JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Trisomy 8, a Cytogenetic Abnormality in Myelodysplastic Syndromes, Is Constitutional or Not?
PUBLISHED: 06-13-2015
Isolated trisomy 8 is not considered presumptive evidence of myelodysplastic syndrome (MDS) in cases without minimal morphological criteria. One reason given is that trisomy 8 (+8) can be found as a constitutional mosaicism (cT8M). We tried to clarify the incidence of cT8M in myeloid neoplasms, specifically in MDS, and the diagnostic value of isolated +8 in MDS. Twenty-two MDS and 10 other myeloid neoplasms carrying +8 were studied. Trisomy 8 was determined in peripheral blood by conventional cytogenetics (CC) and on granulocytes, CD3+ lymphocytes and oral mucosa cells by fluorescence in situ hybridization (FISH). In peripheral blood CC, +8 was seen in 4/32 patients. By FISH, only one patient with chronic myelomonocytic leukemia showed +8 in all cell samples and was interpreted as a cT8M. In our series +8 was acquired in all MDS. Probably, once discarded cT8M by FISH from CD3+ lymphocytes and non-hematological cells, +8 should be considered with enough evidence to MDS.
Authors: Bradley Howe, Ayesha Umrigar, Fern Tsien.
Published: 01-28-2014
Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births1,2, 60-80% of all miscarriages3,4, 10% of stillbirths2,5, 13% of individuals with congenital heart disease6, 3-6% of infertility cases2, and in many patients with developmental delay and birth defects7. Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance8,9.  Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents10-13. Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)14,15.
25 Related JoVE Articles!
Play Button
Transplantation of Whole Kidney Marrow in Adult Zebrafish
Authors: Jocelyn LeBlanc, Teresa Venezia Bowman, Leonard Zon.
Institutions: Harvard Medical School.
Hematopoietic stem cells (HSC) are a rare population of pluripotent cells that maintain all the differentiated blood lineages throughout the life of an organism. The functional definition of a HSC is a transplanted cell that has the ability to reconstitute all the blood lineages of an irradiated recipient long term. This designation was established by decades of seminal work in mammalian systems. Using hematopoietic cell transplantation (HCT) and reverse genetic manipulations in the mouse, the underlying regulatory factors of HSC biology are beginning to be unveiled, but are still largely under-explored. Recently, the zebrafish has emerged as a powerful genetic model to study vertebrate hematopoiesis. Establishing HCT in zebrafish will allow scientists to utilize the large-scale genetic and chemical screening methodologies available in zebrafish to reveal novel mechanisms underlying HSC regulation. In this article, we demonstrate a method to perform HCT in adult zebrafish. We show the dissection and preparation of zebrafish whole kidney marrow, the site of adult hematopoiesis in the zebrafish, and the introduction of these donor cells into the circulation of irradiated recipient fish via intracardiac injection. Additionally, we describe the post-transplant care of fish in an "ICU" to increase their long-term health. In general, gentle care of the fish before, during, and after the transplant is critical to increase the number of fish that will survive more than one month following the procedure, which is essential for assessment of long term (<3 month) engraftment. The experimental data used to establish this protocol will be published elsewhere. The establishment of this protocol will allow for the merger of large-scale zebrafish genetics and transplant biology.
Developmental Biology, Issue 2, zebrafish, HSC, stem cells, transplant
Play Button
2D and 3D Chromosome Painting in Malaria Mosquitoes
Authors: Phillip George, Atashi Sharma, Igor V Sharakhov.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Immunology, Issue 83, Microdissection, whole genome amplification, malaria mosquito, polytene chromosome, mitotic chromosomes, fluorescence in situ hybridization, chromosome painting
Play Button
An Efficient Method for Quantitative, Single-cell Analysis of Chromatin Modification and Nuclear Architecture in Whole-mount Ovules in Arabidopsis
Authors: Wenjing She, Daniel Grimanelli, Célia Baroux.
Institutions: University of Zürich, Université de Montpellier II.
In flowering plants, the somatic-to-reproductive cell fate transition is marked by the specification of spore mother cells (SMCs) in floral organs of the adult plant. The female SMC (megaspore mother cell, MMC) differentiates in the ovule primordium and undergoes meiosis. The selected haploid megaspore then undergoes mitosis to form the multicellular female gametophyte, which will give rise to the gametes, the egg cell and central cell, together with accessory cells. The limited accessibility of the MMC, meiocyte and female gametophyte inside the ovule is technically challenging for cytological and cytogenetic analyses at single cell level. Particularly, direct or indirect immunodetection of cellular or nuclear epitopes is impaired by poor penetration of the reagents inside the plant cell and single-cell imaging is demised by the lack of optical clarity in whole-mount tissues. Thus, we developed an efficient method to analyze the nuclear organization and chromatin modification at high resolution of single cell in whole-mount embedded Arabidopsis ovules. It is based on dissection and embedding of fixed ovules in a thin layer of acrylamide gel on a microscopic slide. The embedded ovules are subjected to chemical and enzymatic treatments aiming at improving tissue clarity and permeability to the immunostaining reagents. Those treatments preserve cellular and chromatin organization, DNA and protein epitopes. The samples can be used for different downstream cytological analyses, including chromatin immunostaining, fluorescence in situ hybridization (FISH), and DNA staining for heterochromatin analysis. Confocal laser scanning microscopy (CLSM) imaging, with high resolution, followed by 3D reconstruction allows for quantitative measurements at single-cell resolution.
Plant Biology, Issue 88, Arabidopsis thaliana, ovule, chromatin modification, nuclear architecture, immunostaining, Fluorescence in situ Hybridization, FISH, DNA staining, Heterochromatin
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Detection of Alternative Splicing During Epithelial-Mesenchymal Transition
Authors: Huilin Huang, Yilin Xu, Chonghui Cheng.
Institutions: Northwestern University Feinberg School of Medicine.
Alternative splicing plays a critical role in the epithelial-mesenchymal transition (EMT), an essential cellular program that occurs in various physiological and pathological processes. Here we describe a strategy to detect alternative splicing during EMT using an inducible EMT model by expressing the transcription repressor Twist. EMT is monitored by changes in cell morphology, loss of E-cadherin localization at cell-cell junctions, and the switched expression of EMT markers, such as loss of epithelial markers E-cadherin and γ-catenin and gain of mesenchymal markers N-cadherin and vimentin. Using isoform-specific primer sets, the alternative splicing of interested mRNAs are analyzed by quantitative RT-PCR. The production of corresponding protein isoforms is validated by immunoblotting assays. The method of detecting splice isoforms described here is also suitable for the study of alternative splicing in other biological processes.
Cellular Biology, Issue 92, alternative splicing, EMT, RNA, primer design, real time PCR, splice isoforms
Play Button
Rapid Genotyping of Animals Followed by Establishing Primary Cultures of Brain Neurons
Authors: Jin-Young Koh, Sadahiro Iwabuchi, Zhengmin Huang, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Iowa Carver College of Medicine, EZ BioResearch LLC.
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Neuroscience, Issue 95, AP2, genotyping, glial feeder layer, mouse tail, neuronal culture, nucleic-acid extraction, PCR, tattoo, torsinA
Play Button
gDNA Enrichment by a Transposase-based Technology for NGS Analysis of the Whole Sequence of BRCA1, BRCA2, and 9 Genes Involved in DNA Damage Repair
Authors: Sandy Chevrier, Romain Boidot.
Institutions: Centre Georges-François Leclerc.
The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3'-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.
Genetics, Issue 92, gDNA enrichment, Nextera, NGS, DNA damage, BRCA1, BRCA2
Play Button
From a 2DE-Gel Spot to Protein Function: Lesson Learned From HS1 in Chronic Lymphocytic Leukemia
Authors: Benedetta Apollonio, Maria Teresa Sabrina Bertilaccio, Umberto Restuccia, Pamela Ranghetti, Federica Barbaglio, Paolo Ghia, Federico Caligaris-Cappio, Cristina Scielzo.
Institutions: IRCCS, San Raffaele Scientific Institute, King's College London, IFOM, FIRC Institute of Molecular Oncology, Università Vita-Salute San Raffaele.
The identification of molecules involved in tumor initiation and progression is fundamental for understanding disease’s biology and, as a consequence, for the clinical management of patients. In the present work we will describe an optimized proteomic approach for the identification of molecules involved in the progression of Chronic Lymphocytic Leukemia (CLL). In detail, leukemic cell lysates are resolved by 2-dimensional Electrophoresis (2DE) and visualized as “spots” on the 2DE gels. Comparative analysis of proteomic maps allows the identification of differentially expressed proteins (in terms of abundance and post-translational modifications) that are picked, isolated and identified by Mass Spectrometry (MS). The biological function of the identified candidates can be tested by different assays (i.e. migration, adhesion and F-actin polymerization), that we have optimized for primary leukemic cells.
Medicine, Issue 92, Lymphocytes, Chronic Lymphocytic Leukemia, 2D Electrophoresis, Mass Spectrometry, Cytoskeleton, Migration
Play Button
Use of MALDI-TOF Mass Spectrometry and a Custom Database to Characterize Bacteria Indigenous to a Unique Cave Environment (Kartchner Caverns, AZ, USA)
Authors: Lin Zhang, Katleen Vranckx, Koen Janssens, Todd R. Sandrin.
Institutions: Arizona State University, Applied Maths NV.
MALDI-TOF mass spectrometry has been shown to be a rapid and reliable tool for identification of bacteria at the genus and species, and in some cases, strain levels. Commercially available and open source software tools have been developed to facilitate identification; however, no universal/standardized data analysis pipeline has been described in the literature. Here, we provide a comprehensive and detailed demonstration of bacterial identification procedures using a MALDI-TOF mass spectrometer. Mass spectra were collected from 15 diverse bacteria isolated from Kartchner Caverns, AZ, USA, and identified by 16S rDNA sequencing. Databases were constructed in BioNumerics 7.1. Follow-up analyses of mass spectra were performed, including cluster analyses, peak matching, and statistical analyses. Identification was performed using blind-coded samples randomly selected from these 15 bacteria. Two identification methods are presented: similarity coefficient-based and biomarker-based methods. Results show that both identification methods can identify the bacteria to the species level.
Environmental Sciences, Issue 95, Identification, environmental bacteria, MALDI-TOF mass spectrometry, BioNumerics, fingerprint, database, similarity coefficient, biomarker
Play Button
Utilizing Murine Inducible Telomerase Alleles in the Studies of Tissue Degeneration/Regeneration and Cancer
Authors: Takashi Shingu, Mariela Jaskelioff, Liang Yuan, Zhihu Ding, Alexei Protopopov, Maria Kost-Alimova, Jian Hu.
Institutions: UT MD Anderson Cancer Center, Novartis Institutes for Biomedical Research, Sanofi US, UT MD Anderson Cancer Center.
Telomere dysfunction-induced loss of genome integrity and its associated DNA damage signaling and checkpoint responses are well-established drivers that cause tissue degeneration during ageing. Cancer, with incidence rates greatly increasing with age, is characterized by short telomere lengths and high telomerase activity. To study the roles of telomere dysfunction and telomerase reactivation in ageing and cancer, the protocol shows how to generate two murine inducible telomerase knock-in alleles 4-Hydroxytamoxifen (4-OHT)-inducible TERT-Estrogen Receptor (mTERT-ER) and Lox-Stopper-LoxTERT (LSL-mTERT). The protocol describes the procedures to induce telomere dysfunction and reactivate telomerase activity in mTERT-ER and LSL-mTERT mice in vivo. The representative data show that reactivation of telomerase activity can ameliorate the tissue degenerative phenotypes induced by telomere dysfunction. In order to determine the impact of telomerase reactivation on tumorigenesis, we generated prostate tumor model G4 PB-Cre4 PtenL/L p53L/L LSL-mTERTL/L and thymic T-cell lymphoma model G4 Atm-/- mTERTER/ER. The representative data show that telomerase reactivation in the backdrop of genomic instability induced by telomere dysfunction can greatly enhance tumorigenesis. The protocol also describes the procedures used to isolate neural stem cells (NSCs) from mTERT-ER and LSL-mTERT mice and reactivate telomerase activity in NSCs in vitro. The representative data show that reactivation of telomerase can enhance the self-renewal capability and neurogenesis in vitro. Finally, the protocol describes the procedures for performing telomere FISH (Fluorescence In Situ Hybridization) on both mouse FFPE (Formalin Fixed and Paraffin Embedded) brain tissues and metaphase chromosomes of cultured cells.
Medicine, Issue 98, Telomerase, Telomere, mTERT-ER, LSL-mTERT, Ageing, Cancer, Neural Stem Cells
Play Button
Electron Channeling Contrast Imaging for Rapid III-V Heteroepitaxial Characterization
Authors: Julia I. Deitz, Santino D. Carnevale, Steven A. Ringel, David W. McComb, Tyler J. Grassman.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Misfit dislocations in heteroepitaxial layers of GaP grown on Si(001) substrates are characterized through use of electron channeling contrast imaging (ECCI) in a scanning electron microscope (SEM). ECCI allows for imaging of defects and crystallographic features under specific diffraction conditions, similar to that possible via plan-view transmission electron microscopy (PV-TEM). A particular advantage of the ECCI technique is that it requires little to no sample preparation, and indeed can use large area, as-produced samples, making it a considerably higher throughput characterization method than TEM. Similar to TEM, different diffraction conditions can be obtained with ECCI by tilting and rotating the sample in the SEM. This capability enables the selective imaging of specific defects, such as misfit dislocations at the GaP/Si interface, with high contrast levels, which are determined by the standard invisibility criteria. An example application of this technique is described wherein ECCI imaging is used to determine the critical thickness for dislocation nucleation for GaP-on-Si by imaging a range of samples with various GaP epilayer thicknesses. Examples of ECCI micrographs of additional defect types, including threading dislocations and a stacking fault, are provided as demonstration of its broad, TEM-like applicability. Ultimately, the combination of TEM-like capabilities – high spatial resolution and richness of microstructural data – with the convenience and speed of SEM, position ECCI as a powerful tool for the rapid characterization of crystalline materials.
Engineering, Issue 101, Electron channeling contrast imaging, ECCI, electron microscopy, lattice-mismatch, misfit dislocations, semiconductors, heterostructures, rapid characterization
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
Handwriting Analysis Indicates Spontaneous Dyskinesias in Neuroleptic Naïve Adolescents at High Risk for Psychosis
Authors: Derek J. Dean, Hans-Leo Teulings, Michael Caligiuri, Vijay A. Mittal.
Institutions: University of Colorado Boulder, NeuroScript LLC, University of California, San Diego.
Growing evidence suggests that movement abnormalities are a core feature of psychosis. One marker of movement abnormality, dyskinesia, is a result of impaired neuromodulation of dopamine in fronto-striatal pathways. The traditional methods for identifying movement abnormalities include observer-based reports and force stability gauges. The drawbacks of these methods are long training times for raters, experimenter bias, large site differences in instrumental apparatus, and suboptimal reliability. Taking these drawbacks into account has guided the development of better standardized and more efficient procedures to examine movement abnormalities through handwriting analysis software and tablet. Individuals at risk for psychosis showed significantly more dysfluent pen movements (a proximal measure for dyskinesia) in a handwriting task. Handwriting kinematics offers a great advance over previous methods of assessing dyskinesia, which could clearly be beneficial for understanding the etiology of psychosis.
Behavior, Issue 81, Schizophrenia, Disorders with Psychotic Features, Psychology, Clinical, Psychopathology, behavioral sciences, Movement abnormalities, Ultra High Risk, psychosis, handwriting, computer tablet, dyskinesia
Play Button
Identifying DNA Mutations in Purified Hematopoietic Stem/Progenitor Cells
Authors: Ziming Cheng, Ting Zhou, Azhar Merchant, Thomas J. Prihoda, Brian L. Wickes, Guogang Xu, Christi A. Walter, Vivienne I. Rebel.
Institutions: UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio.
In recent years, it has become apparent that genomic instability is tightly related to many developmental disorders, cancers, and aging. Given that stem cells are responsible for ensuring tissue homeostasis and repair throughout life, it is reasonable to hypothesize that the stem cell population is critical for preserving genomic integrity of tissues. Therefore, significant interest has arisen in assessing the impact of endogenous and environmental factors on genomic integrity in stem cells and their progeny, aiming to understand the etiology of stem-cell based diseases. LacI transgenic mice carry a recoverable λ phage vector encoding the LacI reporter system, in which the LacI gene serves as the mutation reporter. The result of a mutated LacI gene is the production of β-galactosidase that cleaves a chromogenic substrate, turning it blue. The LacI reporter system is carried in all cells, including stem/progenitor cells and can easily be recovered and used to subsequently infect E. coli. After incubating infected E. coli on agarose that contains the correct substrate, plaques can be scored; blue plaques indicate a mutant LacI gene, while clear plaques harbor wild-type. The frequency of blue (among clear) plaques indicates the mutant frequency in the original cell population the DNA was extracted from. Sequencing the mutant LacI gene will show the location of the mutations in the gene and the type of mutation. The LacI transgenic mouse model is well-established as an in vivo mutagenesis assay. Moreover, the mice and the reagents for the assay are commercially available. Here we describe in detail how this model can be adapted to measure the frequency of spontaneously occurring DNA mutants in stem cell-enriched Lin-IL7R-Sca-1+cKit++(LSK) cells and other subpopulations of the hematopoietic system.
Infection, Issue 84, In vivo mutagenesis, hematopoietic stem/progenitor cells, LacI mouse model, DNA mutations, E. coli
Play Button
Enrichment of NK Cells from Human Blood with the RosetteSep Kit from StemCell Technologies
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Natural killer (NK) cells are large granular cytotoxic lymphocytes that belong to the innate immune system and play major roles in fighting against cancer and infections, but are also implicated in the early stages of pregnancy and transplant rejection. These cells are present in peripheral blood, from which they can be isolated. Cells can be isolated using either positive or negative selection. For positive selection we use antibodies directed to a surface marker present only on the cells of interest whereas for negative selection we use cocktails of antibodies targeted to surface markers present on all cells but the cells of interest. This latter technique presents the advantage of leaving the cells of interest free of antibodies, thereby reducing the risk of unwanted cell activation or differenciation. In this video-protocol we demonstrate how to separate NK cells from human blood by negative selection, using the RosetteSep kit from StemCell technologies. The procedure involves obtaining human peripheral blood (under an institutional review board-approved protocol to protect the human subjects) and mixing it with a cocktail of antibodies that will bind to markers absent on NK cells, but present on all other mononuclear cells present in peripheral blood (e.g., T lymphocytes, monocytes...). The antibodies present in the cocktail are conjugated to antibodies directed to glycophorin A on erythrocytes. All unwanted cells and red blood cells will therefore be trapped in complexes. The mix of blood and antibody cocktail is then diluted, overlayed on a Histopaque gradient, and centrifuged. NK cells (>80% pure) can be collected at the interface between the Histopaque and the diluted plasma. Similar cocktails are available for enrichment of other cell populations, such as human T lymphocytes.
Immunology, issue 8, blood, cell isolation, natural killer, lymphocyte, primary cells, negative selection, PBMC, Ficoll gradient, cell separation
Play Button
Recordings of Neural Circuit Activation in Freely Behaving Animals
Authors: Jens Herberholz.
Institutions: University of Maryland.
The relationship between patterns of neural activity and corresponding behavioral expression is difficult to establish in unrestrained animals. Traditional non-invasive methods require at least partially restrained research subjects, and they only allow identification of large numbers of simultaneously activated neurons. On the other hand, small ensembles of neurons or individual neurons can only be measured using single-cell recordings obtained from largely reduced preparations. Since the expression of natural behavior is limited in restrained and dissected animals, the underlying neural mechanisms that control such behavior are difficult to identify. Here, I present a non-invasive physiological technique that allows measuring neural circuit activation in freely behaving animals. Using a pair of wire electrodes inside a water-filled chamber, the bath electrodes record neural and muscular field potentials generated by juvenile crayfish during natural or experimentally evoked escape responses. The primary escape responses of crayfish are mediated by three different types of tail-flips which move the animals away from the point of stimulation. Each type of tail-flip is controlled by its own neural circuit; the two fastest and most powerful escape responses require activation of different sets of large “command” neurons. In combination with behavioral observations, the bath electrode recordings allow unambiguous identification of these neurons and the associated neural circuits. Thus activity of neural circuitry underlying naturally occurring behavior can be measured in unrestrained animals and in different behavioral contexts.
Neuroscience, Issue 29, Electrophysiology, bath electrodes, neurons, behavior
Play Button
Obtaining High Quality RNA from Single Cell Populations in Human Postmortem Brain Tissue
Authors: Charmaine Y. Pietersen, Maribel P. Lim, Tsung-Ung W. Woo.
Institutions: McLean Hospital, Harvard Medical School, Beth Israel Deaconess Medical Center.
We proposed to investigate the gray matter reduction in the superior temporal gyrus seen in schizophrenia patients, by interrogating gene expression profiles of pyramidal neurons in layer III. It is well known that the cerebral cortex is an exceptionally heterogeneous structure comprising diverse regions, layers and cell types, each of which is characterized by distinct cellular and molecular compositions and therefore differential gene expression profiles. To circumvent the confounding effects of tissue heterogeneity, we used laser-capture microdissection (LCM) in order to isolate our specific cell-type i.e pyramidal neurons. Approximately 500 pyramidal neurons stained with the Histogene staining solution were captured using the Arcturus XT LCM system. RNA was then isolated from captured cells and underwent two rounds of T7-based linear amplification using Arcturus/Molecular Devices kits. The Experion LabChip (Bio-Rad) gel and electropherogram indicated good quality a(m)RNA, with a transcript length extending past 600nt required for microarrays. The amount of mRNA obtained averaged 51μg, with acceptable mean sample purity as indicated by the A260/280 ratio, of 2.5. Gene expression was profiled using the Human X3P GeneChip probe array from Affymetrix.
Neuroscience, Issue 30, Postmortem, microarrays, RNA, superior temporal gyrus, laser-capture microdissection, pyramidal neurons
Play Button
Retro-orbital Injection in Adult Zebrafish
Authors: Emily K. Pugach, Pulin Li, Richard White, Leonard Zon.
Institutions: Children’s Hospital Boston, Harvard Medical School, Dana Farber Cancer Institute.
Drug treatment of whole animals is an essential tool in any model system for pharmacological and chemical genetic studies. Intravenous (IV) injection is often the most effective and noninvasive form of delivery of an agent of interest. In the zebrafish (Danio rerio), IV injection of drugs has long been a challenge because of the small vessel diameter. This has also proved a significant hurdle for the injection of cells during hematopoeitic stem cell transplantation. Historically, injections into the bloodstream were done directly through the heart. However, this intra-cardiac procedure has a very high mortality rate as the heart is often punctured during injection leaving the fish prone to infection, massive blood loss or fatal organ damage. Drawing on our experience with the mouse, we have developed a new injection procedure in the zebrafish in which the injection site is behind the eye and into the retro-orbital venous sinus. This retro-orbital (RO) injection technique has been successfully employed in both the injection of drugs in the adult fish as well as transplantation of whole kidney marrow cells. RO injection has a much lower mortality rate than traditional intra-cardiac injection. Fish that are injected retro-orbitally tend to bleed less following injection and are at a much lower risk of injury to a major organ like the heart. Further, when performed properly, injected cells and/or drugs quickly enter the bloodstream allowing compounds to exert their effect on the whole fish and kidney cells to easily home to their niche. Thus, this new injection technique minimizes mortality while allowing efficient delivery of material into the bloodstream of adult fish. Here we exemplify this technique by retro-orbital injection of Tg(globin:GFP) cells into adult casper fish as well as injection of a red fluorescent dye (dextran, Texas Red ) into adult casper fish. We then visualize successful injections by whole animal fluorescence microscopy.
Cellular Biology, Issue 34, fluorescent dye, kidney marrow cells, vasculature, red blood cells, Zebrafish, injection, retro-orbital injection, transplantation, HSC
Play Button
Quantitative Autonomic Testing
Authors: Peter Novak.
Institutions: University of Massachusetts Medical School.
Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.
Medicine, Issue 53, Deep breathing, Valsalva maneuver, tilt test, sudomotor testing, Composite Autonomic Severity Score, CASS
Play Button
FISH for Pre-implantation Genetic Diagnosis
Authors: Paul N. Scriven, Toby L. Kirby, Caroline Mackie Ogilvie.
Institutions: Guy&#x2019;s & St Thomas&#x2019; Centre for Preimplantation Genetic Diagnosis.
Pre-implantation genetic diagnosis (PGD) is an established alternative to pre-natal diagnosis, and involves selecting pre-implantation embryos from a cohort generated by assisted reproduction technology (ART). This selection may be required because of familial monogenic disease (e.g. cystic fibrosis), or because one partner carries a chromosome rearrangement (e.g. a two-way reciprocal translocation). PGD is available for couples who have had previous affected children, and/or in the case of chromosome rearrangements, recurrent miscarriages, or infertility. Oocytes aspirated following ovarian stimulation are fertilized by in vitro immersion in semen (IVF) or by intracytoplasmic injection of an individual spermatozoon (ICSI). Pre-implantation cleavage-stage embryos are biopsied, usually by the removal of a single cell on day 3 post-fertilization, and the biopsied cell is tested to establish the genetic status of the embryo. Fluorescence in situ hybridization (FISH) on the fixed nuclei of biopsied cells with target-specific DNA probes is the technique of choice to detect chromosome imbalance associated with chromosome rearrangements, and to select female embryos in families with X-linked disease for which there is no mutation-specific test. FISH has also been used to screen embryos for spontaneous chromosome aneuploidy (also known as PGS or PGD-AS) in order to try and improve the efficiency of assisted reproduction; however, the predictive value of this test using the spreading and FISH technique described here is likely to be unacceptably low in most people's hands and it is not recommended for routine clinical use. We describe the selection of suitable probes for single-cell FISH, spreading techniques for blastomere nuclei, and in situ hybridization and signal scoring, applied to PGD in a clinical setting.
Medicine, Issue 48, Fluorescence in situ hybridization, Pre-implantation genetic diagnosis, PGD, Sex determination, Translocations, Chromosome aneuploidy
Play Button
A 1.5 Hour Procedure for Identification of Enterococcus Species Directly from Blood Cultures
Authors: Margie A. Morgan, Elizabeth Marlowe, Susan Novak-Weekly, J.M. Miller, T.M. Painter, Hossein Salimnia, Benjamin Crystal.
Institutions: Cedars-Sinai Medical Cente, Southern California Permanente Medical Group, Detroit Medical Center, AdvanDx.
Enterococci are a common cause of bacteremia with E. faecalis being the predominant species followed by E. faecium. Because resistance to ampicillin and vancomycin in E. faecalis is still uncommon compared to resistance in E. faecium, the development of rapid tests allowing differentiation between enterococcal species is important for appropriate therapy and resistance surveillance. The E. faecalis OE PNA FISH assay (AdvanDx, Woburn, MA) uses species-specific peptide nucleic acid (PNA) probes in a fluorescence in situ hybridization format and offers a time to results of 1.5 hours and the potential of providing important information for species-specific treatment. Multicenter studies were performed to assess the performance of the 1.5 hour E. faecalis/OE PNA FISH procedure compared to the original 2.5 hour assay procedure and to standard bacteriology methods for the identification of enterococci directly from a positive blood culture bottle.
Immunology, Issue 48, PNA FISH, Enterococcus, Blood Culture, Sepsis, Staining
Play Button
Chromosomics: Detection of Numerical and Structural Alterations in All 24 Human Chromosomes Simultaneously Using a Novel OctoChrome FISH Assay
Authors: Zhiying Ji, Luoping Zhang.
Institutions: University of California, Berkeley .
Fluorescence in situ hybridization (FISH) is a technique that allows specific DNA sequences to be detected on metaphase or interphase chromosomes in cell nuclei1. The technique uses DNA probes with unique sequences that hybridize to whole chromosomes or specific chromosomal regions, and serves as a powerful adjunct to classic cytogenetics. For instance, many earlier studies reported the frequent detection of increased chromosome aberrations in leukemia patients related with benzene exposure, benzene-poisoning patients, and healthy workers exposed to benzene, using classic cytogenetic analysis2. Using FISH, leukemia-specific chromosomal alterations have been observed to be elevated in apparently healthy workers exposed to benzene3-6, indicating the critical roles of cytogentic changes in benzene-induced leukemogenesis. Generally, a single FISH assay examines only one or a few whole chromosomes or specific loci per slide, so multiple hybridizations need to be conducted on multiple slides to cover all of the human chromosomes. Spectral karyotyping (SKY) allows visualization of the whole genome simultaneously, but the requirement for special software and equipment limits its application7. Here, we describe a novel FISH assay, OctoChrome-FISH, which can be applied for Chromosomics, which we define here as the simultaneous analysis of all 24 human chromosomes on one slide in human studies, such as chromosome-wide aneuploidy study (CWAS)8. The basis of the method, marketed by Cytocell as the Chromoprobe Multiprobe System, is an OctoChrome device that is divided into 8 squares, each of which carries three different whole chromosome painting probes (Figure 1). Each of the three probes is directly labeled with a different colored fluorophore, green (FITC), red (Texas Red), and blue (Coumarin). The arrangement of chromosome combinations on the OctoChrome device has been designed to facilitate the identification of the non-random structural chromosome alterations (translocations) found in the most common leukemias and lymphomas, for instance t(9;22), t(15;17), t(8;21), t(14;18)9. Moreover, numerical changes (aneuploidy) in chromosomes can be detected concurrently. The corresponding template slide is also divided into 8 squares onto which metaphase spreads are bound (Figure 2), and is positioned over the OctoChrome device. The probes and target DNA are denatured at high-temperature and hybridized in a humid chamber, and then all 24 human chromosomes can be visualized simultaneously. OctoChrome FISH is a promising technique for the clinical diagnosis of leukemia and lymphoma and for detection of aneuploidies in all chromosomes. We have applied this new Chromosomic approach in a CWAS study of benzene-exposed Chinese workers8,10.
Genetics, Issue 60, Chromosomics, OctoChrome-FISH, fluorescence in situ hybridization (FISH), Chromosome-wide aneuploidy study (CWAS), aneuploidy, chromosomal translocations, leukemia, lymphoma
Play Button
A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
Authors: Michele M. Pelter, Teri M. Kozik, Denise L. Loranger, Mary G. Carey.
Institutions: University of Nevada, Reno, St. Joseph's Medical Center, University of Rochester Medical Center .
Each year, an estimated 785,000 Americans will have a new coronary attack, or acute coronary syndrome (ACS). The pathophysiology of ACS involves rupture of an atherosclerotic plaque; hence, treatment is aimed at plaque stabilization in order to prevent cellular death. However, there is considerable debate among clinicians, about which treatment pathway is best: early invasive using percutaneous coronary intervention (PCI/stent) when indicated or a conservative approach (i.e., medication only with PCI/stent if recurrent symptoms occur). There are three types of ACS: ST elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI), and unstable angina (UA). Among the three types, NSTEMI/UA is nearly four times as common as STEMI. Treatment decisions for NSTEMI/UA are based largely on symptoms and resting or exercise electrocardiograms (ECG). However, because of the dynamic and unpredictable nature of the atherosclerotic plaque, these methods often under detect myocardial ischemia because symptoms are unreliable, and/or continuous ECG monitoring was not utilized. Continuous 12-lead ECG monitoring, which is both inexpensive and non-invasive, can identify transient episodes of myocardial ischemia, a precursor to MI, even when asymptomatic. However, continuous 12-lead ECG monitoring is not usual hospital practice; rather, only two leads are typically monitored. Information obtained with 12-lead ECG monitoring might provide useful information for deciding the best ACS treatment. Purpose. Therefore, using 12-lead ECG monitoring, the COMPARE Study (electroCardiographic evaluatiOn of ischeMia comParing invAsive to phaRmacological trEatment) was designed to assess the frequency and clinical consequences of transient myocardial ischemia, in patients with NSTEMI/UA treated with either early invasive PCI/stent or those managed conservatively (medications or PCI/stent following recurrent symptoms). The purpose of this manuscript is to describe the methodology used in the COMPARE Study. Method. Permission to proceed with this study was obtained from the Institutional Review Board of the hospital and the university. Research nurses identify hospitalized patients from the emergency department and telemetry unit with suspected ACS. Once consented, a 12-lead ECG Holter monitor is applied, and remains in place during the patient's entire hospital stay. Patients are also maintained on the routine bedside ECG monitoring system per hospital protocol. Off-line ECG analysis is done using sophisticated software and careful human oversight.
Medicine, Issue 70, Anatomy, Physiology, Cardiology, Myocardial Ischemia, Cardiovascular Diseases, Health Occupations, Health Care, transient myocardial ischemia, Acute Coronary Syndrome, electrocardiogram, ST-segment monitoring, Holter monitoring, research methodology
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Isolation and Characterization of Neutrophils with Anti-Tumor Properties
Authors: Ronit Vogt Sionov, Simaan Assi, Maya Gershkovitz, Jitka Y. Sagiv, Lola Polyansky, Inbal Mishalian, Zvi G. Fridlender, Zvi Granot.
Institutions: Hebrew University Medical School, Hadassah-Hebrew University Medical Center.
Neutrophils, the most abundant of all white blood cells in the human circulation, play an important role in the host defense against invading microorganisms. In addition, neutrophils play a central role in the immune surveillance of tumor cells. They have the ability to recognize tumor cells and induce tumor cell death either through a cell contact-dependent mechanism involving hydrogen peroxide or through antibody-dependent cell-mediated cytotoxicity (ADCC). Neutrophils with anti-tumor activity can be isolated from peripheral blood of cancer patients and of tumor-bearing mice. These neutrophils are termed tumor-entrained neutrophils (TEN) to distinguish them from neutrophils of healthy subjects or naïve mice that show no significant tumor cytotoxic activity. Compared with other white blood cells, neutrophils show different buoyancy making it feasible to obtain a > 98% pure neutrophil population when subjected to a density gradient. However, in addition to the normal high-density neutrophil population (HDN), in cancer patients, in tumor-bearing mice, as well as under chronic inflammatory conditions, distinct low-density neutrophil populations (LDN) appear in the circulation. LDN co-purify with the mononuclear fraction and can be separated from mononuclear cells using either positive or negative selection strategies. Once the purity of the isolated neutrophils is determined by flow cytometry, they can be used for in vitro and in vivo functional assays. We describe techniques for monitoring the anti-tumor activity of neutrophils, their ability to migrate and to produce reactive oxygen species, as well as monitoring their phagocytic capacity ex vivo. We further describe techniques to label the neutrophils for in vivo tracking, and to determine their anti-metastatic capacity in vivo. All these techniques are essential for understanding how to obtain and characterize neutrophils with anti-tumor function.
Immunology, Issue 100, Neutrophil isolation, tumor-entrained neutrophils, high-density neutrophils, low-density neutrophils, anti-tumor cytotoxicity, BrdU labeling, CFSE labeling, luciferase assay, neutrophil depletion, anti-metastatic activity, lung metastatic seeding assay, neutrophil adoptive transfer.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.