JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Basketball shot types and shot success in different levels of competitive basketball.
PUBLISHED: 06-04-2015
The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in), some details about their technical execution (one-legged, two-legged, drive, cut, …), and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA), Euroleague, Slovenian 1st Division, and two Youth basketball competitions). Statistical analysis with hierarchical multinomial logistic regression models reveals that there are substantial differences between competitions. However, most differences decrease or disappear entirely after we adjust for differences in situations that arise in different competitions (shot location, player type, and attacks in transition). Differences after adjustment are mostly between the Senior and Youth competitions: more shots executed jumping or standing on one leg, more uncategorised shot types, and more dribbling or cutting to the basket in the Youth competitions, which can all be attributed to lesser technical and physical ability of developing basketball players. The two discernible differences within the Senior competitions are that, in the NBA, dunks are more frequent and hook shots are less frequent compared to European basketball, which can be attributed to better athleticism of NBA players. The effect situational variables have on shot types and shot success are found to be very similar for all competitions.
Authors: Lauren Kurek, Maya L. Najarian, David A. Cremers, Rosemarie C. Chinni.
Published: 09-23-2013
The dependence of some LIBS detection capabilities on lower pulse energies (<100 mJ) and timing parameters were examined using synthetic silicate samples. These samples were used as simulants for soil and contained minor and trace elements commonly found in soil at a wide range of concentrations. For this study, over 100 calibration curves were prepared using different pulse energies and timing parameters; detection limits and sensitivities were determined from the calibration curves. Plasma temperatures were also measured using Boltzmann plots for the various energies and the timing parameters tested. The electron density of the plasma was calculated using the full-width half maximum (FWHM) of the hydrogen line at 656.5 nm over the energies tested. Overall, the results indicate that the use of lower pulse energies and non-gated detection do not seriously compromise the analytical results. These results are very relevant to the design of field- and person-portable LIBS instruments.
20 Related JoVE Articles!
Play Button
An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System
Authors: Michelle Keightley, Stephanie Green, Nick Reed, Sabrina Agnihotri, Amy Wilkinson, Nancy Lobaugh.
Institutions: University of Toronto, University of Toronto, University of Toronto, Bloorview Kids Rehab, Toronto Rehab, Sunnybrook Health Sciences Centre, University of Toronto.
One of the most commonly reported injuries in children who participate in sports is concussion or mild traumatic brain injury (mTBI)1. Children and youth involved in organized sports such as competitive hockey are nearly six times more likely to suffer a severe concussion compared to children involved in other leisure physical activities2. While the most common cognitive sequelae of mTBI appear similar for children and adults, the recovery profile and breadth of consequences in children remains largely unknown2, as does the influence of pre-injury characteristics (e.g. gender) and injury details (e.g. magnitude and direction of impact) on long-term outcomes. Competitive sports, such as hockey, allow the rare opportunity to utilize a pre-post design to obtain pre-injury data before concussion occurs on youth characteristics and functioning and to relate this to outcome following injury. Our primary goals are to refine pediatric concussion diagnosis and management based on research evidence that is specific to children and youth. To do this we use new, multi-modal and integrative approaches that will: 1.Evaluate the immediate effects of head trauma in youth 2.Monitor the resolution of post-concussion symptoms (PCS) and cognitive performance during recovery 3.Utilize new methods to verify brain injury and recovery To achieve our goals, we have implemented the Head Impact Telemetry (HIT) System. (Simbex; Lebanon, NH, USA). This system equips commercially available Easton S9 hockey helmets (Easton-Bell Sports; Van Nuys, CA, USA) with single-axis accelerometers designed to measure real-time head accelerations during contact sport participation 3 - 5. By using telemetric technology, the magnitude of acceleration and location of all head impacts during sport participation can be objectively detected and recorded. We also use functional magnetic resonance imaging (fMRI) to localize and assess changes in neural activity specifically in the medial temporal and frontal lobes during the performance of cognitive tasks, since those are the cerebral regions most sensitive to concussive head injury 6. Finally, we are acquiring structural imaging data sensitive to damage in brain white matter.
Medicine, Issue 47, Mild traumatic brain injury, concussion, fMRI, youth, Head Impact Telemetry System
Play Button
Peering into the Dynamics of Social Interactions: Measuring Play Fighting in Rats
Authors: Brett T. Himmler, Vivien C. Pellis, Sergio M. Pellis.
Institutions: University of Lethbridge.
Play fighting in the rat involves attack and defense of the nape of the neck, which if contacted, is gently nuzzled with the snout. Because the movements of one animal are countered by the actions of its partner, play fighting is a complex, dynamic interaction. This dynamic complexity raises methodological problems about what to score for experimental studies. We present a scoring schema that is sensitive to the correlated nature of the actions performed. The frequency of play fighting can be measured by counting the number of playful nape attacks occurring per unit time. However, playful defense, as it can only occur in response to attack, is necessarily a contingent measure that is best measured as a percentage (#attacks defended/total # attacks X 100%). How a particular attack is defended against can involve one of several tactics, and these are contingent on defense having taken place; consequently, the type of defense is also best expressed contingently as a percentage. Two experiments illustrate how these measurements can be used to detect the effect of brain damage on play fighting even when there is no effect on overall playfulness. That is, the schema presented here is designed to detect and evaluate changes in the content of play following an experimental treatment.
Neuroscience, Issue 71, Neurobiology, Behavior, Psychology, Anatomy, Physiology, Medicine, Play behavior, play, fighting, wrestling, grooming, allogrooming, social interaction, rat, behavioral analysis, animal model
Play Button
Whole Mount Immunolabeling of Olfactory Receptor Neurons in the Drosophila Antenna
Authors: M. Rezaul Karim, Keita Endo, Adrian W Moore, Hiroaki Taniguchi.
Institutions: Doshisha University, RIKEN Brain Science Institute, RIKEN Brain Science Institute.
Odorant molecules bind to their target receptors in a precise and coordinated manner. Each receptor recognizes a specific signal and relays this information to the brain. As such, determining how olfactory information is transferred to the brain, modifying both perception and behavior, merits investigation. Interestingly, there is emerging evidence that cellular transduction and transcriptional factors are involved in the diversification of olfactory receptor neuron. Here we provide a robust whole mount immunological labeling method to assay in vivo olfactory receptor neuron organization. Using this method, we identified all olfactory receptor neurons with anti-ELAV antibody, a known pan-neural marker and Or49a-mCD8::GFP, an olfactory receptor neuron specifically expressed in Nba neuron using anti-GFP antibody.
Neuroscience, Issue 87, Developmental biology, Drosophila, Whole mount immunolabeling, olfactory receptor neurons, antennae, sensory organ
Play Button
Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue
Authors: Lucie Sancey, Vincent Motto-Ros, Shady Kotb, Xiaochun Wang, François Lux, Gérard Panczer, Jin Yu, Olivier Tillement.
Institutions: CNRS - Université Lyon 1, CNRS - Université Lyon 1, CNRS - Université Lyon 1.
Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular.
Physics, Issue 88, Microtechnology, Nanotechnology, Tissues, Diagnosis, Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Plasma Physics, laser-induced breakdown spectroscopy, nanoparticles, elemental mapping, chemical images of organ tissue, quantification, biomedical measurement, laser-induced plasma, spectrochemical analysis, tissue mapping
Play Button
High-throughput Image Analysis of Tumor Spheroids: A User-friendly Software Application to Measure the Size of Spheroids Automatically and Accurately
Authors: Wenjin Chen, Chung Wong, Evan Vosburgh, Arnold J. Levine, David J. Foran, Eugenia Y. Xu.
Institutions: Raymond and Beverly Sackler Foundation, New Jersey, Rutgers University, Rutgers University, Institute for Advanced Study, New Jersey.
The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application – SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary “Manual Initialize” and “Hand Draw” tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model for drug screens in industry and academia.
Cancer Biology, Issue 89, computer programming, high-throughput, image analysis, tumor spheroids, 3D, software application, cancer therapy, drug screen, neuroendocrine tumor cell line, BON-1, cancer research
Play Button
A Multi-Modal Approach to Assessing Recovery in Youth Athletes Following Concussion
Authors: Nick Reed, James Murphy, Talia Dick, Katie Mah, Melissa Paniccia, Lee Verweel, Danielle Dobney, Michelle Keightley.
Institutions: Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, University of Toronto.
Concussion is one of the most commonly reported injuries amongst children and youth involved in sport participation. Following a concussion, youth can experience a range of short and long term neurobehavioral symptoms (somatic, cognitive and emotional/behavioral) that can have a significant impact on one’s participation in daily activities and pursuits of interest (e.g., school, sports, work, family/social life, etc.). Despite this, there remains a paucity in clinically driven research aimed specifically at exploring concussion within the youth sport population, and more specifically, multi-modal approaches to measuring recovery. This article provides an overview of a novel and multi-modal approach to measuring recovery amongst youth athletes following concussion. The presented approach involves the use of both pre-injury/baseline testing and post-injury/follow-up testing to assess performance across a wide variety of domains (post-concussion symptoms, cognition, balance, strength, agility/motor skills and resting state heart rate variability). The goal of this research is to gain a more objective and accurate understanding of recovery following concussion in youth athletes (ages 10-18 years). Findings from this research can help to inform the development and use of improved approaches to concussion management and rehabilitation specific to the youth sport community.
Medicine, Issue 91, concussion, children, youth, athletes, assessment, management, rehabilitation
Play Button
Technique of Porcine Liver Procurement and Orthotopic Transplantation using an Active Porto-Caval Shunt
Authors: Vinzent N. Spetzler, Nicolas Goldaracena, Jan M. Knaak, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. Each year, a considerable number of patients on the liver transplantation waiting list die without receiving an organ transplant or are delisted due to disease progression. Even after a successful transplantation, rejection and side effects of immunosuppression remain major concerns for graft survival and patient morbidity. Experimental animal research has been essential to the success of liver transplantation and still plays a pivotal role in the development of clinical transplantation practice. In particular, the porcine orthotopic liver transplantation model (OLTx) is optimal for clinically oriented research for its close resemblance to human size, anatomy, and physiology. Decompression of intestinal congestion during the anhepatic phase of porcine OLTx is important to guarantee reliable animal survival. The use of an active porto-caval-jugular shunt achieves excellent intestinal decompression. The system can be used for short-term as well as long-term survival experiments. The following protocol contains all technical information for a stable and reproducible liver transplantation model in pigs including post-operative animal care.
Medicine, Issue 99, Orthotopic Liver Transplantation, Hepatic, Porcine Model, Pig, Experimental, Transplantation, Graft Preservation, Ischemia Reperfusion Injury, Transplant Immunology, Bile Duct Reconstruction, Animal Handling
Play Button
Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models
Authors: Teresa E. Lever, Sabrina M. Braun, Ryan T. Brooks, Rebecca A. Harris, Loren L. Littrell, Ryan M. Neff, Cameron J. Hinkel, Mitchell J. Allen, Mollie A. Ulsas.
Institutions: University of Missouri, University of Missouri, University of Missouri.
This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models.
Medicine, Issue 97, mouse, murine, rodent, swallowing, deglutition, dysphagia, videofluoroscopy, radiation, iohexol, barium, palatability, taste, translational, disease models
Play Button
Mosaic Zebrafish Transgenesis for Functional Genomic Analysis of Candidate Cooperative Genes in Tumor Pathogenesis
Authors: Choong Yong Ung, Feng Guo, Xiaoling Zhang, Zhihui Zhu, Shizhen Zhu.
Institutions: Mayo Clinic College of Medicine, Center for Individualized Medicine, Tufts University School of Medicine, Mayo Clinic.
Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic “drivers” among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has resisted most forms of contemporary treatment.
Developmental Biology, Issue 97, zebrafish, animal model, mosaic transgenesis, coinjection, functional genomics, tumor initiation
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
Localized RNAi and Ectopic Gene Expression in the Medicinal Leech
Authors: Orit Shefi, Claire Simonnet, Alex Groisman, Eduardo R Macagno.
Institutions: University of California San Diego - UCSD, University of California San Diego - UCSD.
In this video, we show the use of a pneumatic capillary gun for the accurate biolistic delivery of reagents into live tissue. We use the procedure to perturb gene expression patterns in selected segments of leech embryos, leaving the untreated segments as internal controls. The pneumatic capillary gun can be used to reach internal layers of cells at early stages of development without opening the specimen. As a method for localized introduction of substances into living tissues, the biolistic delivery with the gun has several advantages: it is fast, contact-free and non-destructive. In addition, a single capillary gun can be used for independent delivery of different substances. The delivery region can have lateral dimensions of ~50-150 µm and extends over ~15 µm around the mean penetration depth, which is adjustable between 0 and 50 µm. This delivery has the advantage of being able to target a limited number of cells in a selected location intermediate between single cell knock down by microinjection and systemic knockdown through extracellular injections or by means of genetic approaches. For knocking down or knocking in the expression of the axon guidance molecule Netrin, which is naturally expressed by some central neurons and in the ventral body wall, but not the dorsal domain, we deliver molecules of dsRNA or plasmid-DNA into the body wall and central ganglia. This procedure includes the following steps: (i) preparation of the experimental setup for a specific assay (adjusting the accelerating pressure), (ii) coating the particles with molecules of dsRNA or DNA, (iii) loading the coated particles into the gun, up to two reagents in one assay, (iv) preparing the animals for the particle delivery, (v) delivery of coated particles into the target tissue (body wall or ganglia), and (vi) processing the embryos (immunostaining, immunohistochemistry and neuronal labeling) to visualize the results, usually 2 to 3 days after the delivery. When the particles were coated with netrin dsRNA, they caused clearly visible knock-down of netrin expression that only occurred in cells containing particles (usually, 1-2 particles per cell). Particles coated with a plasmid encoding EGFP induced fluorescence in neuronal cells when they stopped in their nuclei.
Neuroscience, Issue 14, leech, netrin, axon guidance, development, mechanosensory neurons, gene gun, RNAi
Play Button
Assessing Differences in Sperm Competitive Ability in Drosophila
Authors: Shu-Dan Yeh, Carolus Chan, José M. Ranz.
Institutions: University of California, Irvine.
Competition among conspecific males for fertilizing the ova is one of the mechanisms of sexual selection, i.e. selection that operates on maximizing the number of successful mating events rather than on maximizing survival and viability 1. Sperm competition represents the competition between males after copulating with the same female 2, in which their sperm are coincidental in time and space. This phenomenon has been reported in multiple species of plants and animals 3. For example, wild-caught D. melanogaster females usually contain sperm from 2-3 males 4. The sperm are stored in specialized organs with limited storage capacity, which might lead to the direct competition of the sperm from different males 2,5. Comparing sperm competitive ability of different males of interest (experimental male types) has been performed through controlled double-mating experiments in the laboratory 6,7. Briefly, a single female is exposed to two different males consecutively, one experimental male and one cross-mating reference male. The same mating scheme is then followed using other experimental male types thus facilitating the indirect comparison of the competitive ability of their sperm through a common reference. The fraction of individuals fathered by the experimental and reference males is identified using markers, which allows one to estimate sperm competitive ability using simple mathematical expressions 7,8. In addition, sperm competitive ability can be estimated in two different scenarios depending on whether the experimental male is second or first to mate (offense and defense assay, respectively) 9, which is assumed to be reflective of different competence attributes. Here, we describe an approach that helps to interrogate the role of different genetic factors that putatively underlie the phenomenon of sperm competitive ability in D. melanogaster.
Developmental Biology, Issue 78, Molecular Biology, Cellular Biology, Genetics, Biochemistry, Spermatozoa, Drosophila melanogaster, Biological Evolution, Phenotype, genetics (animal and plant), animal biology, double-mating experiment, sperm competitive ability, male fertility, Drosophila, fruit fly, animal model
Play Button
Characterization of Surface Modifications by White Light Interferometry: Applications in Ion Sputtering, Laser Ablation, and Tribology Experiments
Authors: Sergey V. Baryshev, Robert A. Erck, Jerry F. Moore, Alexander V. Zinovev, C. Emil Tripa, Igor V. Veryovkin.
Institutions: Argonne National Laboratory, Argonne National Laboratory, MassThink LLC.
In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.
Materials Science, Issue 72, Physics, Ion Beams (nuclear interactions), Light Reflection, Optical Properties, Semiconductor Materials, White Light Interferometry, Ion Sputtering, Laser Ablation, Femtosecond Lasers, Depth Profiling, Time-of-flight Mass Spectrometry, Tribology, Wear Analysis, Optical Profilometry, wear, friction, atomic force microscopy, AFM, scanning electron microscopy, SEM, imaging, visualization
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
High-resolution Functional Magnetic Resonance Imaging Methods for Human Midbrain
Authors: Sucharit Katyal, Clint A. Greene, David Ress.
Institutions: The University of Texas at Austin.
Functional MRI (fMRI) is a widely used tool for non-invasively measuring correlates of human brain activity. However, its use has mostly been focused upon measuring activity on the surface of cerebral cortex rather than in subcortical regions such as midbrain and brainstem. Subcortical fMRI must overcome two challenges: spatial resolution and physiological noise. Here we describe an optimized set of techniques developed to perform high-resolution fMRI in human SC, a structure on the dorsal surface of the midbrain; the methods can also be used to image other brainstem and subcortical structures. High-resolution (1.2 mm voxels) fMRI of the SC requires a non-conventional approach. The desired spatial sampling is obtained using a multi-shot (interleaved) spiral acquisition1. Since, T2* of SC tissue is longer than in cortex, a correspondingly longer echo time (TE ~ 40 msec) is used to maximize functional contrast. To cover the full extent of the SC, 8-10 slices are obtained. For each session a structural anatomy with the same slice prescription as the fMRI is also obtained, which is used to align the functional data to a high-resolution reference volume. In a separate session, for each subject, we create a high-resolution (0.7 mm sampling) reference volume using a T1-weighted sequence that gives good tissue contrast. In the reference volume, the midbrain region is segmented using the ITK-SNAP software application2. This segmentation is used to create a 3D surface representation of the midbrain that is both smooth and accurate3. The surface vertices and normals are used to create a map of depth from the midbrain surface within the tissue4. Functional data is transformed into the coordinate system of the segmented reference volume. Depth associations of the voxels enable the averaging of fMRI time series data within specified depth ranges to improve signal quality. Data is rendered on the 3D surface for visualization. In our lab we use this technique for measuring topographic maps of visual stimulation and covert and overt visual attention within the SC1. As an example, we demonstrate the topographic representation of polar angle to visual stimulation in SC.
Neuroscience, Issue 63, fMRI, midbrain, brainstem, colliculus, BOLD, brain, Magentic Resonance Imaging, MRI
Play Button
Determining the Contribution of the Energy Systems During Exercise
Authors: Guilherme G. Artioli, Rômulo C. Bertuzzi, Hamilton Roschel, Sandro H. Mendes, Antonio H. Lancha Jr., Emerson Franchini.
Institutions: University of Sao Paulo, University of Sao Paulo, University of Sao Paulo, University of Sao Paulo.
One of the most important aspects of the metabolic demand is the relative contribution of the energy systems to the total energy required for a given physical activity. Although some sports are relatively easy to be reproduced in a laboratory (e.g., running and cycling), a number of sports are much more difficult to be reproduced and studied in controlled situations. This method presents how to assess the differential contribution of the energy systems in sports that are difficult to mimic in controlled laboratory conditions. The concepts shown here can be adapted to virtually any sport. The following physiologic variables will be needed: rest oxygen consumption, exercise oxygen consumption, post-exercise oxygen consumption, rest plasma lactate concentration and post-exercise plasma peak lactate. To calculate the contribution of the aerobic metabolism, you will need the oxygen consumption at rest and during the exercise. By using the trapezoidal method, calculate the area under the curve of oxygen consumption during exercise, subtracting the area corresponding to the rest oxygen consumption. To calculate the contribution of the alactic anaerobic metabolism, the post-exercise oxygen consumption curve has to be adjusted to a mono or a bi-exponential model (chosen by the one that best fits). Then, use the terms of the fitted equation to calculate anaerobic alactic metabolism, as follows: ATP-CP metabolism = A1 (mL . s-1) x t1 (s). Finally, to calculate the contribution of the lactic anaerobic system, multiply peak plasma lactate by 3 and by the athlete’s body mass (the result in mL is then converted to L and into kJ). The method can be used for both continuous and intermittent exercise. This is a very interesting approach as it can be adapted to exercises and sports that are difficult to be mimicked in controlled environments. Also, this is the only available method capable of distinguishing the contribution of three different energy systems. Thus, the method allows the study of sports with great similarity to real situations, providing desirable ecological validity to the study.
Physiology, Issue 61, aerobic metabolism, anaerobic alactic metabolism, anaerobic lactic metabolism, exercise, athletes, mathematical model
Play Button
Brain Imaging Investigation of the Neural Correlates of Emotional Autobiographical Recollection
Authors: Ekaterina Denkova, Trisha Chakrabarty, Sanda Dolcos, Florin Dolcos.
Institutions: University of Alberta, Edmonton, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign, University of Illinois, Urbana-Champaign.
Recollection of emotional autobiographical memories (AMs) is important to healthy cognitive and affective functioning 1 - remembering positive AMs is associated with increased personal well-being and self-esteem 2, whereas remembering and ruminating on negative AMs may lead to affective disorders 3. Although significant progress has been made in understanding the brain mechanisms underlying AM retrieval in general (reviewed in 4, 5), less is known about the effect of emotion on the subjective re-experience of AMs and the associated neural correlates. This is in part due to the fact that, unlike the investigations of the emotion effect on memory for laboratory-based microevents (reviewed in 6, 7-9), often times AM studies do not have a clear focus on the emotional aspects of remembering personal events (but see 10). Here, we present a protocol that allows investigation of the neural correlates of recollecting emotional AMs using functional magnetic resonance imaging (fMRI). Cues for these memories are collected prior to scanning by means of an autobiographical memory questionnaire (AMQ), therefore allowing for proper selection of emotional AMs based on their phenomenological properties (i.e., intensity, vividness, personal significance). This protocol can be used in healthy and clinical populations alike.
Neuroscience, Issue 54, Personal Memories, Retrieval Focus, Cognitive Distraction, Emotion Regulation, Neuroimaging
Play Button
Bimolecular Fluorescence Complementation (BiFC) Assay for Protein-Protein Interaction in Onion Cells Using the Helios Gene Gun
Authors: Courtney A. Hollender, Zhongchi Liu.
Institutions: University of Maryland.
Investigation of gene function in diverse organisms relies on knowledge of how the gene products interact with each other in their normal cellular environment. The Bimolecular Fluorescence Complementation (BiFC) Assay1 allows researchers to visualize protein-protein interactions in living cells and has become an essential research tool. This assay is based on the facilitated association of two fragments of a fluorescent protein (GFP) that are each fused to a potential interacting protein partner. The interaction of the two protein partners would facilitate the association of the N-terminal and C-terminal fragment of GFP, leading to fluorescence. For plant researchers, onion epidermal cells are an ideal experimental system for conducting the BiFC assay because of the ease in obtaining and preparing onion tissues and the direct visualization of fluorescence with minimal background fluorescence. The Helios Gene Gun (BioRad) is commonly used for bombarding plasmid DNA into onion cells. We demonstrate the use of Helios Gene Gun to introduce plasmid constructs for two interacting Arabidopsis thaliana transcription factors, SEUSS (SEU) and LEUNIG HOMOLOG (LUH)2 and the visualization of their interactions mediated by BiFC in onion epidermal cells.
Plant Biology, Issue 40, Bimolecular Fluorescence Complementation (BiFC), particle bombardment, protein-protein interaction, onion cells, Helios Gene Gun
Play Button
Vision Training Methods for Sports Concussion Mitigation and Management
Authors: Joseph F. Clark, Angelo Colosimo, James K. Ellis, Robert Mangine, Benjamin Bixenmann, Kimberly Hasselfeld, Patricia Graman, Hagar Elgendy, Gregory Myer, Jon Divine.
Institutions: University of Cincinnati, University of Cincinnati, University of Cincinnati, University of Cincinnati, University of Cincinnati, Cincinnati Children's Hospital Medical Center.
There is emerging evidence supporting the use vision training, including light board training tools, as a concussion baseline and neuro-diagnostic tool and potentially as a supportive component to concussion prevention strategies. This paper is focused on providing detailed methods for select vision training tools and reporting normative data for comparison when vision training is a part of a sports management program. The overall program includes standard vision training methods including tachistoscope, Brock’s string, and strobe glasses, as well as specialized light board training algorithms. Stereopsis is measured as a means to monitor vision training affects. In addition, quantitative results for vision training methods as well as baseline and post-testing *A and Reaction Test measures with progressive scores are reported. Collegiate athletes consistently improve after six weeks of training in their stereopsis, *A and Reaction Test scores. When vision training is initiated as a team wide exercise, the incidence of concussion decreases in players who participate in training compared to players who do not receive the vision training. Vision training produces functional and performance changes that, when monitored, can be used to assess the success of the vision training and can be initiated as part of a sports medical intervention for concussion prevention.
Behavior, Issue 99, Vision training, peripheral vision, functional peripheral vision, concussion, concussion management, diagnosis, rehabilitation, eyes, sight, seeing, sight
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.