used to collect the breath, and a dedicated software, which allows the operator to monitor each compound concentration during each measurement, in a relatively short time (8 min). A significant modification of halitosis parameters was observed after 30 days since the beginning of treatment (p <0.05), while a long-lasting effect was still observed even 20 days after the suspension of the treatment. Portable gas chromatograph, which is also widely used in clinical practice, can be therefore used to confirm and control halitosis in humans and animals. Even though human and animal species present some differences, this innovative and alternative therapy for halitosis management might be extended to human clinical practice as an adjuvant dietary approach.
Medicine, Issue 101, halitosis, dietary supplement, dogs, portable gas chromatograph, human, clinical practice
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.