JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Effects of Decreased Occlusal Loading during Growth on the Mandibular Bone Characteristics.
.
PLoS ONE
PUBLISHED: 06-11-2015
Bone mass and mineralization are largely influenced by loading. The purpose of this study was to evaluate the reaction of the entire mandibular bone in response to decreased load during growth. It is hypothesized that decreased muscular loading will lead to bone changes as seen during disuse, i.e. loss of bone mass.
Authors: Cristina Lo Celso, David Scadden.
Published: 02-25-2007
ABSTRACT
24 Related JoVE Articles!
Play Button
An Improved Mechanical Testing Method to Assess Bone-implant Anchorage
Authors: Spencer Bell, Elnaz Ajami, John E. Davies.
Institutions: University of Toronto.
Recent advances in material science have led to a substantial increase in the topographical complexity of implant surfaces, both on a micro- and a nano-scale. As such, traditional methods of describing implant surfaces - namely numerical determinants of surface roughness - are inadequate for predicting in vivo performance. Biomechanical testing provides an accurate and comparative platform to analyze the performance of biomaterial surfaces. An improved mechanical testing method to test the anchorage of bone to candidate implant surfaces is presented. The method is applicable to both early and later stages of healing and can be employed for any range of chemically or mechanically modified surfaces - but not smooth surfaces. Custom rectangular implants are placed bilaterally in the distal femora of male Wistar rats and collected with the surrounding bone. Test specimens are prepared and potted using a novel breakaway mold and the disruption test is conducted using a mechanical testing machine. This method allows for alignment of the disruption force exactly perpendicular, or parallel, to the plane of the implant surface, and provides an accurate and reproducible means for isolating an exact peri-implant region for testing.
Bioengineering, Issue 84, Mechanical test, bone anchorage, disruption test, surface topography, peri-implant bone, bone-implant interface, bone-bonding, microtopography, nanotopography
51221
Play Button
Isolation and Culture of Dental Epithelial Stem Cells from the Adult Mouse Incisor
Authors: Miquella G. Chavez, Jimmy Hu, Kerstin Seidel, Chunying Li, Andrew Jheon, Adrien Naveau, Orapin Horst, Ophir D. Klein.
Institutions: University of California, San Francisco, University of California, San Francisco, Zhongshan Hospital of Dalian University, Université Paris Descartes, Sorbonne Paris Cite, UMR S872, Université Pierre et Marie Curie, UMR S872, INSERM U872, University of California, San Francisco, University of California, San Francisco.
Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest1-4, and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal's life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give rise to ameloblasts that generate enamel, the outer covering of teeth, on the labial surface. This asymmetric enamel formation allows abrasion at the incisor tip, and progenitors and stem cells in the proximal incisor ensure that the dental tissues are constantly replenished. The ability to isolate and grow these progenitor or stem cells in vitro allows their expansion and opens doors to numerous experiments not achievable in vivo, such as high throughput testing of potential stem cell regulatory factors. Here, we describe and demonstrate a reliable and consistent method to culture cells from the labial CL of the mouse incisor.
Stem Cell Biology, Issue 87, Epithelial Stem Cells, Adult Stem Cells, Incisor, Cervical Loop, Cell Culture
51266
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Characterization Of Multi-layered Fish Scales (Atractosteus spatula) Using Nanoindentation, X-ray CT, FTIR, and SEM
Authors: Paul G. Allison, Rogie I. Rodriguez, Robert D. Moser, Brett A. Williams, Aimee R. Poda, Jennifer M. Seiter, Brandon J. Lafferty, Alan J. Kennedy, Mei Q. Chandler.
Institutions: U.S. Army Engineer Research and Development Center, University of Alabama, U.S. Army Engineer Research and Development Center.
The hierarchical architecture of protective biological materials such as mineralized fish scales, gastropod shells, ram’s horn, antlers, and turtle shells provides unique design principles with potentials for guiding the design of protective materials and systems in the future. Understanding the structure-property relationships for these material systems at the microscale and nanoscale where failure initiates is essential. Currently, experimental techniques such as nanoindentation, X-ray CT, and SEM provide researchers with a way to correlate the mechanical behavior with hierarchical microstructures of these material systems1-6. However, a well-defined standard procedure for specimen preparation of mineralized biomaterials is not currently available. In this study, the methods for probing spatially correlated chemical, structural, and mechanical properties of the multilayered scale of A. spatula using nanoindentation, FTIR, SEM, with energy-dispersive X-ray (EDX) microanalysis, and X-ray CT are presented.
Bioengineering, Issue 89, Atractosteus spatula, structure-property relation, nanoindentation, scan electron microscopy, X-ray computed tomography, Fourier transform infrared (FTIR) spectroscopy
51535
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
51556
Play Button
Adjustable Stiffness, External Fixator for the Rat Femur Osteotomy and Segmental Bone Defect Models
Authors: Vaida Glatt, Romano Matthys.
Institutions: Queensland University of Technology, RISystem AG.
The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.
Medicine, Issue 92, external fixator, bone healing, small animal model, large bone defect and osteotomy model, rat model, mechanical environment, mechanobiology.
51558
Play Button
Automated Quantification of Hematopoietic Cell – Stromal Cell Interactions in Histological Images of Undecalcified Bone
Authors: Sandra Zehentmeier, Zoltan Cseresnyes, Juan Escribano Navarro, Raluca A. Niesner, Anja E. Hauser.
Institutions: German Rheumatism Research Center, a Leibniz Institute, German Rheumatism Research Center, a Leibniz Institute, Max-Delbrück Center for Molecular Medicine, Wimasis GmbH, Charité - University of Medicine.
Confocal microscopy is the method of choice for the analysis of localization of multiple cell types within complex tissues such as the bone marrow. However, the analysis and quantification of cellular localization is difficult, as in many cases it relies on manual counting, thus bearing the risk of introducing a rater-dependent bias and reducing interrater reliability. Moreover, it is often difficult to judge whether the co-localization between two cells results from random positioning, especially when cell types differ strongly in the frequency of their occurrence. Here, a method for unbiased quantification of cellular co-localization in the bone marrow is introduced. The protocol describes the sample preparation used to obtain histological sections of whole murine long bones including the bone marrow, as well as the staining protocol and the acquisition of high-resolution images. An analysis workflow spanning from the recognition of hematopoietic and non-hematopoietic cell types in 2-dimensional (2D) bone marrow images to the quantification of the direct contacts between those cells is presented. This also includes a neighborhood analysis, to obtain information about the cellular microenvironment surrounding a certain cell type. In order to evaluate whether co-localization of two cell types is the mere result of random cell positioning or reflects preferential associations between the cells, a simulation tool which is suitable for testing this hypothesis in the case of hematopoietic as well as stromal cells, is used. This approach is not limited to the bone marrow, and can be extended to other tissues to permit reproducible, quantitative analysis of histological data.
Developmental Biology, Issue 98, Image analysis, neighborhood analysis, bone marrow, stromal cells, bone marrow niches, simulation, bone cryosectioning, bone histology
52544
Play Button
Methods for Culturing Human Femur Tissue Explants to Study Breast Cancer Cell Colonization of the Metastatic Niche
Authors: Zachary S. Templeton, Michael H. Bachmann, Rajiv V. Alluri, William J. Maloney, Christopher H. Contag, Bonnie L. King.
Institutions: Stanford University School of Medicine, Stanford University School of Medicine.
Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues.
Medicine, Issue 97, Metastatic niche, bone microenvironment, breast cancer metastasis, human bone, osteotropism, ex vivo model, explant culture system, bioluminescence imaging
52656
Play Button
An Enzymatic Method to Rescue Mesenchymal Stem Cells from Clotted Bone Marrow Samples
Authors: Philipp Schlaefli, Alessandro Bertolo, Cherry Malonzo, Tobias Poetzel, Martin Baur, Frank Steffen, Jivko Stoyanov.
Institutions: Swiss Paraplegic Research, Swiss Paraplegic Centre, Lucerne Cantonal Hospital (LUKS), Vetsuisse Faculty, University of Zurich.
Mesenchymal stem cells (MSCs) - usually obtained from bone marrow - often require expansion culture. Our protocol uses clinical grade urokinase to degrade clots in the bone marrow and release MSCs for further use. This protocol provides a rapid and inexpensive alternative to bone marrow resampling. Bone marrow is a major source of MSCs, which are interesting for tissue engineering and autologous stem cell therapies. Upon withdrawal bone marrow may clot, as it comprises all of the hematopoietic system. The resulting clots contain also MSCs that are lost for expansion culture or direct stem cell therapy. We experienced that 74% of canine bone marrow samples contained clots and yielded less than half of the stem cell number expected from unclotted samples. Thus, we developed a protocol for enzymatic digestion of those clots to avoid labor-intense and costly bone marrow resampling. Urokinase - a clinically approved and readily available thrombolytic drug – clears away the bone marrow clots almost completely. As a consequence, treated bone marrow aspirates yield similar numbers of MSCs as unclotted samples. Also, after urokinase treatment the cells kept their metabolic activity and the ability to differentiate into chondrogenic, osteogenic and adipogenic lineages. Our protocol salvages clotted blood and bone marrow samples without affecting the quality of the cells. This obsoletes resampling, considerably reduces sampling costs and enables the use of clotted samples for research or therapy.
Developmental Biology, Issue 98, Mesenchymal stem cells, urokinase, bone marrow, translational research, tissue engineering, clot digest, thrombolytic drug, differentiation
52694
Play Button
Bone Conditioned Medium: Preparation and Bioassay
Authors: Jordi Caballé-Serrano, Kosaku Sawada, Guenther Schuldt Filho, Dieter D. Bosshardt, Daniel Buser, Reinhard Gruber.
Institutions: School of Dental Medicine, University of Bern, School of Dental Medicine, University of Bern, School of Dental Medicine, Universitat Internacional de Catalunya, School of Dental Medicine, University of Bern, Inselspital, University of Bern, School of Dentistry, Universidade Federal de Santa Catarina.
Autologous bone grafts are widely used in oral and maxillofacial surgery, orthopedics, and traumatology. Autologous bone grafts not only replace missing bone, they also support the complex process of bone regeneration. This favorable behavior of autografts is attributed to the three characteristics: osteoconductivity, osteogenicity, and osteoinductivity. However, there is another aspect: Bone grafts release a myriad of molecules, including growth factors, which can target mesenchymal cells involved in bone regeneration. The paracrine properties of bone grafts can be studied in vitro by the use of bone-conditioned medium (BCM). Here we present a protocol on how to prepare bone-conditioned medium from native pig cortical bone, and bone that underwent thermal processing or demineralization. Cells can be directly exposed to BCM or seeded onto biomaterials, such as collagen membranes, previously soaked with BCM. We give examples for in vitro bioassays with mesenchymal cells on the expression of TGF-β regulated genes. The presented protocols should encourage to further reveal the paracrine effects of bone grafts during bone regeneration and open a path for translational research in the broad field of reconstructive surgery.
Molecular Biology, Issue 101, Bone Conditioned Medium, BCM, bone autograft, guided bone regeneration, GBR, dental implant, membrane, supernatant, growth factors, contour augmentation, autologous bone
52707
Play Button
Shrinkage of Dental Composite in Simulated Cavity Measured with Digital Image Correlation
Authors: Jianying Li, Preetanjali Thakur, Alex S. L. Fok.
Institutions: University of Minnesota.
Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the “tooth-restoration” interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material.
Medicine, Issue 89, image processing, computer-assisted, polymer matrix composites, testing of materials (composite materials), dental composite restoration, polymerization shrinkage, digital image correlation, full-field strain measurement, interfacial debonding
51191
Play Button
In situ Compressive Loading and Correlative Noninvasive Imaging of the Bone-periodontal Ligament-tooth Fibrous Joint
Authors: Andrew T. Jang, Jeremy D. Lin, Youngho Seo, Sergey Etchin, Arno Merkle, Kevin Fahey, Sunita P. Ho.
Institutions: University of California San Francisco, University of California San Francisco, Xradia Inc..
This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics.
Bioengineering, Issue 85, biomechanics, bone-periodontal ligament-tooth complex, concentric loads, eccentric loads, contrast agent
51147
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
50977
Play Button
Ex vivo Mechanical Loading of Tendon
Authors: Krishna Asundi, David Rempel.
Institutions: University of California, Berkeley , University of California, San Francisco.
Injuries to the tendon (e.g., wrist tendonitis, epicondyltis) due to overuse are common in sports activities and the workplace. Most are associated with repetitive, high force hand activities. The mechanisms of cellular and structural damage due to cyclical loading are not well known. The purpose of this video is to present a new system that can simultaneously load four tendons in tissue culture. The video describes the methods of sterile tissue harvest and how the tendons are loaded onto a clamping system that is subsequently immersed into media and maintained at 37°C. One clamp is fixed while the other one is moved with a linear actuator. Tendon tensile force is monitored with a load cell in series with the mobile clamp. The actuators are controlled with a LabView program. The four tendons can be repetitively loaded with different patterns of loading, repetition rate, rate of loading, and duration. Loading can continue for a few minutes to 48 hours. At the end of loading, the tendons are removed and the mid-substance extracted for biochemical analyses. This system allows for the investigation of the effects of loading patterns on gene expression and structural changes in tendon. Ultimately, mechanisms of injury due to overuse can be studies with the findings applied to treatment and prevention.
Developmental biology, issue 4, tendon, tension
209
Play Button
In situ Imaging of the Mouse Thymus Using 2-Photon Microscopy
Authors: Ena Ladi, Paul Herzmark, Ellen Robey.
Institutions: University of California, Berkeley.
Two-photon Microscopy (TPM) enables us to image deep into the thymus and document the events that are important for thymocyte development. To follow the migration of individuals in a crowd of thymocytes , we generate neonatal chimeras where less than one percent of the thymocytes are derived from a donor that is transgenic for a ubiquitously express fluorescent protein. To generate these partial hematopoetic chimeras, neonatal recipients are injected with bone marrow between 3-7 days of age. After 4-6 weeks, the mouse is sacrificed and the thymus is carefully dissected and bissected preserving the architecture of the tissue that will be imaged. The thymus is glued onto a coverslip in preparation for ex vivo imaging by TPM. During imaging the thymus is kept in DMEM without phenol red that is perfused with 95% oxygen and 5% carbon dioxide and warmed to 37°C. Using this approach, we can study the events required for the generation of a diverse T cell repertoire.
Immunology, Issue 11, 2-photon microscopy, neonatal chimera, adoptive transfer, thymus
652
Play Button
Culture of myeloid dendritic cells from bone marrow precursors
Authors: Jeanette Boudreau, Sandeep Koshy, Derek Cummings, Yonghong Wan.
Institutions: McMaster University, McMaster University, University of Waterloo.
Myeloid dendritic cells (DCs) are frequently used to study the interactions between innate and adaptive immune mechanisms and the early response to infection. Because these are the most potent antigen presenting cells, DCs are being increasingly used as a vaccine vector to study the induction of antigen-specific immune responses. In this video, we demonstrate the procedure for harvesting tibias and femurs from a donor mouse, processing the bone marrow and differentiating DCs in vitro. The properties of DCs change following stimulation: immature dendritic cells are potent phagocytes, whereas mature DCs are capable of antigen presentation and interaction with CD4+ and CD8+ T cells. This change in functional activity corresponds with the upregulation of cell surface markers and cytokine production. Many agents can be used to mature DCs, including cytokines and toll-like receptor ligands. In this video, we demonstrate flow cytometric comparisons of expression of two co-stimulatory molecules, CD86 and CD40, and the cytokine, IL-12, following overnight stimulation with CpG or mock treatment. After differentiation, DCs can be further manipulated for use as a vaccine vector or to generate antigen-specific immune responses by in vitro pulsing using peptides or proteins, or transduced using recombinant viral vectors.
Immunology, Issue 17, dendritic cells, GM-CSF, culture, bone marrow
769
Play Button
Generation of Bone Marrow Derived Murine Dendritic Cells for Use in 2-photon Imaging
Authors: Melanie P. Matheu, Debasish Sen, Michael D Cahalan, Ian Parker.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Several methods for the preparation of murine dendritic cells can be found in the literature. Here, we present a method that produces greater than 85% CD11c high dendritic cells in culture that home to the draining lymph node after subcutaneous injection and present antigen to antigen specific T cells (see video). Additionally, we use Essen Instruments Incucyte to track dendritic cell maturation, where, at day 10, the morphology of the cultured cells is typical of a mature dendritic cell and <85% of cells are CD11chigh. The study of antigen presentation in peripheral lymph nodes by 2-photon imaging revealed that there are three distinct phases of dendritic cell and T cell interaction1, 2. Phase I consists of brief serial contacts between highly motile antigen specific T cells and antigen carrying dendritic cells1, 2. Phase two is marked by prolonged contacts between antigen-specific T cell and antigen bearing dendritic cells1, 2. Finally, phase III is characterized by T cells detaching from dendritic cells, regaining motility and beginning to divide1, 2. This is one example of the type of antigen-specific interactions that can be analyzed by two-photon imaging of antigen-loaded cell tracker dye-labeled dendritic cells.
Immunology, Issue 17, dendritic cells, mouse, bone marrow, 2-photon imaging, cell culture
773
Play Button
The Preparation of Primary Hematopoietic Cell Cultures From Murine Bone Marrow for Electroporation
Authors: Kelly Kroeger, Michelle Collins, Luis Ugozzoli.
Institutions: Bio-Rad Laboratories, Inc.
It is becoming increasingly apparent that electroporation is the most effective way to introduce plasmid DNA or siRNA into primary cells. The Gene Pulser MXcell electroporation system and Gene Pulser electroporation buffer were specifically developed to transfect nucleic acids into mammalian cells and difficult-to-transfect cells, such as primary and stem cells.This video demonstrates how to establish primary hematopoietic cell cultures from murine bone marrow, and then prepare them for electroporation in the MXcell system. We begin by isolating femur and tibia. Bone marrow from both femur and tibia are then harvested and cultures are established. Cultured bone marrow cells are then transfected and analyzed.
Immunology, Issue 23, Primary Hematopoietic Cell Culture, Bone Marrow, Transfection, Electroporation, BioRad, IL-3
1026
Play Button
Surgical Induction of Endolymphatic Hydrops by Obliteration of the Endolymphatic Duct
Authors: Cliff A. Megerian, Chris Heddon, Sami Melki, Suhael Momin, Janis Paulsey, Joy Obokhare, Kumar Alagramam.
Institutions: Case Western Reserve University.
Surgical induction of endolymphatic hydrops (ELH) in the guinea pig by obliteration and obstruction of the endolymphatic duct is a well-accepted animal model of the condition and an important correlate for human Meniere's disease. In 1965, Robert Kimura and Harold Schuknecht first described an intradural approach for obstruction of the endolymphatic duct (Kimura 1965). Although effective, this technique, which requires penetration of the brain's protective covering, incurred an undesirable level of morbidity and mortality in the animal subjects. Consequently, Andrews and Bohmer developed an extradural approach, which predictably produces fewer of the complications associated with central nervous system (CNS) penetration.(Andrews and Bohmer 1989) The extradural approach described here first requires a midline incision in the region of the occiput to expose the underlying muscular layer. We operate only on the right side. After appropriate retraction of the overlying tissue, a horizontal incision is made into the musculature of the right occiput to expose the right temporo-occipital suture line. The bone immediately inferio-lateral the suture line (Fig 1) is then drilled with an otologic drill until the sigmoid sinus becomes visible. Medial retraction of the sigmoid sinus reveals the operculum of the endolymphatic duct, which houses the endolymphatic sac. Drilling medial to the operculum into the area of the endolymphatic sac reveals the endolymphatic duct, which is then packed with bone wax to produce obstruction and ultimately ELH. In the following weeks, the animal will demonstrate the progressive, fluctuating hearing loss and histologic evidence of ELH.
Medicine, Issue 35, Guinea Pig, Endolymphatic hydrops, Meniere's disease, surgical induction, endolymphatic duct
1728
Play Button
Reverse Total Shoulder Arthroplasty
Authors: Christopher J. Lenarz, Reuben Gobezie.
Institutions: Case Western Reserve University.
Reverse total shoulder arthroplasty was initially approved for use in rotator cuff arthropathy and well as chronic pseudoparalysis without arthritis in patients who were not appropriate for tendon transfer reconstructions. Traditional surgical options for these patients were limited and functional results were sub-optimal and at times catastrophic. The use of reverse shoulder arthroplasty has been found to effectively restore these patients function and relieve symptoms associated with their disease. The procedure can be done through two approaches, the deltopectoral or the superolateral. Complication rates associated with the use of the prosthesis have ranged from 8-60% with more recent reports trending lower as experienced is gained. Salvage options for a failed reverse shoulder prosthesis are limited and often have significant associated disability. Indications for the use of this prosthesis continue to be evaluated including its use for revision arthroplasty, proximal humeral fracture and tumor. Careful patient selection is essential because of the significant risks associated with the procedure.
Medicine, Issue 53, Reverse, Total, Shoulder, Arthroplasty, Rotator Cuff, Arthropathy, Arthritis, Glenoid, Humerus, Fracture
2281
Play Button
Monitoring Tumor Metastases and Osteolytic Lesions with Bioluminescence and Micro CT Imaging
Authors: Ed Lim, Kshitij Modi, Anna Christensen, Jeff Meganck, Stephen Oldfield, Ning Zhang.
Institutions: Caliper Life Sciences.
Following intracardiac delivery of MDA-MB-231-luc-D3H2LN cells to Nu/Nu mice, systemic metastases developed in the injected animals. Bioluminescence imaging using IVIS Spectrum was employed to monitor the distribution and development of the tumor cells following the delivery procedure including DLIT reconstruction to measure the tumor signal and its location. Development of metastatic lesions to the bone tissues triggers osteolytic activity and lesions to tibia and femur were evaluated longitudinally using micro CT. Imaging was performed using a Quantum FX micro CT system with fast imaging and low X-ray dose. The low radiation dose allows multiple imaging sessions to be performed with a cumulative X-ray dosage far below LD50. A mouse imaging shuttle device was used to sequentially image the mice with both IVIS Spectrum and Quantum FX achieving accurate animal positioning in both the bioluminescence and CT images. The optical and CT data sets were co-registered in 3-dimentions using the Living Image 4.1 software. This multi-mode approach allows close monitoring of tumor growth and development simultaneously with osteolytic activity.
Medicine, Issue 50, osteolytic lesions, micro CT, tumor, bioluminescence, in vivo, imaging, IVIS, luciferase, low dose, co-registration, 3D reconstruction
2775
Play Button
Design of a Biaxial Mechanical Loading Bioreactor for Tissue Engineering
Authors: Bahar Bilgen, Danielle Chu, Robert Stefani, Roy K. Aaron.
Institutions: The Warren Alpert Brown Medical School of Brown University and the Rhode Island Hospital, VA Medical Center, Providence, RI, University of Texas Southwestern Medical Center .
We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0.15% to 0.25% full scale.
Bioengineering, Issue 74, Biomedical Engineering, Biophysics, Cellular Biology, Medicine, Anatomy, Physiology, Cell Engineering, Bioreactors, Culture Techniques, Cell Engineering, Tissue Engineering, compression loads, shear loads, Tissues, bioreactor, mechanical loading, compression, shear, musculoskeletal, cartilage, bone, transplantation, cell culture
50387
Play Button
Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia
Authors: Sandra Christoph, Alisa B. Lee-Sherick, Susan Sather, Deborah DeRyckere, Douglas K. Graham.
Institutions: University of Colorado Anschutz Medical Campus, University Hospital of Essen.
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds.
Medicine, Issue 79, Leukemia, Receptor Protein-Tyrosine Kinases, Molecular Targeted Therapy, Therapeutics, novel small molecule inhibitor, receptor tyrosine kinase, leukemia
50720
Play Button
Athymic Rat Model for Evaluation of Engineered Anterior Cruciate Ligament Grafts
Authors: Natalie L. Leong, Nima Kabir, Armin Arshi, Azadeh Nazemi, Ben M. Wu, David R. McAllister, Frank A. Petrigliano.
Institutions: University of California Los Angeles, University of California Los Angeles.
Anterior cruciate ligament (ACL) rupture is a common ligamentous injury that often requires surgery because the ACL does not heal well without intervention. Current treatment strategies include ligament reconstruction with either autograft or allograft, which each have their associated limitations. Thus, there is interest in designing a tissue-engineered graft for use in ACL reconstruction. We describe the fabrication of an electrospun polymer graft for use in ACL tissue engineering. This polycaprolactone graft is biocompatible, biodegradable, porous, and is comprised of aligned fibers. Because an animal model is necessary to evaluate such a graft, this paper describes an intra-articular athymic rat model of ACL reconstruction that can be used to evaluate engineered grafts, including those seeded with xenogeneic cells. Representative histology and biomechanical testing results at 16 weeks postoperatively are presented, with grafts tested immediately post-implantation and contralateral native ACLs serving as controls. The present study provides a reproducible animal model with which to evaluate tissue engineered ACL grafts, and demonstrates the potential of a regenerative medicine approach to treatment of ACL rupture.
Bioengineering, Issue 97, Anterior cruciate ligament, tissue engineering, animal model, biodegradable scaffold, rat, knee
52797
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.