JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study.
PUBLISHED: 06-13-2015
To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4T or 7T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1) the petrosquamous sinus, draining into the posterior facial vein, 2) the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3) the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra- cranial veins.
Authors: Se-Chan Kim, Christian Klebach, Ingo Heinze, Andreas Hoeft, Georg Baumgarten, Stefan Weber.
Published: 12-23-2014
The supraclavicular fossa ultrasound view can be useful for central venous catheter (CVC) placement. Venipuncture of the internal jugular veins (IJV) or subclavian veins is performed with a micro-convex ultrasound probe, using a neonatal abdominal preset with a probe frequency of 10 Mhz at a depth of 10-12 cm. Following insertion of the guidewire into the vein, the probe is shifted to the right supraclavicular fossa to obtain a view of the superior vena cava (SVC), right pulmonary artery and ascending aorta. Under real-time ultrasound view, the guidewire and its J-tip is visualized and pushed forward to the lower SVC. Insertion depth is read from guidewire marks using central venous catheter. CVC is then inserted following skin and venous dilation. The supraclavicular fossa view is most suitable for right IJV CVC insertion. If other insertion sites are chosen the right supraclavicular fossa should be within the sterile field. Scanning of the IJVs, brachiocephalic veins and SVC can reveal significant thrombosis before venipuncture. Misplaced CVCs can be corrected with a change over guidewire technique under real-time ultrasound guidance. In conjunction with a diagnostic lung ultrasound scan, this technique has a potential to replace chest radiograph for confirmation of CVC tip position and exclusion of pneumothorax. Moreover, this view is of advantage in patients with a non-p-wave cardiac rhythm were an intra-cardiac electrocardiography (ECG) is not feasible for CVC tip position confirmation. Limitations of the method are lack of availability of a micro-convex probe and the need for training.
19 Related JoVE Articles!
Play Button
State of the Art Cranial Ultrasound Imaging in Neonates
Authors: Ginette M. Ecury-Goossen, Fleur A. Camfferman, Lara M. Leijser, Paul Govaert, Jeroen Dudink.
Institutions: Erasmus MC-Sophia Children's Hospital, Erasmus MC-Sophia Children's Hospital, UZ Brussel, Leiden University Medical Center, Isala Hospital, Koningin Paola Children's Hospital.
Cranial ultrasound (CUS) is a reputable tool for brain imaging in critically ill neonates. It is safe, relatively cheap and easy to use, even when a patient is unstable. In addition it is radiation-free and allows serial imaging. CUS possibilities have steadily expanded. However, in many neonatal intensive care units, these possibilities are not optimally used. We present a comprehensive approach for neonatal CUS, focusing on optimal settings, different probes, multiple acoustic windows and Doppler techniques. This approach is suited for both routine clinical practice and research purposes. In a live demonstration, we show how this technique is performed in the neonatal intensive care unit. Using optimal settings and probes allows for better imaging quality and improves the diagnostic value of CUS in experienced hands. Traditionally, images are obtained through the anterior fontanel. Use of supplemental acoustic windows (lambdoid, mastoid, and lateral fontanels) improves detection of brain injury. Adding Doppler studies allows screening of patency of large intracranial arteries and veins. Flow velocities and indices can be obtained. Doppler CUS offers the possibility of detecting cerebral sinovenous thrombosis at an early stage, creating a window for therapeutic intervention prior to thrombosis-induced tissue damage. Equipment, data storage and safety aspects are also addressed.
Medicine, Issue 96, Medicine, Neonate, Preterm, Imaging, Ultrasound, Doppler
Play Button
Retrograde Perfusion and Filling of Mouse Coronary Vasculature as Preparation for Micro Computed Tomography Imaging
Authors: Jill J. Weyers, Dara D. Carlson, Charles E. Murry, Stephen M. Schwartz, William M. Mahoney, Jr..
Institutions: University of Washington, University of Washington.
Visualization of the vasculature is becoming increasingly important for understanding many different disease states. While several techniques exist for imaging vasculature, few are able to visualize the vascular network as a whole while extending to a resolution that includes the smaller vessels1,2. Additionally, many vascular casting techniques destroy the surrounding tissue, preventing further analysis of the sample3-5. One method which circumvents these issues is micro-Computed Tomography (μCT). μCT imaging can scan at resolutions <10 microns, is capable of producing 3D reconstructions of the vascular network, and leaves the tissue intact for subsequent analysis (e.g., histology and morphometry)6-11. However, imaging vessels by ex vivo μCT methods requires that the vessels be filled with a radiopaque compound. As such, the accurate representation of vasculature produced by μCT imaging is contingent upon reliable and complete filling of the vessels. In this protocol, we describe a technique for filling mouse coronary vessels in preparation for μCT imaging. Two predominate techniques exist for filling the coronary vasculature: in vivo via cannulation and retrograde perfusion of the aorta (or a branch off the aortic arch) 12-14, or ex vivo via a Langendorff perfusion system 15-17. Here we describe an in vivo aortic cannulation method which has been specifically designed to ensure filling of all vessels. We use a low viscosity radiopaque compound called Microfil which can perfuse through the smallest vessels to fill all the capillaries, as well as both the arterial and venous sides of the vascular network. Vessels are perfused with buffer using a pressurized perfusion system, and then filled with Microfil. To ensure that Microfil fills the small higher resistance vessels, we ligate the large branches emanating from the aorta, which diverts the Microfil into the coronaries. Once filling is complete, to prevent the elastic nature of cardiac tissue from squeezing Microfil out of some vessels, we ligate accessible major vascular exit points immediately after filling. Therefore, our technique is optimized for complete filling and maximum retention of the filling agent, enabling visualization of the complete coronary vascular network – arteries, capillaries, and veins alike.
Medicine, Issue 60, Vascular biology, heart, coronary vessels, mouse, micro Computed Tomography (μCT) imaging, Microfil
Play Button
Non-invasive Parenchymal, Vascular and Metabolic High-frequency Ultrasound and Photoacoustic Rat Deep Brain Imaging
Authors: Pierangela Giustetto, Miriam Filippi, Mauro Castano, Enzo Terreno.
Institutions: University of Turin, University of Turin, Bracco Imaging SpA.
Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive performance-competitive means for cortical and internal brain imaging, retaining a significant potential in many neurologic fields.
Neuroscience, Issue 97, Photoacoustics, High-frequency ultrasounds, Brain imaging, Cerebral hemodynamics, Non-invasive imaging, Small animal, Neuroimaging
Play Button
Single-stage Dynamic Reanimation of the Smile in Irreversible Facial Paralysis by Free Functional Muscle Transfer
Authors: Jan Thiele, Holger Bannasch, G. Bjoern Stark, Steffen U. Eisenhardt.
Institutions: University of Freiburg Medical Centre.
Unilateral facial paralysis is a common disease that is associated with significant functional, aesthetic and psychological issues. Though idiopathic facial paralysis (Bell’s palsy) is the most common diagnosis, patients can also present with a history of physical trauma, infectious disease, tumor, or iatrogenic facial paralysis. Early repair within one year of injury can be achieved by direct nerve repair, cross-face nerve grafting or regional nerve transfer. It is due to muscle atrophy that in long lasting facial paralysis complex reconstructive methods have to be applied. Instead of one single procedure, different surgical approaches have to be considered to alleviate the various components of the paralysis. The reconstruction of a spontaneous dynamic smile with a symmetric resting tone is a crucial factor to overcome the functional deficits and the social handicap that are associated with facial paralysis. Although numerous surgical techniques have been described, a two-stage approach with an initial cross-facial nerve grafting followed by a free functional muscle transfer is most frequently applied. In selected patients however, a single-stage reconstruction using the motor nerve to the masseter as donor nerve is superior to a two-stage repair. The gracilis muscle is most commonly used for reconstruction, as it presents with a constant anatomy, a simple dissection and minimal donor site morbidity. Here we demonstrate the pre-operative work-up, the post-operative management, and precisely describe the surgical procedure of single-stage microsurgical reconstruction of the smile by free functional gracilis muscle transfer in a step by step protocol. We further illustrate common pitfalls and provide useful tips which should enable the reader to truly comprehend the procedure. We further discuss indications and limitations of the technique and demonstrate representative results.
Medicine, Issue 97, microsurgery, free microvascular tissue transfer, face, head, head and neck surgery, facial paralysis
Play Button
Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images
Authors: Aliya Gifford, Theodore F. Towse, Ronald C. Walker, Malcolm J. Avison, E. Brian Welch.
Institutions: Vanderbilt University, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University.
Reliably differentiating brown adipose tissue (BAT) from other tissues using a non-invasive imaging method is an important step toward studying BAT in humans. Detecting BAT is typically confirmed by the uptake of the injected radioactive tracer 18F-Fluorodeoxyglucose (18F-FDG) into adipose tissue depots, as measured by positron emission tomography/computed tomography (PET-CT) scans after exposing the subject to cold stimulus. Fat-water separated magnetic resonance imaging (MRI) has the ability to distinguish BAT without the use of a radioactive tracer. To date, MRI of BAT in adult humans has not been co-registered with cold-activated PET-CT. Therefore, this protocol uses 18F-FDG PET-CT scans to automatically generate a BAT mask, which is then applied to co-registered MRI scans of the same subject. This approach enables measurement of quantitative MRI properties of BAT without manual segmentation. BAT masks are created from two PET-CT scans: after exposure for 2 hr to either thermoneutral (TN) (24 °C) or cold-activated (CA) (17 °C) conditions. The TN and CA PET-CT scans are registered, and the PET standardized uptake and CT Hounsfield values are used to create a mask containing only BAT. CA and TN MRI scans are also acquired on the same subject and registered to the PET-CT scans in order to establish quantitative MRI properties within the automatically defined BAT mask. An advantage of this approach is that the segmentation is completely automated and is based on widely accepted methods for identification of activated BAT (PET-CT). The quantitative MRI properties of BAT established using this protocol can serve as the basis for an MRI-only BAT examination that avoids the radiation associated with PET-CT.
Medicine, Issue 96, magnetic resonance imaging, brown adipose tissue, cold-activation, adult human, fat water imaging, fluorodeoxyglucose, positron emission tomography, computed tomography
Play Button
Contrast Imaging in Mouse Embryos Using High-frequency Ultrasound
Authors: Janet M. Denbeigh, Brian A. Nixon, Mira C. Puri, F. Stuart Foster.
Institutions: University of Toronto, Sunnybrook Research Institute, Mount Sinai Hospital, Toronto.
Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.
Developmental Biology, Issue 97, Micro-ultrasound, Molecular imaging, Mouse embryo, Microbubble, Ultrasound contrast agent, Perfusion
Play Button
Contrast Enhanced Ultrasound Imaging for Assessment of Spinal Cord Blood Flow in Experimental Spinal Cord Injury
Authors: Arnaud Dubory, Elisabeth Laemmel, Anna Badner, Jacques Duranteau, Eric Vicaut, Charles Court, Marc Soubeyrand.
Institutions: Faculté de Médecine Paris Diderot Paris VII, U942, Bicetre Universitary Hospital, Public Assistance of Paris Hospital, University of Toronto, Bicetre Universitary Hospital, Public Assistance of Paris Hospital.
Reduced spinal cord blood flow (SCBF) (i.e., ischemia) plays a key role in traumatic spinal cord injury (SCI) pathophysiology and is accordingly an important target for neuroprotective therapies. Although several techniques have been described to assess SCBF, they all have significant limitations. To overcome the latter, we propose the use of real-time contrast enhanced ultrasound imaging (CEU). Here we describe the application of this technique in a rat contusion model of SCI. A jugular catheter is first implanted for the repeated injection of contrast agent, a sodium chloride solution of sulphur hexafluoride encapsulated microbubbles. The spine is then stabilized with a custom-made 3D-frame and the spinal cord dura mater is exposed by a laminectomy at ThIX-ThXII. The ultrasound probe is then positioned at the posterior aspect of the dura mater (coated with ultrasound gel). To assess baseline SCBF, a single intravenous injection (400 µl) of contrast agent is applied to record its passage through the intact spinal cord microvasculature. A weight-drop device is subsequently used to generate a reproducible experimental contusion model of SCI. Contrast agent is re-injected 15 min following the injury to assess post-SCI SCBF changes. CEU allows for real time and in-vivo assessment of SCBF changes following SCI. In the uninjured animal, ultrasound imaging showed uneven blood flow along the intact spinal cord. Furthermore, 15 min post-SCI, there was critical ischemia at the level of the epicenter while SCBF remained preserved in the more remote intact areas. In the regions adjacent to the epicenter (both rostral and caudal), SCBF was significantly reduced. This corresponds to the previously described “ischemic penumbra zone”. This tool is of major interest for assessing the effects of therapies aimed at limiting ischemia and the resulting tissue necrosis subsequent to SCI.
Medicine, Issue 99, Spinal cord blood flow, ischemia, spinal cord injury, contrast enhanced ultrasound, rat, contrast agent, Sonovue
Play Button
High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes
Authors: Elyse L. Walk, Sarah L. McLaughlin, Scott A. Weed.
Institutions: West Virginia University, West Virginia University, West Virginia University.
High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease.
Medicine, Issue 101, Ultrasound, cervical lymphnode, mouse, imaging, animal model, anatomy, mapping.
Play Button
Mouse Complete Stasis Model of Inferior Vena Cava Thrombosis
Authors: Shirley K. Wrobleski, Diana M. Farris, José A. Diaz, Daniel D. Myers Jr., Thomas W. Wakefield.
Institutions: University of Michigan .
Venous thromboembolism (VTE) includes both deep vein thrombosis (DVT) and pulmonary embolism (PE). In the United States (U.S.), the high morbidity and mortality rates make VTE a serious health concern 1-2. After heart disease and stroke, VTE is the third most common vascular disease 3. In the U.S. alone, there is an estimated 900,000 people affected each year, with 300,000 deaths occurring annually 3. A reliable in vivo animal model to study the mechanisms of this disease is necessary. The advantages of using the mouse complete stasis model of inferior vena cava thrombosis are several. The mouse model allows for the administration of very small volumes of limited availability test agents, reducing costs dramatically. Most promising is the potential for mice with gene knockouts that allow specific inflammatory and coagulation factor functions to be delineated. Current molecular assays allow for the quantitation of vein wall, thrombus, whole blood, and plasma for assays. However, a major concern involving this model is the operative size constraints and the friability of the vessels. Also, due to the small IVC sample weight (mean 0.005 grams) it is necessary to increase animal numbers for accurate statistical analysis for tissue, thrombus, and blood assays such as real-time polymerase chain reaction (RT-PCR), western blot, enzyme-linked immunosorbent (ELISA), zymography, vein wall and thrombus cellular analysis, and whole blood and plasma assays 4-8. The major disadvantage with the stasis model is that the lack of blood flow inhibits the maximal effect of administered systemic therapeutic agents on the thrombus and vein wall.
Medicine, Issue 52, Animal model, mouse, venous thrombosis, stasis induced thrombosis, inflammation, venous disease
Play Button
Technique of Porcine Liver Procurement and Orthotopic Transplantation using an Active Porto-Caval Shunt
Authors: Vinzent N. Spetzler, Nicolas Goldaracena, Jan M. Knaak, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. Each year, a considerable number of patients on the liver transplantation waiting list die without receiving an organ transplant or are delisted due to disease progression. Even after a successful transplantation, rejection and side effects of immunosuppression remain major concerns for graft survival and patient morbidity. Experimental animal research has been essential to the success of liver transplantation and still plays a pivotal role in the development of clinical transplantation practice. In particular, the porcine orthotopic liver transplantation model (OLTx) is optimal for clinically oriented research for its close resemblance to human size, anatomy, and physiology. Decompression of intestinal congestion during the anhepatic phase of porcine OLTx is important to guarantee reliable animal survival. The use of an active porto-caval-jugular shunt achieves excellent intestinal decompression. The system can be used for short-term as well as long-term survival experiments. The following protocol contains all technical information for a stable and reproducible liver transplantation model in pigs including post-operative animal care.
Medicine, Issue 99, Orthotopic Liver Transplantation, Hepatic, Porcine Model, Pig, Experimental, Transplantation, Graft Preservation, Ischemia Reperfusion Injury, Transplant Immunology, Bile Duct Reconstruction, Animal Handling
Play Button
Non-Terminal Blood Sampling Techniques in Guinea Pigs
Authors: Malene M. Birck, Pernille Tveden-Nyborg, Maiken M. Lindblad, Jens Lykkesfeldt.
Institutions: University of Copenhagen.
Guinea pigs possess several biological similarities to humans and are validated experimental animal models1-3. However, the use of guinea pigs currently represents a relatively narrow area of research and descriptive data on specific methodology is correspondingly scarce. The anatomical features of guinea pigs are slightly different from other rodent models, hence modulation of sampling techniques to accommodate for species-specific differences, e.g., compared to mice and rats, are necessary to obtain sufficient and high quality samples. As both long and short term in vivo studies often require repeated blood sampling the choice of technique should be well considered in order to reduce stress and discomfort in the animals but also to ensure survival as well as compliance with requirements of sample size and accessibility. Venous blood samples can be obtained at a number of sites in guinea pigs e.g., the saphenous and jugular veins, each technique containing both advantages and disadvantages4,5. Here, we present four different blood sampling techniques for either conscious or anaesthetized guinea pigs. The procedures are all non-terminal procedures provided that sample volumes and number of samples do not exceed guidelines for blood collection in laboratory animals6. All the described methods have been thoroughly tested and applied for repeated in vivo blood sampling in studies within our research facility.
Medicine, Issue 92, guinea pig, animal model, blood sampling, non-terminal, saphenous, tarsal, jugular
Play Button
A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites
Authors: George Papadopoulos, Carolyn D. Kramer, Connie S. Slocum, Ellen O. Weinberg, Ning Hua, Cynthia V. Gudino, James A. Hamilton, Caroline A. Genco.
Institutions: Boston University School of Medicine, Boston University School of Medicine.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.
Immunology, Issue 90, Pathogen-Induced Chronic Inflammation; Porphyromonas gingivalis; Oral Bone Loss; Periodontal Disease; Atherosclerosis; Chronic Inflammation; Host-Pathogen Interaction; microCT; MRI
Play Button
Adult Mouse Venous Hypertension Model: Common Carotid Artery to External Jugular Vein Anastomosis.
Authors: Shun-Tai Yang, Ana Rodriguez-Hernandez, Espen J. Walker, William L. Young, Hua Su, Michael T. Lawton.
Institutions: University of California, San Francisco, University of California, San Francisco, University of California, San Francisco.
The understanding of the pathophysiology of brain arteriovenous malformations and arteriovenous fistulas has improved thanks to animal models. A rat model creating an artificial fistula between the common carotid artery (CCA) and the external jugular vein (EJV) has been widely described and proved technically feasible. This construct provokes a consistent cerebral venous hypertension (CVH), and therefore has helped studying the contribution of venous hypertension to formation, clinical symptoms, and prognosis of brain AVMs and dural AVFs. Equivalent mice models have been only scarcely described and have shown trouble with stenosis of the fistula. An established murine model would allow the study of not only pathophysiology but also potential genetic therapies for these cerebrovascular diseases. We present a model of arteriovenous fistula that produces a durable intracranial venous hypertension in the mouse. Microsurgical anastomosis of the murine CCA and EJV can be difficult due to diminutive anatomy and frequently result in a non-patent fistula. In this step-by-step protocol we address all the important challenges encountered during this procedure. Avoiding excessive retraction of the vein during the exposure, using 11-0 sutures instead of 10-0, and making a carefully planned end-to-side anastomosis are some of the critical steps. Although this method requires advanced microsurgical skills and a longer learning curve that the equivalent in the rat, it can be consistently developed. This novel model has been designed to integrate transgenic mouse techniques with a previously well-established experimental system that has proved useful to study brain AVMs and dural AVFs. By opening the possibility of using transgenic mice, a broader spectrum of valid models can be achieved and genetic treatments can also be tested. The experimental construct could also be further adapted to the study of other cerebrovascular diseases related with venous hypertension such as migraine, transient global amnesia, transient monocular blindness, etc.
Medicine, Issue 95, anastomosis, arteriovenous fistula, mouse model, venous hypertension, brain arteriovenous malformation, dural fistula
Play Button
Technical Aspects of the Mouse Aortocaval Fistula
Authors: Kota Yamamoto, Xin Li, Chang Shu, Tetsuro Miyata, Alan Dardik.
Institutions: Yale University, The University of Tokyo, Central South University, VA Connecticut Healthcare Systems.
Technical aspects of creating an arteriovenous fistula in the mouse are discussed. Under general anesthesia, an abdominal incision is made, and the aorta and inferior vena cava (IVC) are exposed. The proximal infrarenal aorta and the distal aorta are dissected for clamp placement and needle puncture, respectively. Special attention is paid to avoid dissection between the aorta and the IVC. After clamping the aorta, a 25 G needle is used to puncture both walls of the aorta into the IVC. The surrounding connective tissue is used for hemostatic compression. Successful creation of the AVF will show pulsatile arterial blood flow in the IVC. Further confirmation of successful AVF can be achieved by post-operative Doppler ultrasound.
Biomedical Engineering, Issue 77, Medicine, Anatomy, Physiology, Surgery, Cardiology, Hematology, Blood Vessels, Arteries, Aorta, Abdominal, Veins, Vena Cava, Inferior, Cardiovascular System, aortocaval fistula, mouse, puncture, Doppler ultrasound, compression, surgical techniques, animal model
Play Button
Anatomical Reconstructions of the Human Cardiac Venous System using Contrast-computed Tomography of Perfusion-fixed Specimens
Authors: Julianne Spencer, Emily Fitch, Paul A. Iaizzo.
Institutions: University of Minnesota , University of Minnesota , University of Minnesota , University of Minnesota , University of Minnesota .
A detailed understanding of the complexity and relative variability within the human cardiac venous system is crucial for the development of cardiac devices that require access to these vessels. For example, cardiac venous anatomy is known to be one of the key limitations for the proper delivery of cardiac resynchronization therapy (CRT)1 Therefore, the development of a database of anatomical parameters for human cardiac venous systems can aid in the design of CRT delivery devices to overcome such a limitation. In this research project, the anatomical parameters were obtained from 3D reconstructions of the venous system using contrast-computed tomography (CT) imaging and modeling software (Materialise, Leuven, Belgium). The following parameters were assessed for each vein: arc length, tortuousity, branching angle, distance to the coronary sinus ostium, and vessel diameter. CRT is a potential treatment for patients with electromechanical dyssynchrony. Approximately 10-20% of heart failure patients may benefit from CRT2. Electromechanical dyssynchrony implies that parts of the myocardium activate and contract earlier or later than the normal conduction pathway of the heart. In CRT, dyssynchronous areas of the myocardium are treated with electrical stimulation. CRT pacing typically involves pacing leads that stimulate the right atrium (RA), right ventricle (RV), and left ventricle (LV) to produce more resynchronized rhythms. The LV lead is typically implanted within a cardiac vein, with the aim to overlay it within the site of latest myocardial activation. We believe that the models obtained and the analyses thereof will promote the anatomical education for patients, students, clinicians, and medical device designers. The methodologies employed here can also be utilized to study other anatomical features of our human heart specimens, such as the coronary arteries. To further encourage the educational value of this research, we have shared the venous models on our free access website:
Biomedical Engineering, Issue 74, Medicine, Bioengineering, Anatomy, Physiology, Surgery, Cardiology, Coronary Vessels, Heart, Heart Conduction System, Heart Ventricles, Myocardium, cardiac veins, coronary veins, perfusion-fixed human hearts, Computed Tomography, CT, CT scan, contrast injections, 3D modeling, Device Development, vessel parameters, imaging, clinical techniques
Play Button
Multi-modal Imaging of Angiogenesis in a Nude Rat Model of Breast Cancer Bone Metastasis Using Magnetic Resonance Imaging, Volumetric Computed Tomography and Ultrasound
Authors: Tobias Bäuerle, Dorde Komljenovic, Martin R. Berger, Wolfhard Semmler.
Institutions: German Cancer Research Center, Heidelberg, Germany, German Cancer Research Center, Heidelberg, Germany.
Angiogenesis is an essential feature of cancer growth and metastasis formation. In bone metastasis, angiogenic factors are pivotal for tumor cell proliferation in the bone marrow cavity as well as for interaction of tumor and bone cells resulting in local bone destruction. Our aim was to develop a model of experimental bone metastasis that allows in vivo assessment of angiogenesis in skeletal lesions using non-invasive imaging techniques. For this purpose, we injected 105 MDA-MB-231 human breast cancer cells into the superficial epigastric artery, which precludes the growth of metastases in body areas other than the respective hind leg1. Following 25-30 days after tumor cell inoculation, site-specific bone metastases develop, restricted to the distal femur, proximal tibia and proximal fibula1. Morphological and functional aspects of angiogenesis can be investigated longitudinally in bone metastases using magnetic resonance imaging (MRI), volumetric computed tomography (VCT) and ultrasound (US). MRI displays morphologic information on the soft tissue part of bone metastases that is initially confined to the bone marrow cavity and subsequently exceeds cortical bone while progressing. Using dynamic contrast-enhanced MRI (DCE-MRI) functional data including regional blood volume, perfusion and vessel permeability can be obtained and quantified2-4. Bone destruction is captured in high resolution using morphological VCT imaging. Complementary to MRI findings, osteolytic lesions can be located adjacent to sites of intramedullary tumor growth. After contrast agent application, VCT angiography reveals the macrovessel architecture in bone metastases in high resolution, and DCE-VCT enables insight in the microcirculation of these lesions5,6. US is applicable to assess morphological and functional features from skeletal lesions due to local osteolysis of cortical bone. Using B-mode and Doppler techniques, structure and perfusion of the soft tissue metastases can be evaluated, respectively. DCE-US allows for real-time imaging of vascularization in bone metastases after injection of microbubbles7. In conclusion, in a model of site-specific breast cancer bone metastases multi-modal imaging techniques including MRI, VCT and US offer complementary information on morphology and functional parameters of angiogenesis in these skeletal lesions.
Cancer Biology, Issue 66, Medicine, Physiology, Physics, bone metastases, animal model, angiogenesis, imaging, magnetic resonance imaging, MRI, volumetric computed tomography, ultrasound
Play Button
Doppler Optical Coherence Tomography of Retinal Circulation
Authors: Ou Tan, Yimin Wang, Ranjith K. Konduru, Xinbo Zhang, SriniVas R. Sadda, David Huang.
Institutions: Oregon Health and Science University , University of Southern California.
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R2>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.
Medicine, Issue 67, Ophthalmology, Physics, Doppler optical coherence tomography, total retinal blood flow, dual circular scan pattern, image analysis, semi-automated grading software, optic disc
Play Button
Guide Wire Assisted Catheterization and Colored Dye Injection for Vascular Mapping of Monochorionic Twin Placentas
Authors: Eric B. Jelin, Samuel C. Schecter, Kelly D. Gonzales, Shinjiro Hirose, Hanmin Lee, Geoffrey A. Machin, Larry Rand, Vickie A. Feldstein.
Institutions: University of California, San Francisco, University of Alberta, University of California, San Francisco, University of California, San Francisco.
Monochorionic (MC) twin pregnancies are associated with significantly higher morbidity and mortality rates than dichorionic twins. Approximately 50% of MC twin pregnancies develop complications arising from the shared placenta and associated vascular connections1. Severe twin-to-twin syndrome (TTTS) is reported to account for approximately 20% of these complications2,3. Inter-twin vascular connections occur in almost all MC placentas and are related to the prognosis and outcome of these high-risk twin pregnancies. The number, size and type of connections have been implicated in the development of TTTS and other MC twin conditions. Three types of inter-twin vascular connections occur: 1) artery to vein connections (AVs) in which a branch artery carrying deoxygenated blood from one twin courses along the fetal surface of the placenta and dives into a placental cotyledon. Blood flows via a deep intraparenchymal capillary network into a draining vein that emerges at the fetal surface of the placenta and brings oxygenated blood toward the other twin. There is unidirectional flow from the twin supplying the afferent artery toward the twin receiving the efferent vein; 2) artery to artery connections (AAs) in which a branch artery from each twin meets directly on the superficial placental surface resulting in a vessel with pulsatile bidirectional flow, and 3) vein to vein connections (VVs) in which a branch vein from each twin meets directly on the superficial placental surface allowing low pressure bidirectional flow. In utero obstetric sonography with targeted Doppler interrogation has been used to identify the presence of AV and AA connections4. Prenatally detected AAs that have been confirmed by postnatal placental injection studies have been shown to be associated with an improved prognosis for both twins5. Furthermore, fetoscopic laser ablation of inter-twin vascular connections on the fetal surface of the shared placenta is now the preferred treatment for early, severe TTTS. Postnatal placental injection studies provide a valuable method to confirm the accuracy of prenatal Doppler ultrasound findings and the efficacy of fetal laser therapy6. Using colored dyes separately hand-injected into the arterial and venous circulations of each twin, the technique highlights and delineates AVs, AAs, and VVs. This definitive demonstration of MC placental vascular anatomy may then be correlated with Doppler ultrasound findings and neonatal outcome to enhance our understanding of the pathophysiology of MC twinning and its sequelae. Here we demonstrate our placental injection technique.
Medicine, Issue 55, placenta, monochorionic twins, vascular mapping, twin-to-twin transfusion syndrome (TTTS), obstetrics, fetal surgery
Play Button
A Multicenter MRI Protocol for the Evaluation and Quantification of Deep Vein Thrombosis
Authors: Venkatesh Mani, Nadia Alie, Sarayu Ramachandran, Philip M. Robson, Cecilia Besa, Gregory Piazza, Michele Mercuri, Michael Grosso, Bachir Taouli, Samuel Z. Goldhaber, Zahi A. Fayad.
Institutions: Icahn School of Medicine at Mount Sinai, Brigham and Women's Hospital, Harvard Medical School, Daiichi Sankyo Pharma Development.
We evaluated a magnetic resonance venography (MRV) approach with gadofosveset to quantify total thrombus volume changes as the principal criterion for treatment efficacy in a multicenter randomized study comparing edoxaban monotherapy with a heparin/warfarin regimen for acute, symptomatic lower extremities deep vein thrombosis (DVT) treatment. We also used a direct thrombus imaging approach (DTHI, without the use of a contrast agent) to quantify fresh thrombus. We then sought to evaluate the reproducibility of the analysis methodology and applicability of using 3D magnetic resonance venography and direct thrombus imaging for the quantification of DVT in a multicenter trial setting. From 10 randomly selected subjects participating in the edoxaban Thrombus Reduction Imaging Study (eTRIS), total thrombus volume in the entire lower extremity deep venous system was quantified bilaterally. Subjects were imaged using 3D-T1W gradient echo sequences before (direct thrombus imaging, DTHI) and 5 min after injection of 0.03 mmol/kg of gadofosveset trisodium (magnetic resonance venography, MRV). The margins of the DVT on corresponding axial, curved multi-planar reformatted images were manually delineated by two observers to obtain volumetric measurements of the venous thrombi. MRV was used to compute total DVT volume, whereas DTHI was used to compute volume of fresh thrombus. Intra-class correlation (ICC) and Bland Altman analysis were performed to compare inter and intra-observer variability of the analysis. The ICC for inter and intra-observer variability was excellent (0.99 and 0.98, p <0.001, respectively) with no bias on Bland-Altman analysis for MRV images. For DTHI images, the results were slightly lower (ICC = 0.88 and 0.95 respectively, p <0.001), with bias for inter-observer results on Bland-Altman plots. This study showed feasibility of thrombus volume estimation in DVT using MRV with gadofosveset trisodium, with good intra- and inter-observer reproducibility in a multicenter setting.
Medicine, Issue 100, venous thrombosis, magnetic resonance imaging, magnetic resonance contrast enhanced venography, factor Xa inhibitor, gadofosveset, image analysis
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.