JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Proteomic insight into the molecular function of the vitreous.
PUBLISHED: 05-29-2015
The human vitreous contains primarily water, but also contains proteins which have yet to be fully characterized. To gain insight into the four vitreous substructures and their potential functions, we isolated and analyzed the vitreous protein profiles of three non-diseased human eyes. The four analyzed substructures were the anterior hyaloid, the vitreous cortex, the vitreous core, and the vitreous base. Proteins were separated by multidimensional liquid chromatography and identified by tandem mass spectrometry. Bioinformatics tools then extracted the expression profiles, signaling pathways, and interactomes unique to each tissue. From each substructure, a mean of 2,062 unique proteins were identified, with many being differentially expressed in a specific substructure: 278 proteins were unique to the anterior hyaloid, 322 to the vitreous cortex, 128 to the vitreous base, and 136 to the vitreous core. When the identified proteins were organized according to relevant functional pathways and networks, key patterns appeared. The blood coagulation pathway and extracellular matrix turnover networks were highly represented. Oxidative stress regulation and energy metabolism proteins were distributed throughout the vitreous. Immune functions were represented by high levels of immunoglobulin, the complement pathway, damage-associated molecular patterns (DAMPs), and evolutionarily conserved antimicrobial proteins. The majority of vitreous proteins detected were intracellular proteins, some of which originate from the retina, including rhodopsin (RHO), phosphodiesterase 6 (PDE6), and glial fibrillary acidic protein (GFAP). This comprehensive analysis uncovers a picture of the vitreous as a biologically active tissue, where proteins localize to distinct substructures to protect the intraocular tissues from infection, oxidative stress, and energy disequilibrium. It also reveals the retina as a potential source of inflammatory mediators. The vitreous proteome catalogues the dynamic interactions between the vitreous and surrounding tissues. It therefore could be an indirect and effective method for surveying vitreoretinal disease for specific biomarkers.
Authors: Karthik Murali, Amir H. Kashani, Mark S. Humayun.
Published: 05-24-2015
The authors propose an effective technique to isolate whole, intact vitreous core and cortex from post mortem enucleated porcine eyes. While previous studies have shown the results of such dissections, the detailed steps have not been described, precluding researchers outside the field from replicating their methods. Other studies harvest vitreous either through aspiration, which does not maintain the vitreous structure anatomy, or through partial dissection, which only isolates the vitreous core. The proposed method isolates the whole vitreous body, with the vitreous core and cortex intact, while maintaining vitreous anatomy and structural integrity. In this method, a full thickness scleral flap in an enucleated porcine eye is first created and through this, the choroid tissue can be separated from the sclera. The scleral flap is then expanded and the choroid is completely separated from the sclera. Finally the choroid-retina tissue is peeled off the vitreous to leave an isolated intact vitreous body. The proposed vitreous dissection technique can be used to study physical properties of the vitreous humor. In particular, this method has significance for experimental studies involving drug delivery, vitreo-retinal oxygen transport, and intraocular convection.
18 Related JoVE Articles!
Play Button
A Simplified Technique for In situ Excision of Cornea and Evisceration of Retinal Tissue from Human Ocular Globe
Authors: Mohit Parekh, Stefano Ferrari, Enzo Di Iorio, Vanessa Barbaro, Davide Camposampiero, Marianthi Karali, Diego Ponzin, Gianni Salvalaio.
Institutions: Fondazione Banca Degli Occhi del Veneto O.N.L.U.S. , Telethon Institute for Genetics & Medicine (T.I.G.E.M.).
Enucleation is the process of retrieving the ocular globe from a cadaveric donor leaving the rest of the globe undisturbed. Excision refers to the retrieval of ocular tissues, especially cornea, by cutting it separate from the ocular globe. Evisceration is the process of removing the internal organs referred here as retina. The ocular globe consists of the cornea, the sclera, the vitreous body, the lens, the iris, the retina, the choroid, muscles etc (Suppl. Figure 1). When a patient is suffering from corneal damage, the cornea needs to be removed and a healthy one must be transplanted by keratoplastic surgeries. Genetic disorders or defects in retinal function can compromise vision. Human ocular globes can be used for various surgical procedures such as eye banking, transplantation of human cornea or sclera and research on ocular tissues. However, there is little information available on human corneal and retinal excision, probably due to the limited accessibility to human tissues. Most of the studies describing similar procedures are performed on animal models. Research scientists rely on the availability of properly dissected and well-conserved ocular tissues in order to extend the knowledge on human eye development, homeostasis and function. As we receive high amount of ocular globes out of which approximately 40% (Table 1) of them are used for research purposes, we are able to perform huge amount of experiments on these tissues, defining techniques to excise and preserve them regularly. The cornea is an avascular tissue which enables the transmission of light onto the retina and for this purpose should always maintain a good degree of transparency. Within the cornea, the limbus region, which is a reservoir of the stem cells, helps the reconstruction of epithelial cells and restricts the overgrowth of the conjunctiva maintaining corneal transparency and clarity. The size and thickness of the cornea are critical for clear vision, as changes in either of them could lead to distracted, unclear vision. The cornea comprises of 5 layers; a) epithelium, b) Bowman's layer, c) stroma, d) Descemet's membrane and e) endothelium. All layers should function properly to ensure clear vision4,5,6. The choroid is the intermediate tunic between the sclera and retina, bounded on the interior by the Bruch's membrane and is responsible for blood flow in the eye. The choroid also helps to regulate the temperature and supplies nourishment to the outer layers of the retina5,6. The retina is a layer of nervous tissue that covers the back of the ocular globe (Suppl. Figure 1) and consists of two parts: a photoreceptive part and a non-receptive part. The retina helps to receive the light from the cornea and lens and converts it into the chemical energy eventually transmitted to the brain with help of the optic nerve5,6. The aim of this paper is to provide a protocol for the dissection of corneal and retinal tissues from human ocular globes. Avoiding cross-contamination with adjacent tissues and preserving RNA integrity is of fundamental importance as such tissues are indispensable for research purposes aimed at (i) characterizing the transcriptome of the ocular tissues, (ii) isolating stem cells for regenerative medicine projects, and (iii) evaluating histological differences between tissues from normal/affected subjects. In this paper we describe the technique we currently use to remove the cornea, the choroid and retinal tissues from an ocular globe. Here we provide a detailed protocol for the dissection of the human ocular globe and the excision of corneal and retinal tissues. The accompanying video will help researchers to learn an appropriate technique for the retrieval of precious human tissues which are difficult to find regularly.
Medicine, Issue 64, Physiology, Human cadaver ocular globe, in situ excision, corneal tissue, in situ evisceration, retinal tissue
Play Button
Dissection of Human Vitreous Body Elements for Proteomic Analysis
Authors: Jessica M. Skeie, Vinit B. Mahajan.
Institutions: University of Iowa.
The vitreous is an optically clear, collagenous extracellular matrix that fills the inside of the eye and overlies the retina. 1,2 Abnormal interactions between vitreous substructures and the retina underlie several vitreoretinal diseases, including retinal tear and detachment, macular pucker, macular hole, age-related macular degeneration, vitreomacular traction, proliferative vitreoretinopathy, proliferative diabetic retinopathy, and inherited vitreoretinopathies. 1,2 The molecular composition of the vitreous substructures is not known. Since the vitreous body is transparent with limited surgical access, it has been difficult to study its substructures at the molecular level. We developed a method to separate and preserve these tissues for proteomic and biochemical analysis. The dissection technique in this experimental video shows how to isolate vitreous base, anterior hyaloid, vitreous core, and vitreous cortex from postmortem human eyes. One-dimensional SDS-PAGE analyses of each vitreous component showed that our dissection technique resulted in four unique protein profiles corresponding to each substructure of the human vitreous body. Identification of differentially compartmentalized proteins will reveal candidate molecules underlying various vitreoretinal diseases.
Medicine, Issue 47, vitreous, retina, dissection, hyaloid, vitreous base, vitreous cortex, vitreous core, protein analysis
Play Button
Intravitreous Injection for Establishing Ocular Diseases Model
Authors: Kin Chiu, Raymond Chuen-Chung Chang, Kwok-Fai So.
Institutions: The University of Hong Kong - HKU.
Intravitreous injection is a widely used technique in visual sciences research. It can be used to establish animal models with ocular diseases or as direct application of local treatment. This video introduces how to use simple and inexpensive tools to finish the intravitreous injection procedure. Use of a 1 ml syringe, instead of a hemilton syringe, is used. Practical tips for how to make appropriate injection needles using glass pipettes with perfect tips, and how to easily connect the syringe needle with the glass pipette tightly together, are given. To conduct a good intravitreous injection, there are three aspects to be observed: 1) injection site should not disrupt retina structure; 2) bleeding should be avoided to reduce the risk of infection; 3) lens should be untouched to avoid traumatic cataract. In brief, the most important point is to reduce the interruption of normal ocular structure. To avoid interruption of retina, the superior nasal region of rat eye was chosen. Also, the puncture point of the needle was at the par planar, which was about 1.5 mm from the limbal region of the rat eye. A small amount of vitreous is gently pushed out through the puncture hole to reduce the intraocular pressure before injection. With the 45° injection angle, it is less likely to cause traumatic cataract in the rat eye, thus avoiding related complications and influence from lenticular factors. In this operation, there was no cutting of the conjunctiva and ocular muscle, no bleeding. With quick and minor injury, a successful intravitreous injection can be done in minutes. The injection set outlined in this particular protocol is specific for intravitreous injection. However, the methods and materials presented here can also be used for other injection procedures in drug delivery to the brain, spinal cord or other organs in small mammals.
Neuroscience, Issue 8, eye, injection, rat
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Slow-release Drug Delivery through Elvax 40W to the Rat Retina: Implications for the Treatment of Chronic Conditions
Authors: Lavinia Fiorani, Rita Maccarone, Nilisha Fernando, Linda Colecchi, Silvia Bisti, Krisztina Valter.
Institutions: University of L'Aquila, ARC Centre of Excellence in Vision Science, Australian National University, Australian National University.
Diseases of the retina are difficult to treat as the retina lies deep within the eye. Invasive methods of drug delivery are often needed to treat these diseases. Chronic retinal diseases such as retinal oedema or neovascularization usually require multiple intraocular injections to effectively treat the condition. However, the risks associated with these injections increase with repeated delivery of the drug. Therefore, alternative delivery methods need to be established in order to minimize the risks of reinjection. Several other investigations have developed methods to deliver drugs over extended time, through materials capable of releasing chemicals slowly into the eye. In this investigation, we outline the use of Elvax 40W, a copolymer resin, to act as a vehicle for drug delivery to the adult rat retina. The resin is made and loaded with the drug. The drug-resin complex is then implanted into the vitreous cavity, where it will slowly release the drug over time. This method was tested using 2-amino-4-phosphonobutyrate (APB), a glutamate analogue that blocks the light response of the retina. It was demonstrated that the APB was slowly released from the resin, and was able to block the retinal response by 7 days after implantation. This indicates that slow-release drug delivery using this copolymer resin is effective for treating the retina, and could be used therapeutically with further testing.
Medicine, Issue 91, slow-release drug delivery, Elvax 40W, co-polymer resin, eye, retina, rat, APB, retinal degeneration, treatment of chronic retinal conditions
Play Button
Glutamate and Hypoxia as a Stress Model for the Isolated Perfused Vertebrate Retina
Authors: Kai Januschowski, Sebastian Müller, Carlo Krupp, Martin S. Spitzer, José Hurst, Maximilian Schultheiss, Karl-Ulrich Bartz-Schmidt, Peter Szurman, Sven Schnichels.
Institutions: University Eye Hospital Tübingen.
Neuroprotection has been a strong field of investigation in ophthalmological research in the past decades and affects diseases such as glaucoma, retinal vascular occlusion, retinal detachment, and diabetic retinopathy. It was the object of this study to introduce a standardized stress model for future preclinical therapeutic testing. Bovine retinas were prepared and perfused with an oxygen saturated standard solution, and the ERG was recorded. After recording stable b-waves, hypoxia (pure N2) or glutamate stress (250 µm glutamate) was exerted for 45 min. To investigate the effects on photoreceptor function alone, 1 mM aspartate was added to obtain a-waves. ERG-recovery was monitored for 75 min. For hypoxia, a decrease in a-wave amplitude of 87.0% was noted (p <0.01) after an exposition time of 45 min (decrease of 36.5% after the end of the washout p = 0.03). Additionally, an initial decrease in b-wave amplitudes of 87.23% was recorded, that reached statistical significance (p <0.01, decrease of 25.5% at the end of the washout, p = 0.03). For 250 µm glutamate, an initial 7.8% reduction of a-wave amplitudes (p >0.05) followed by a reduction of 1.9% (p >0.05). A reduction of 83.7% of b-wave amplitudes (p <0.01) was noted; after a washout of 75 min the reduction was 2.3% (p = 0.62). In this study, a standardized stress model is presented that may be useful to identify possible neuroprotective effects in the future.
Medicine, Issue 97, Glutamate, Hypoxia, retinal toxicity, electroretinogram, intraocular toxicity, superfused retina
Play Button
Using Adeno-associated Virus as a Tool to Study Retinal Barriers in Disease
Authors: Ophélie Vacca, Brahim El Mathari, Marie Darche, José-Alain Sahel, Alvaro Rendon, Deniz Dalkara.
Institutions: Sorbonne Universtés, UPMC Univ Paris 06, UMR_S 968, INSERM, U968, CNRS, UMR_7210.
Müller cells are the principal glial cells of the retina. Their end-feet form the limits of the retina at the outer and inner limiting membranes (ILM), and in conjunction with astrocytes, pericytes and endothelial cells they establish the blood-retinal barrier (BRB). BRB limits material transport between the bloodstream and the retina while the ILM acts as a basement membrane that defines histologically the border between the retina and the vitreous cavity. Labeling Müller cells is particularly relevant to study the physical state of the retinal barriers, as these cells are an integral part of the BRB and ILM. Both BRB and ILM are frequently altered in retinal disease and are responsible for disease symptoms. There are several well-established methods to study the integrity of the BRB, such as the Evans blue assay or fluorescein angiography. However these methods do not provide information on the extent of BRB permeability to larger molecules, in nanometer range. Furthermore, they do not provide information on the state of other retinal barriers such as the ILM. To study BRB permeability alongside retinal ILM, we used an AAV based method that provides information on permeability of BRB to larger molecules while indicating the state of the ILM and extracellular matrix proteins in disease states. Two AAV variants are useful for such study: AAV5 and ShH10. AAV5 has a natural tropism for photoreceptors but it cannot get across to the outer retina when administered into the vitreous when the ILM is intact (i.e., in wild-type retinas). ShH10 has a strong tropism towards glial cells and will selectively label Müller glia in both healthy and diseased retinas. ShH10 provides more efficient gene delivery in retinas where ILM is compromised. These viral tools coupled with immunohistochemistry and blood-DNA analysis shed light onto the state of retinal barriers in disease.
Medicine, Issue 98, Blood-Retinal Barrier (BRB), Inner Limiting Membrane (ILM), Adeno-Associated Virus (AAV)
Play Button
Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography
Authors: Sarah H. Shahmoradian, Mauricio R. Galiano, Chengbiao Wu, Shurui Chen, Matthew N. Rasband, William C. Mobley, Wah Chiu.
Institutions: Baylor College of Medicine, Baylor College of Medicine, University of California at San Diego, Baylor College of Medicine.
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders.
Neuroscience, Issue 84, Neurons, Cryo-electron Microscopy, Electron Microscope Tomography, Brain, rat, primary neuron culture, morphological assay
Play Button
Total Protein Extraction and 2-D Gel Electrophoresis Methods for Burkholderia Species
Authors: Billie Velapatiño, James E. A. Zlosnik, Trevor J. Hird, David P. Speert.
Institutions: University of British Columbia .
The investigation of the intracellular protein levels of bacterial species is of importance to understanding the pathogenic mechanisms of diseases caused by these organisms. Here we describe a procedure for protein extraction from Burkholderia species based on mechanical lysis using glass beads in the presence of ethylenediamine tetraacetic acid and phenylmethylsulfonyl fluoride in phosphate buffered saline. This method can be used for different Burkholderia species, for different growth conditions, and it is likely suitable for the use in proteomic studies of other bacteria. Following protein extraction, a two-dimensional (2-D) gel electrophoresis proteomic technique is described to study global changes in the proteomes of these organisms. This method consists of the separation of proteins according to their isoelectric point by isoelectric focusing in the first dimension, followed by separation on the basis of molecular weight by acrylamide gel electrophoresis in the second dimension. Visualization of separated proteins is carried out by silver staining.
Immunology, Issue 80, Bacteria, Aerobic, Gram-Negative Bacteria, Immune System Diseases, Respiratory Tract Diseases, Burkholderia, proteins, glass beads, 2-D gel electrophoresis
Play Button
Quantitative Analysis of Chromatin Proteomes in Disease
Authors: Emma Monte, Haodong Chen, Maria Kolmakova, Michelle Parvatiyar, Thomas M. Vondriska, Sarah Franklin.
Institutions: David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah.
In the nucleus reside the proteomes whose functions are most intimately linked with gene regulation. Adult mammalian cardiomyocyte nuclei are unique due to the high percentage of binucleated cells,1 the predominantly heterochromatic state of the DNA, and the non-dividing nature of the cardiomyocyte which renders adult nuclei in a permanent state of interphase.2 Transcriptional regulation during development and disease have been well studied in this organ,3-5 but what remains relatively unexplored is the role played by the nuclear proteins responsible for DNA packaging and expression, and how these proteins control changes in transcriptional programs that occur during disease.6 In the developed world, heart disease is the number one cause of mortality for both men and women.7 Insight on how nuclear proteins cooperate to regulate the progression of this disease is critical for advancing the current treatment options. Mass spectrometry is the ideal tool for addressing these questions as it allows for an unbiased annotation of the nuclear proteome and relative quantification for how the abundance of these proteins changes with disease. While there have been several proteomic studies for mammalian nuclear protein complexes,8-13 until recently14 there has been only one study examining the cardiac nuclear proteome, and it considered the entire nucleus, rather than exploring the proteome at the level of nuclear sub compartments.15 In large part, this shortage of work is due to the difficulty of isolating cardiac nuclei. Cardiac nuclei occur within a rigid and dense actin-myosin apparatus to which they are connected via multiple extensions from the endoplasmic reticulum, to the extent that myocyte contraction alters their overall shape.16 Additionally, cardiomyocytes are 40% mitochondria by volume17 which necessitates enrichment of the nucleus apart from the other organelles. Here we describe a protocol for cardiac nuclear enrichment and further fractionation into biologically-relevant compartments. Furthermore, we detail methods for label-free quantitative mass spectrometric dissection of these fractions-techniques amenable to in vivo experimentation in various animal models and organ systems where metabolic labeling is not feasible.
Medicine, Issue 70, Molecular Biology, Immunology, Genetics, Genomics, Physiology, Protein, DNA, Chromatin, cardiovascular disease, proteomics, mass spectrometry
Play Button
In vivo Electroporation of Morpholinos into the Adult Zebrafish Retina
Authors: Ryan Thummel, Travis J. Bailey, David R. Hyde.
Institutions: Wayne State University School of Medicine, University of Notre Dame , University of Notre Dame .
Many devastating inherited eye diseases result in progressive and irreversible blindness because humans cannot regenerate dying or diseased retinal neurons. In contrast, the adult zebrafish retina possesses the robust ability to spontaneously regenerate any neuronal class that is lost in a variety of different retinal damage models, including retinal puncture, chemical ablation, concentrated high temperature, and intense light treatment 1-8. Our lab extensively characterized regeneration of photoreceptors following constant intense light treatment and inner retinal neurons after intravitreal ouabain injection 2, 5, 9. In all cases, resident Müller glia re-enter the cell cycle to produce neuronal progenitors, which continue to proliferate and migrate to the proper retinal layer, where they differentiate into the deficient neurons. We characterized five different stages during regeneration of the light-damaged retina that were highlighted by specific cellular responses. We identified several differentially expressed genes at each stage of retinal regeneration by mRNA microarray analysis 10. Many of these genes are also critical for ocular development. To test the role of each candidate gene/protein during retinal regeneration, we needed to develop a method to conditionally limit the expression of a candidate protein only at times during regeneration of the adult retina. Morpholino oligos are widely used to study loss of function of specific proteins during the development of zebrafish, Xenopus, chick, mouse, and tumors in human xenografts 11-14. These modified oligos basepair with complementary RNA sequence to either block the splicing or translation of the target RNA. Morpholinos are stable in the cell and can eliminate or "knockdown" protein expression for three to five days 12. Here, we describe a method to efficiently knockdown target protein expression in the adult zebrafish retina. This method employs lissamine-tagged antisense morpholinos that are injected into the vitreous of the adult zebrafish eye. Using electrode forceps, the morpholino is then electroporated into all the cell types of the dorsal and central retina. Lissamine provides the charge on the morpholino for electroporation and can be visualized to assess the presence of the morpholino in the retinal cells. Conditional knockdown in the retina can be used to examine the role of specific proteins at different times during regeneration. Additionally, this approach can be used to study the role of specific proteins in the undamaged retina, in such processes as visual transduction and visual processing in second order neurons.
Developmental Biology, Issue 58, Electroporation, morpholino, zebrafish, retina, regeneration
Play Button
Evisceration of Mouse Vitreous and Retina for Proteomic Analyses
Authors: Jessica M. Skeie, Stephen H. Tsang, Vinit B. Mahajan.
Institutions: University of Iowa, University of Iowa, Columbia University College of Physicians and Surgeons.
While the mouse retina has emerged as an important genetic model for inherited retinal disease, the mouse vitreous remains to be explored. The vitreous is a highly aqueous extracellular matrix overlying the retina where intraocular as well as extraocular proteins accumulate during disease.1-3 Abnormal interactions between vitreous and retina underlie several diseases such as retinal detachment, proliferative diabetic retinopathy, uveitis, and proliferative vitreoretinopathy.1,4 The relative mouse vitreous volume is significantly smaller than the human vitreous (Figure 1), since the mouse lens occupies nearly 75% of its eye.5 This has made biochemical studies of mouse vitreous challenging. In this video article, we present a technique to dissect and isolate the mouse vitreous from the retina, which will allow use of transgenic mouse models to more clearly define the role of this extracellular matrix in the development of vitreoretinal diseases.
Cellular Biology, Issue 50, mouse, vitreous, retina, proteomics, superoxide dismutase
Play Button
Establishment and Propagation of Human Retinoblastoma Tumors in Immune Deficient Mice
Authors: Wesley S. Bond, Lalita Wadhwa, Laszlo Perlaky, Rebecca L. Penland, Mary Y. Hurwitz, Richard L. Hurwitz, Patricia Chèvez-Barrios.
Institutions: Baylor College of Medicine, Baylor College of Medicine, Baylor College of Medicine, The Methodist Hospital Research Institute, Retinoblastoma Center of Houston, Center for Cell and Gene Therapy, Baylor College of Medicine.
Culturing retinoblastoma tumor cells in defined stem cell media gives rise to primary tumorspheres that can be grown and maintained for only a limited time. These cultured tumorspheres may exhibit markedly different cellular phenotypes when compared to the original tumors. Demonstration that cultured cells have the capability of forming new tumors is important to ensure that cultured cells model the biology of the original tumor. Here we present a protocol for propagating human retinoblastoma tumors in vivo using Rag2-/- immune deficient mice. Cultured human retinoblastoma tumorspheres of low passage or cells obtained from freshly harvested human retinoblastoma tumors injected directly into the vitreous cavity of murine eyes form tumors within 2-4 weeks. These tumors can be harvested and either further passaged into murine eyes in vivo or grown as tumorspheres in vitro. Propagation has been successfully carried out for at least three passages thus establishing a continuing source of human retinoblastoma tissue for further experimentation. Wesley S. Bond and Lalita Wadhwa are co-first authors.
Medicine, Issue 54, retinoblastoma, tumor, xenograft, tumorsphere, mouse, human, eye, cancer stem cell
Play Button
An Isolated Retinal Preparation to Record Light Response from Genetically Labeled Retinal Ganglion Cells
Authors: Tiffany M Schmidt, Paulo Kofuji.
Institutions: University of Minnesota.
The first steps in vertebrate vision take place when light stimulates the rod and cone photoreceptors of the retina 1. This information is then segregated into what are known as the ON and OFF pathways. The photoreceptors signal light information to the bipolar cells (BCs), which depolarize in response to increases (On BCs) or decreases (Off BCs) in light intensity. This segregation of light information is maintained at the level of the retinal ganglion cells (RGCs), which have dendrites stratifying in either the Off sublamina of the inner plexiform layer (IPL), where they receive direct excitatory input from Off BCs, or stratifying in the On sublamina of the IPL, where they receive direct excitatory input from On BCs. This segregation of information regarding increases or decreases in illumination (the On and Off pathways) is conserved and signaled to the brain in parallel. The RGCs are the output cells of the retina, and are thus an important cell to study in order to understand how light information is signaled to visual nuclei in the brain. Advances in mouse genetics over recent decades have resulted in a variety of fluorescent reporter mouse lines where specific RGC populations are labeled with a fluorescent protein to allow for identification of RGC subtypes 2 3 4 and specific targeting for electrophysiological recording. Here, we present a method for recording light responses from fluorescently labeled ganglion cells in an intact, isolated retinal preparation. This isolated retinal preparation allows for recordings from RGCs where the dendritic arbor is intact and the inputs across the entire RGC dendritic arbor are preserved. This method is applicable across a variety of ganglion cell subtypes and is amenable to a wide variety of single-cell physiological techniques.
Neuroscience, Issue 47, isolated, retina, ganglion cell, electrophysiology, patch clamp, transgenic, mouse, fluorescent
Play Button
A Novel Technique of Rescuing Capsulorhexis Radial Tear-out using a Cystotome
Authors: Shah M. R. Karim, Chin T. Ong, Mizanur R. Miah, Tamsin Sleep, Abdul Hanifudin.
Institutions: Hairmyres Hospital, NHS Lanarkshire, Royal Devon and Exeter NHS Foundation Trust, National Institute of Ophthalmology, South Devon Healthcare NHS Trust.
Part 1 : Purpose: To demonstrate a capsulorhexis radial tear out rescue technique using a cystotome on a virtual reality cataract surgery simulator and in a human eye. Part 2 : Method: Steps: When a capsulorhexis begins to veer radially towards the periphery beyond the pupillary margin the following steps should be applied without delay. 2.1) Stop further capsulorhexis manoeuvre and reassess the situation. 2.2) Fill the anterior chamber with ophthalmic viscosurgical device (OVD). We recommend mounting the cystotome to a syringe containing OVD so that the anterior chamber can be reinflated rapidly. 2.3) The capsulorhexis flap is then left unfolded on the lens surface. 2.4) The cystotome tip is tilted horizontally to avoid cutting or puncturing the flap and is engaged on the flap near the leading edge of the tear but not too close to the point of tear. 2.5) Gently push or pull the leading edge of tear opposite to the direction of tear. 2.6) The leading tearing edge will start to do a 'U-Turn'. Maintain the tension on the flap until the tearing edge returns to the desired trajectory. Part 3 : Results: Using our technique, a surgeon can respond instantly to radial tear out without having to change surgical instruments. Changing surgical instruments at this critical stage runs a risk of further radial tear due to sudden shallowing of anterior chamber as a result of forward pressure from the vitreous. Our technique also has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. Part 4 : Discussion The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis tear-out techniques. Capsulorhexis is the most important and complex part of phacoemulsification and endocapsular intraocular lens implantation procedure. A successful cataract surgery depends on achieving a good capsulorhexis. During capsulorhexis, surgeons may face a challenging situation like a capsulorhexis radial tear-out. A surgeon must learn to tackle the problem promptly without making the situation worse. Some other methods of rescuing the situation have been described using a capsulorhexis forceps. However, we believe our method is quicker, more effective and easier to manipulate as demonstrated on the EYESi surgical simulator and on a human eye. Acknowledgments: List acknowledgements and funding sources. We would like to thank Dr. Wael El Gendy, for video clip. Disclosures: describe potential conflicting interests or state We have nothing to disclose. References: 1. Brian C. Little, Jennifer H. Smith, Mark Packer. J Cataract Refract Surg 2006; 32:1420 1422, Issue-9. 2. Neuhann T. Theorie und Operationstechnik der Kapsulorhexis. Klin Monatsbl Augenheilkd. 1987; 1990: 542-545. 3. Gimbel HV, Neuhann T. Development, advantages and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg. 1990; 16: 31-37. 4. Gimbel HV, Neuhann T. Continuous curvilinear capsulorhexis. (letter) J Cataract Refract Sur. 1991; 17: 110-111.
Medicine, Issue 47, Phacoemulsification surgery, cataract surgery, capsulorhexis, capsulotomy, technique, Continuous curvilinear capsulorhexis, cystotome, capsulorhexis radial tear, capulorhexis COMPLICATION
Play Button
The Gateway to the Brain: Dissecting the Primate Eye
Authors: Mark Burke, Shahin Zangenehpour, Joseph Bouskila, Denis Boire, Maurice Ptito.
Institutions: University of Montreal, University of Montreal, Universite du Quebec a Trois-Rivieres.
The visual system in humans is considered the gateway to the world and plays a principal role in the plethora of sensory, perceptual and cognitive processes. It is therefore not surprising that quality of vision is tied to quality of life . Despite widespread clinical and basic research surrounding the causes of visual disorders, many forms of visual impairments, such as retinitis pigmentosa and macular degeneration, lack effective treatments. Non-human primates have the closest general features of eye development to that of humans. Not only do they have a similar vascular anatomy, but amongst other mammals, primates have the unique characteristic of having a region in the temporal retina specialized for high visual acuity, the fovea1. Here we describe a general technique for dissecting the primate retina to provide tissue for retinal histology, immunohistochemistry, laser capture microdissection, as well as light and electron microscopy. With the extended use of the non-human primate as a translational model, our hope is that improved understanding of the retina will provide insights into effective approaches towards attenuating or reversing the negative impact of visual disorders on the quality of life of affected individuals.
Neuroscience, Issue 27, Non-human primate, eye, retina, dissection, retina ganglion cells, cornea
Play Button
Establishment of a Clinically Relevant Ex Vivo Mock Cataract Surgery Model for Investigating Epithelial Wound Repair in a Native Microenvironment
Authors: Janice L. Walker, Brigid M. Bleaken, Iris M. Wolff, A. Sue Menko.
Institutions: Thomas Jefferson University.
The major impediment to understanding how an epithelial tissue executes wound repair is the limited availability of models in which it is possible to follow and manipulate the wound response ex vivo in an environment that closely mimics that of epithelial tissue injury in vivo. This issue was addressed by creating a clinically relevant epithelial ex vivo injury-repair model based on cataract surgery. In this culture model, the response of the lens epithelium to wounding can be followed live in the cells’ native microenvironment, and the molecular mediators of wound repair easily manipulated during the repair process. To prepare the cultures, lenses are removed from the eye and a small incision is made in the anterior of the lens from which the inner mass of lens fiber cells is removed. This procedure creates a circular wound on the posterior lens capsule, the thick basement membrane that surrounds the lens. This wound area where the fiber cells were attached is located just adjacent to a continuous monolayer of lens epithelial cells that remains linked to the lens capsule during the surgical procedure. The wounded epithelium, the cell type from which fiber cells are derived during development, responds to the injury of fiber cell removal by moving collectively across the wound area, led by a population of vimentin-rich repair cells whose mesenchymal progenitors are endogenous to the lens1. These properties are typical of a normal epithelial wound healing response. In this model, as in vivo, wound repair is dependent on signals supplied by the endogenous environment that is uniquely maintained in this ex vivo culture system, providing an ideal opportunity for discovery of the mechanisms that regulate repair of an epithelium following wounding.
Developmental Biology, Issue 100, Wound healing, injury, repair, collective migration, collective movement, epithelial sheet movement, epithelial wound healing, lens
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.