JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Hypnotics and the Occurrence of Bone Fractures in Hospitalized Dementia Patients: A Matched Case-Control Study Using a National Inpatient Database.
.
PLoS ONE
PUBLISHED: 06-11-2015
Preventing falls and bone fractures in hospital care is an important issue in geriatric medicine. Use of hypnotics is a potential risk factor for falls and bone fractures in older patients. However, data are lacking on the association between use of hypnotics and the occurrence of bone fracture.
Authors: Bret H. Clough, Matthew R. McCarley, Carl A. Gregory.
Published: 03-15-2015
ABSTRACT
While bone has a remarkable capacity for regeneration, serious bone trauma often results in damage that does not properly heal. In fact, one tenth of all limb bone fractures fail to heal completely due to the extent of the trauma, disease, or age of the patient. Our ability to improve bone regenerative strategies is critically dependent on the ability to mimic serious bone trauma in test animals, but the generation and stabilization of large bone lesions is technically challenging. In most cases, serious long bone trauma is mimicked experimentally by establishing a defect that will not naturally heal. This is achieved by complete removal of a bone segment that is larger than 1.5 times the diameter of the bone cross-section. The bone is then stabilized with a metal implant to maintain proper orientation of the fracture edges and allow for mobility. Due to their small size and the fragility of their long bones, establishment of such lesions in mice are beyond the capabilities of most research groups. As such, long bone defect models are confined to rats and larger animals. Nevertheless, mice afford significant research advantages in that they can be genetically modified and bred as immune-compromised strains that do not reject human cells and tissue. Herein, we demonstrate a technique that facilitates the generation of a segmental defect in mouse femora using standard laboratory and veterinary equipment. With practice, fabrication of the fixation device and surgical implantation is feasible for the majority of trained veterinarians and animal research personnel. Using example data, we also provide methodologies for the quantitative analysis of bone healing for the model.
19 Related JoVE Articles!
Play Button
Surgical Fixation of Sternal Fractures: Preoperative Planning and a Safe Surgical Technique Using Locked Titanium Plates and Depth Limited Drilling
Authors: Stefan Schulz-Drost, Pascal Oppel, Sina Grupp, Sonja Schmitt, Roman Th. Carbon, Andreas Mauerer, Friedrich F. Hennig, Thomas Buder.
Institutions: University Hospital Erlangen, University Hospital Erlangen, St.-Theresien Hospital, University Erlangen-Nuremberg.
Different ways to stabilize a sternal fracture are described in literature. Respecting different mechanisms of trauma such as the direct impact to the anterior chest wall or the flexion-compression injury of the trunk, there is a need to retain each sternal fragment in the correct position while neutralizing shearing forces to the sternum. Anterior sternal plating provides the best stability and is therefore increasingly used in most cases. However, many surgeons are reluctant to perform sternal osteosynthesis due to possible complications such as difficulties in preoperative planning, severe injuries to mediastinal organs, or failure of the performed method. This manuscript describes one possible safe way to stabilize different types of sternal fractures in a step by step guidance for anterior sternal plating using low profile locking titanium plates. Before surgical treatment, a detailed survey of the patient and a three dimensional reconstructed computed tomography is taken out to get detailed information of the fracture’s morphology. The surgical approach is usually a midline incision. Its position can be described by measuring the distance from upper sternal edge to the fracture and its length can be approximated by the summation of 60 mm for the basis incision, the thickness of presternal soft tissue and the greatest distance between the fragments in case of multiple fractures. Performing subperiosteal dissection along the sternum while reducing the fracture, using depth limited drilling, and fixing the plates prevents injuries to mediastinal organs and vessels. Transverse fractures and oblique fractures at the corpus sterni are plated longitudinally, whereas oblique fractures of manubrium, sternocostal separation and any longitudinally fracture needs to be stabilized by a transverse plate from rib to sternum to rib. Usually the high convenience of a patient is seen during follow up as well as a precise reconstruction of the sternal morphology.
Medicine, Issue 95, Sternal fracture, sternum fracture, locked plate, low profile plate, MatrixRib, depth limited drilling, surgical procedure, preoperative CT planning
52124
Play Button
Adjustable Stiffness, External Fixator for the Rat Femur Osteotomy and Segmental Bone Defect Models
Authors: Vaida Glatt, Romano Matthys.
Institutions: Queensland University of Technology, RISystem AG.
The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.
Medicine, Issue 92, external fixator, bone healing, small animal model, large bone defect and osteotomy model, rat model, mechanical environment, mechanobiology.
51558
Play Button
Isolation and Transplantation of Hematopoietic Stem Cells (HSCs)
Authors: Cristina Lo Celso, David Scadden.
Institutions: Harvard Medical School.
Cellular Biology, Issue 2, HSC, stem cells, bone marrow
157
Play Button
Sequential In vivo Imaging of Osteogenic Stem/Progenitor Cells During Fracture Repair
Authors: Dongsu Park, Joel A. Spencer, Charles P. Lin, David T. Scadden.
Institutions: Harvard Stem Cell Institute, Harvard Medical School.
Bone turns over continuously and is highly regenerative following injury. Osteogenic stem/progenitor cells have long been hypothesized to exist, but in vivo demonstration of such cells has only recently been attained. Here, in vivo imaging techniques to investigate the role of endogenous osteogenic stem/progenitor cells (OSPCs) and their progeny in bone repair are provided. Using osteo-lineage cell tracing models and intravital imaging of induced microfractures in calvarial bone, OSPCs can be directly observed during the first few days after injury, in which critical events in the early repair process occur. Injury sites can be sequentially imaged revealing that OSPCs relocate to the injury, increase in number and differentiate into bone forming osteoblasts. These methods offer a means of investigating the role of stem cell-intrinsic and extrinsic molecular regulators for bone regeneration and repair.
Medicine, Issue 87, Osteogenic Stem Cells, In vivo Imaging, Lineage tracking, Bone regeneration, Fracture repair, Mx1.
51289
Play Button
The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
Authors: Richard A. Rudick, Deborah Miller, Francois Bethoux, Stephen M. Rao, Jar-Chi Lee, Darlene Stough, Christine Reece, David Schindler, Bernadett Mamone, Jay Alberts.
Institutions: Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation.
Precise measurement of neurological and neuropsychological impairment and disability in multiple sclerosis is challenging. We report a new test, the Multiple Sclerosis Performance Test (MSPT), which represents a new approach to quantifying MS related disability. The MSPT takes advantage of advances in computer technology, information technology, biomechanics, and clinical measurement science. The resulting MSPT represents a computer-based platform for precise, valid measurement of MS severity. Based on, but extending the Multiple Sclerosis Functional Composite (MSFC), the MSPT provides precise, quantitative data on walking speed, balance, manual dexterity, visual function, and cognitive processing speed. The MSPT was tested by 51 MS patients and 49 healthy controls (HC). MSPT scores were highly reproducible, correlated strongly with technician-administered test scores, discriminated MS from HC and severe from mild MS, and correlated with patient reported outcomes. Measures of reliability, sensitivity, and clinical meaning for MSPT scores were favorable compared with technician-based testing. The MSPT is a potentially transformative approach for collecting MS disability outcome data for patient care and research. Because the testing is computer-based, test performance can be analyzed in traditional or novel ways and data can be directly entered into research or clinical databases. The MSPT could be widely disseminated to clinicians in practice settings who are not connected to clinical trial performance sites or who are practicing in rural settings, drastically improving access to clinical trials for clinicians and patients. The MSPT could be adapted to out of clinic settings, like the patient’s home, thereby providing more meaningful real world data. The MSPT represents a new paradigm for neuroperformance testing. This method could have the same transformative effect on clinical care and research in MS as standardized computer-adapted testing has had in the education field, with clear potential to accelerate progress in clinical care and research.
Medicine, Issue 88, Multiple Sclerosis, Multiple Sclerosis Functional Composite, computer-based testing, 25-foot walk test, 9-hole peg test, Symbol Digit Modalities Test, Low Contrast Visual Acuity, Clinical Outcome Measure
51318
Play Button
A Novel in vivo Gene Transfer Technique and in vitro Cell Based Assays for the Study of Bone Loss in Musculoskeletal Disorders
Authors: Dennis J. Wu, Neha Dixit, Erika Suzuki, Thanh Nguyen, Hyun Seock Shin, Jack Davis, Emanual Maverakis, Iannis E. Adamopoulos.
Institutions: University of California, Davis, Shriners Hospitals for Children - Northern California, University of California, Davis.
Differentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation. The minicircle DNA delivery gene transfer system provides an alternative method to establish an osteoporosis-related model is particularly useful to study the efficacy of various pharmacological inhibitors in vivo. Similarly, in vitro culturing protocols for producing osteoclasts from human precursor cells in the presence of specific cytokines enables scientists to study osteoclastogenesis in human cells for translational applications. Combined, these techniques have the potential to accelerate drug discovery efforts for osteoclast-specific targeted therapeutics, which may benefit millions of osteoporosis and arthritis patients worldwide.
Medicine, Issue 88, osteoclast, arthritis, minicircle DNA, macrophages, cell culture, hydrodynamic delivery
51810
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
52066
Play Button
Automated Quantification of Hematopoietic Cell – Stromal Cell Interactions in Histological Images of Undecalcified Bone
Authors: Sandra Zehentmeier, Zoltan Cseresnyes, Juan Escribano Navarro, Raluca A. Niesner, Anja E. Hauser.
Institutions: German Rheumatism Research Center, a Leibniz Institute, German Rheumatism Research Center, a Leibniz Institute, Max-Delbrück Center for Molecular Medicine, Wimasis GmbH, Charité - University of Medicine.
Confocal microscopy is the method of choice for the analysis of localization of multiple cell types within complex tissues such as the bone marrow. However, the analysis and quantification of cellular localization is difficult, as in many cases it relies on manual counting, thus bearing the risk of introducing a rater-dependent bias and reducing interrater reliability. Moreover, it is often difficult to judge whether the co-localization between two cells results from random positioning, especially when cell types differ strongly in the frequency of their occurrence. Here, a method for unbiased quantification of cellular co-localization in the bone marrow is introduced. The protocol describes the sample preparation used to obtain histological sections of whole murine long bones including the bone marrow, as well as the staining protocol and the acquisition of high-resolution images. An analysis workflow spanning from the recognition of hematopoietic and non-hematopoietic cell types in 2-dimensional (2D) bone marrow images to the quantification of the direct contacts between those cells is presented. This also includes a neighborhood analysis, to obtain information about the cellular microenvironment surrounding a certain cell type. In order to evaluate whether co-localization of two cell types is the mere result of random cell positioning or reflects preferential associations between the cells, a simulation tool which is suitable for testing this hypothesis in the case of hematopoietic as well as stromal cells, is used. This approach is not limited to the bone marrow, and can be extended to other tissues to permit reproducible, quantitative analysis of histological data.
Developmental Biology, Issue 98, Image analysis, neighborhood analysis, bone marrow, stromal cells, bone marrow niches, simulation, bone cryosectioning, bone histology
52544
Play Button
An Improved Mechanical Testing Method to Assess Bone-implant Anchorage
Authors: Spencer Bell, Elnaz Ajami, John E. Davies.
Institutions: University of Toronto.
Recent advances in material science have led to a substantial increase in the topographical complexity of implant surfaces, both on a micro- and a nano-scale. As such, traditional methods of describing implant surfaces - namely numerical determinants of surface roughness - are inadequate for predicting in vivo performance. Biomechanical testing provides an accurate and comparative platform to analyze the performance of biomaterial surfaces. An improved mechanical testing method to test the anchorage of bone to candidate implant surfaces is presented. The method is applicable to both early and later stages of healing and can be employed for any range of chemically or mechanically modified surfaces - but not smooth surfaces. Custom rectangular implants are placed bilaterally in the distal femora of male Wistar rats and collected with the surrounding bone. Test specimens are prepared and potted using a novel breakaway mold and the disruption test is conducted using a mechanical testing machine. This method allows for alignment of the disruption force exactly perpendicular, or parallel, to the plane of the implant surface, and provides an accurate and reproducible means for isolating an exact peri-implant region for testing.
Bioengineering, Issue 84, Mechanical test, bone anchorage, disruption test, surface topography, peri-implant bone, bone-implant interface, bone-bonding, microtopography, nanotopography
51221
Play Button
Dynamic Visual Tests to Identify and Quantify Visual Damage and Repair Following Demyelination in Optic Neuritis Patients
Authors: Noa Raz, Michal Hallak, Tamir Ben-Hur, Netta Levin.
Institutions: Hadassah Hebrew-University Medical Center.
In order to follow optic neuritis patients and evaluate the effectiveness of their treatment, a handy, accurate and quantifiable tool is required to assess changes in myelination at the central nervous system (CNS). However, standard measurements, including routine visual tests and MRI scans, are not sensitive enough for this purpose. We present two visual tests addressing dynamic monocular and binocular functions which may closely associate with the extent of myelination along visual pathways. These include Object From Motion (OFM) extraction and Time-constrained stereo protocols. In the OFM test, an array of dots compose an object, by moving the dots within the image rightward while moving the dots outside the image leftward or vice versa. The dot pattern generates a camouflaged object that cannot be detected when the dots are stationary or moving as a whole. Importantly, object recognition is critically dependent on motion perception. In the Time-constrained Stereo protocol, spatially disparate images are presented for a limited length of time, challenging binocular 3-dimensional integration in time. Both tests are appropriate for clinical usage and provide a simple, yet powerful, way to identify and quantify processes of demyelination and remyelination along visual pathways. These protocols may be efficient to diagnose and follow optic neuritis and multiple sclerosis patients. In the diagnostic process, these protocols may reveal visual deficits that cannot be identified via current standard visual measurements. Moreover, these protocols sensitively identify the basis of the currently unexplained continued visual complaints of patients following recovery of visual acuity. In the longitudinal follow up course, the protocols can be used as a sensitive marker of demyelinating and remyelinating processes along time. These protocols may therefore be used to evaluate the efficacy of current and evolving therapeutic strategies, targeting myelination of the CNS.
Medicine, Issue 86, Optic neuritis, visual impairment, dynamic visual functions, motion perception, stereopsis, demyelination, remyelination
51107
Play Button
The Preparation of Primary Hematopoietic Cell Cultures From Murine Bone Marrow for Electroporation
Authors: Kelly Kroeger, Michelle Collins, Luis Ugozzoli.
Institutions: Bio-Rad Laboratories, Inc.
It is becoming increasingly apparent that electroporation is the most effective way to introduce plasmid DNA or siRNA into primary cells. The Gene Pulser MXcell electroporation system and Gene Pulser electroporation buffer were specifically developed to transfect nucleic acids into mammalian cells and difficult-to-transfect cells, such as primary and stem cells.This video demonstrates how to establish primary hematopoietic cell cultures from murine bone marrow, and then prepare them for electroporation in the MXcell system. We begin by isolating femur and tibia. Bone marrow from both femur and tibia are then harvested and cultures are established. Cultured bone marrow cells are then transfected and analyzed.
Immunology, Issue 23, Primary Hematopoietic Cell Culture, Bone Marrow, Transfection, Electroporation, BioRad, IL-3
1026
Play Button
Reverse Total Shoulder Arthroplasty
Authors: Christopher J. Lenarz, Reuben Gobezie.
Institutions: Case Western Reserve University.
Reverse total shoulder arthroplasty was initially approved for use in rotator cuff arthropathy and well as chronic pseudoparalysis without arthritis in patients who were not appropriate for tendon transfer reconstructions. Traditional surgical options for these patients were limited and functional results were sub-optimal and at times catastrophic. The use of reverse shoulder arthroplasty has been found to effectively restore these patients function and relieve symptoms associated with their disease. The procedure can be done through two approaches, the deltopectoral or the superolateral. Complication rates associated with the use of the prosthesis have ranged from 8-60% with more recent reports trending lower as experienced is gained. Salvage options for a failed reverse shoulder prosthesis are limited and often have significant associated disability. Indications for the use of this prosthesis continue to be evaluated including its use for revision arthroplasty, proximal humeral fracture and tumor. Careful patient selection is essential because of the significant risks associated with the procedure.
Medicine, Issue 53, Reverse, Total, Shoulder, Arthroplasty, Rotator Cuff, Arthropathy, Arthritis, Glenoid, Humerus, Fracture
2281
Play Button
Longitudinal Evaluation of Mouse Hind Limb Bone Loss After Spinal Cord Injury using Novel, in vivo, Methodology
Authors: Madonna M. McManus, Raymond J. Grill.
Institutions: University of Texas Health Science Center at Houston .
Spinal cord injury (SCI) is often accompanied by osteoporosis in the sublesional regions of the pelvis and lower extremities, leading to a higher frequency of fractures 1. As these fractures often occur in regions that have lost normal sensory function, the patient is at a greater risk of fracture-dependent pathologies, including death. SCI-dependent loss in both bone mineral density (BMD, grams/cm2) and bone mineral content (BMC, grams) has been attributed to mechanical disuse 2, aberrant neuronal signaling 3 and hormonal changes 4. The use of rodent models of SCI-induced osteoporosis can provide invaluable information regarding the mechanisms underlying the development of osteoporosis following SCI as well as a test environment for the generation of new therapies 5-7 (and reviewed in 8). Mouse models of SCI are of great interest as they permit a reductionist approach to mechanism-based assessment through the use of null and transgenic mice. While such models have provided important data, there is still a need for minimally-invasive, reliable, reproducible, and quantifiable methods in determining the extent of bone loss following SCI, particularly over time and within the same cohort of experimental animals, to improve diagnosis, treatment methods, and/or prevention of SCI-induced osteoporosis. An ideal method for measuring bone density in rodents would allow multiple, sequential (over time) exposures to low-levels of X-ray radiation. This study describes the use of a new whole-animal scanner, the IVIS Lumina XR (Caliper Instruments) that can be used to provide low-energy (1-3 milligray (mGy)) high-resolution, high-magnification X-ray images of mouse hind limb bones over time following SCI. Significant bone density loss was seen in the tibiae of mice by 10 days post-spinal transection when compared to uninjured, age-matched control (naïve) mice (13% decrease, p<0.0005). Loss of bone density in the distal femur was also detectable by day 10 post-SCI, while a loss of density in the proximal femur was not detectable until 40 days post injury (7% decrease, p<0.05). SCI-dependent loss of mouse femur density was confirmed post-mortem through the use of Dual-energy X-ray Absorptiometry (DXA), the current "gold standard" for bone density measurements. We detect a 12% loss of BMC in the femurs of mice at 40 days post-SCI using the IVIS Lumina XR. This compares favorably with a previously reported BMC loss of 13.5% by Picard and colleagues who used DXA analysis on mouse femurs post-mortem 30 days post-SCI 9. Our results suggest that the IVIS Lumina XR provides a novel, high-resolution/high-magnification method for performing long-term, longitudinal measurements of hind limb bone density in the mouse following SCI.
Medicine, Issue 58, spinal cord injury, bone, osteoporosis, x-ray, femur, tibia, longitudinal
3246
Play Button
Creating Rigidly Stabilized Fractures for Assessing Intramembranous Ossification, Distraction Osteogenesis, or Healing of Critical Sized Defects
Authors: Yan-yiu Yu, Chelsea Bahney, Diane Hu, Ralph S. Marcucio, Theodore Miclau, III.
Institutions: University of California, San Francisco .
Assessing modes of skeletal repair is essential for developing therapies to be used clinically to treat fractures. Mechanical stability plays a large role in healing of bone injuries. In the worst-case scenario mechanical instability can lead to delayed or non-union in humans. However, motion can also stimulate the healing process. In fractures that have motion cartilage forms to stabilize the fracture bone ends, and this cartilage is gradually replaced by bone through recapitulation of the developmental process of endochondral ossification. In contrast, if a bone fracture is rigidly stabilized bone forms directly via intramembranous ossification. Clinically, both endochondral and intramembranous ossification occur simultaneously. To effectively replicate this process investigators insert a pin into the medullary canal of the fractured bone as described by Bonnarens4. This experimental method provides excellent lateral stability while allowing rotational instability to persist. However, our understanding of the mechanisms that regulate these two distinct processes can also be enhanced by experimentally isolating each of these processes. We have developed a stabilization protocol that provides rotational and lateral stabilization. In this model, intramembranous ossification is the only mode of healing that is observed, and healing parameters can be compared among different strains of genetically modified mice 5-7, after application of bioactive molecules 8,9, after altering physiological parameters of healing 10, after modifying the amount or time of stabilization 11, after distraction osteogenesis 12, after creation of a non-union 13, or after creation of a critical sized defect. Here, we illustrate how to apply the modified Ilizarov fixators for studying tibial fracture healing and distraction osteogenesis in mice.
Medicine, Issue 62, Bone fracture, intramembranous ossification, distraction osteogenesis, bone healing
3552
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
50643
Play Button
Osteopathic Manipulative Treatment as a Useful Adjunctive Tool for Pneumonia
Authors: Sheldon Yao, John Hassani, Martin Gagne, Gebe George, Wolfgang Gilliar.
Institutions: New York Institute of Technology College of Osteopathic Medicine.
Pneumonia, the inflammatory state of lung tissue primarily due to microbial infection, claimed 52,306 lives in the United States in 20071 and resulted in the hospitalization of 1.1 million patients2. With an average length of in-patient hospital stay of five days2, pneumonia and influenza comprise significant financial burden costing the United States $40.2 billion in 20053. Under the current Infectious Disease Society of America/American Thoracic Society guidelines, standard-of-care recommendations include the rapid administration of an appropriate antibiotic regiment, fluid replacement, and ventilation (if necessary). Non-standard therapies include the use of corticosteroids and statins; however, these therapies lack conclusive supporting evidence4. (Figure 1) Osteopathic Manipulative Treatment (OMT) is a cost-effective adjunctive treatment of pneumonia that has been shown to reduce patients’ length of hospital stay, duration of intravenous antibiotics, and incidence of respiratory failure or death when compared to subjects who received conventional care alone5. The use of manual manipulation techniques for pneumonia was first recorded as early as the Spanish influenza pandemic of 1918, when patients treated with standard medical care had an estimated mortality rate of 33%, compared to a 10% mortality rate in patients treated by osteopathic physicians6. When applied to the management of pneumonia, manual manipulation techniques bolster lymphatic flow, respiratory function, and immunological defense by targeting anatomical structures involved in the these systems7,8, 9, 10. The objective of this review video-article is three-fold: a) summarize the findings of randomized controlled studies on the efficacy of OMT in adult patients with diagnosed pneumonia, b) demonstrate established protocols utilized by osteopathic physicians treating pneumonia, c) elucidate the physiological mechanisms behind manual manipulation of the respiratory and lymphatic systems. Specifically, we will discuss and demonstrate four routine techniques that address autonomics, lymph drainage, and rib cage mobility: 1) Rib Raising, 2) Thoracic Pump, 3) Doming of the Thoracic Diaphragm, and 4) Muscle Energy for Rib 1.5,11
Medicine, Issue 87, Pneumonia, osteopathic manipulative medicine (OMM) and techniques (OMT), lymphatic, rib raising, thoracic pump, muscle energy, doming diaphragm, alternative treatment
50687
Play Button
Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
Authors: Natalie Vanicek, Stephanie A. King, Risha Gohil, Ian C. Chetter, Patrick A Coughlin.
Institutions: University of Sydney, University of Hull, Hull and East Yorkshire Hospitals, Addenbrookes Hospital.
Computerized dynamic posturography with the EquiTest is an objective technique for measuring postural strategies under challenging static and dynamic conditions. As part of a diagnostic assessment, the early detection of postural deficits is important so that appropriate and targeted interventions can be prescribed. The Sensory Organization Test (SOT) on the EquiTest determines an individual's use of the sensory systems (somatosensory, visual, and vestibular) that are responsible for postural control. Somatosensory and visual input are altered by the calibrated sway-referenced support surface and visual surround, which move in the anterior-posterior direction in response to the individual's postural sway. This creates a conflicting sensory experience. The Motor Control Test (MCT) challenges postural control by creating unexpected postural disturbances in the form of backwards and forwards translations. The translations are graded in magnitude and the time to recover from the perturbation is computed. Intermittent claudication, the most common symptom of peripheral arterial disease, is characterized by a cramping pain in the lower limbs and caused by muscle ischemia secondary to reduced blood flow to working muscles during physical exertion. Claudicants often display poor balance, making them susceptible to falls and activity avoidance. The Ankle Brachial Pressure Index (ABPI) is a noninvasive method for indicating the presence of peripheral arterial disease and intermittent claudication, a common symptom in the lower extremities. ABPI is measured as the highest systolic pressure from either the dorsalis pedis or posterior tibial artery divided by the highest brachial artery systolic pressure from either arm. This paper will focus on the use of computerized dynamic posturography in the assessment of balance in claudicants.
Medicine, Issue 82, Posture, Computerized dynamic posturography, Ankle brachial pressure index, Peripheral arterial disease, Intermittent claudication, Balance, Posture, EquiTest, Sensory Organization Test, Motor Control Test
51077
Play Button
Direct Mouse Trauma/Burn Model of Heterotopic Ossification
Authors: Jonathan R. Peterson, Shailesh Agarwal, R. Cameron Brownley, Shawn J. Loder, Kavitha Ranganathan, Paul S. Cederna, Yuji Mishina, Stewart C. Wang, Benjamin Levi.
Institutions: University of Michigan Medical School, University of Michigan School of Dentistry.
Heterotopic ossification (HO) is the formation of bone outside of the skeleton which forms following major trauma, burn injuries, and orthopaedic surgical procedures. The majority of animal models used to study HO rely on the application of exogenous substances, such as bone morphogenetic protein (BMP), exogenous cell constructs, or genetic mutations in BMP signaling. While these models are useful they do not accurately reproduce the inflammatory states that cause the majority of cases of HO. Here we describe a burn/tenotomy model in mice that reliably produces focused HO. This protocol involves creating a 30% total body surface area partial thickness contact burn on the dorsal skin as well as division of the Achilles tendon at its midpoint. Relying solely on traumatic injury to induce HO at a predictable location allows for time-course study of endochondral heterotopic bone formation from intrinsic physiologic processes and environment only. This method could prove instrumental in understanding the inflammatory and osteogenic pathways involved in trauma-induced HO. Furthermore, because HO develops in a predictable location and time-course in this model, it allows for research to improve early imaging strategies and treatment modalities to prevent HO formation.
Medicine, Issue 102, Heterotopic Ossification, Burn injury, Mouse model, Inflammation, µCT, Achilles tenotomy
52880
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.