JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.
PUBLISHED: 06-20-2015
The DisoMCS is available at
Authors: Claudia Repetto, Alessandra Gorini, Cinzia Vigna, Davide Algeri, Federica Pallavicini, Giuseppe Riva.
Published: 11-12-2009
Generalized anxiety disorder (GAD) is a psychiatric disorder characterized by a constant and unspecific anxiety that interferes with daily-life activities. Its high prevalence in general population and the severe limitations it causes, point out the necessity to find new efficient strategies to treat it. Together with the cognitive-behavioral treatments, relaxation represents a useful approach for the treatment of GAD, but it has the limitation that it is hard to be learned. The INTREPID project is aimed to implement a new instrument to treat anxiety-related disorders and to test its clinical efficacy in reducing anxiety-related symptoms. The innovation of this approach is the combination of virtual reality and biofeedback, so that the first one is directly modified by the output of the second one. In this way, the patient is made aware of his or her reactions through the modification of some features of the VR environment in real time. Using mental exercises the patient learns to control these physiological parameters and using the feedback provided by the virtual environment is able to gauge his or her success. The supplemental use of portable devices, such as PDA or smart-phones, allows the patient to perform at home, individually and autonomously, the same exercises experienced in therapist's office. The goal is to anchor the learned protocol in a real life context, so enhancing the patients' ability to deal with their symptoms. The expected result is a better and faster learning of relaxation techniques, and thus an increased effectiveness of the treatment if compared with traditional clinical protocols.
25 Related JoVE Articles!
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Using Microwave and Macroscopic Samples of Dielectric Solids to Study the Photonic Properties of Disordered Photonic Bandgap Materials
Authors: Seyed Reza Hashemizad, Sam Tsitrin, Polin Yadak, Yingquan He, Daniel Cuneo, Eric Paul Williamson, Devin Liner, Weining Man.
Institutions: San Francisco State University.
Recently, disordered photonic materials have been suggested as an alternative to periodic crystals for the formation of a complete photonic bandgap (PBG). In this article we will describe the methods for constructing and characterizing macroscopic disordered photonic structures using microwaves. The microwave regime offers the most convenient experimental sample size to build and test PBG media. Easily manipulated dielectric lattice components extend flexibility in building various 2D structures on top of pre-printed plastic templates. Once built, the structures could be quickly modified with point and line defects to make freeform waveguides and filters. Testing is done using a widely available Vector Network Analyzer and pairs of microwave horn antennas. Due to the scale invariance property of electromagnetic fields, the results we obtained in the microwave region can be directly applied to infrared and optical regions. Our approach is simple but delivers exciting new insight into the nature of light and disordered matter interaction. Our representative results include the first experimental demonstration of the existence of a complete and isotropic PBG in a two-dimensional (2D) hyperuniform disordered dielectric structure. Additionally we demonstrate experimentally the ability of this novel photonic structure to guide electromagnetic waves (EM) through freeform waveguides of arbitrary shape.
Physics, Issue 91, optics and photonics, photonic crystals, photonic bandgap, hyperuniform, disordered media, waveguides
Play Button
DNA-affinity-purified Chip (DAP-chip) Method to Determine Gene Targets for Bacterial Two component Regulatory Systems
Authors: Lara Rajeev, Eric G. Luning, Aindrila Mukhopadhyay.
Institutions: Lawrence Berkeley National Laboratory.
In vivo methods such as ChIP-chip are well-established techniques used to determine global gene targets for transcription factors. However, they are of limited use in exploring bacterial two component regulatory systems with uncharacterized activation conditions. Such systems regulate transcription only when activated in the presence of unique signals. Since these signals are often unknown, the in vitro microarray based method described in this video article can be used to determine gene targets and binding sites for response regulators. This DNA-affinity-purified-chip method may be used for any purified regulator in any organism with a sequenced genome. The protocol involves allowing the purified tagged protein to bind to sheared genomic DNA and then affinity purifying the protein-bound DNA, followed by fluorescent labeling of the DNA and hybridization to a custom tiling array. Preceding steps that may be used to optimize the assay for specific regulators are also described. The peaks generated by the array data analysis are used to predict binding site motifs, which are then experimentally validated. The motif predictions can be further used to determine gene targets of orthologous response regulators in closely related species. We demonstrate the applicability of this method by determining the gene targets and binding site motifs and thus predicting the function for a sigma54-dependent response regulator DVU3023 in the environmental bacterium Desulfovibrio vulgaris Hildenborough.
Genetics, Issue 89, DNA-Affinity-Purified-chip, response regulator, transcription factor binding site, two component system, signal transduction, Desulfovibrio, lactate utilization regulator, ChIP-chip
Play Button
Reporter-based Growth Assay for Systematic Analysis of Protein Degradation
Authors: Itamar Cohen, Yifat Geffen, Guy Ravid, Tommer Ravid.
Institutions: The Hebrew University of Jerusalem.
Protein degradation by the ubiquitin-proteasome system (UPS) is a major regulatory mechanism for protein homeostasis in all eukaryotes. The standard approach to determining intracellular protein degradation relies on biochemical assays for following the kinetics of protein decline. Such methods are often laborious and time consuming and therefore not amenable to experiments aimed at assessing multiple substrates and degradation conditions. As an alternative, cell growth-based assays have been developed, that are, in their conventional format, end-point assays that cannot quantitatively determine relative changes in protein levels. Here we describe a method that faithfully determines changes in protein degradation rates by coupling them to yeast cell-growth kinetics. The method is based on an established selection system where uracil auxotrophy of URA3-deleted yeast cells is rescued by an exogenously expressed reporter protein, comprised of a fusion between the essential URA3 gene and a degradation determinant (degron). The reporter protein is designed so that its synthesis rate is constant whilst its degradation rate is determined by the degron. As cell growth in uracil-deficient medium is proportional to the relative levels of Ura3, growth kinetics are entirely dependent on the reporter protein degradation. This method accurately measures changes in intracellular protein degradation kinetics. It was applied to: (a) Assessing the relative contribution of known ubiquitin-conjugating factors to proteolysis (b) E2 conjugating enzyme structure-function analyses (c) Identification and characterization of novel degrons. Application of the degron-URA3-based system transcends the protein degradation field, as it can also be adapted to monitoring changes of protein levels associated with functions of other cellular pathways.
Cellular Biology, Issue 93, Protein Degradation, Ubiquitin, Proteasome, Baker's Yeast, Growth kinetics, Doubling time
Play Button
Visualizing Non-lytic Exocytosis of Cryptococcus neoformans from Macrophages Using Digital Light Microscopy
Authors: Sabriya Stukes, Arturo Casadevall.
Institutions: Albert Einstein College of Medicine.
Many aspects of the infection of macrophages by Cryptococcus neoformans have been extensively studied and well defined. However, one particular interaction that is not clearly understood is non-lytic exocytosis. In this process, yeast cells are released into the extracellular space by a poorly understood mechanism that leaves both the macrophage and Cn viable. Here, we describe how to follow a large number of individually infected macrophages for a 24 hr infection period by time-lapsed microscopy. Infected macrophages are housed in a heating chamber with a CO2 atmosphere attached to a microscope that provides the same conditions as a cell-culture incubator. Live digital microscopy can provide information about the dynamic interactions between a host and pathogen that is not available from static images. Being able to visualize each infected cell can provide clues as to how macrophages handle fungal infections, and vice versa. This technique is a powerful tool in studying the dynamics that are behind a complex phenomenon.
Immunology, Issue 92, Non-Lytic Exocytosis, Macrophages, C. neoformans, Fungus, Host-Pathogen Interactions
Play Button
Signal Attenuation as a Rat Model of Obsessive Compulsive Disorder
Authors: Koral Goltseker, Roni Yankelevitch-Yahav, Noa S. Albelda, Daphna Joel.
Institutions: Tel-Aviv University, Tel-Aviv University.
In the signal attenuation rat model of obsessive-compulsive disorder (OCD), lever-pressing for food is followed by the presentation of a compound stimulus which serves as a feedback cue. This feedback is later attenuated by repeated presentations of the stimulus without food (without the rat emitting the lever-press response). In the next stage, lever-pressing is assessed under extinction conditions (i.e., no food is delivered). At this stage rats display two types of lever-presses, those that are followed by an attempt to collect a reward, and those that are not. The latter are the measure of compulsive-like behavior in the model. A control procedure in which rats do not experience the attenuation of the feedback cue serves to distinguish between the effects of signal attenuation and of extinction. The signal attenuation model is a highly validated model of OCD and differentiates between compulsive-like behaviors and behaviors that are repetitive but not compulsive. In addition the measures collected during the procedure eliminate alternative explanations for differences between the groups being tested, and are quantitative, unbiased and unaffected by inter-experimenter variability. The major disadvantages of this model are the costly equipment, the fact that it requires some technical know-how and the fact that it is time-consuming compared to other models of OCD (11 days). The model may be used for detecting the anti- or pro-compulsive effects of pharmacological and non-pharmacological manipulations and for studying the neural substrate of compulsive behavior.
Behavior, Issue 95, Obsessive-compulsive disorder, OCD, signal attenuation, rat, animal model, pharmacology, lever-press, behavioral neuroscience
Play Button
A Proteoliposome-Based Efflux Assay to Determine Single-molecule Properties of Cl- Channels and Transporters
Authors: Daniel Basilio, Alessio Accardi.
Institutions: Weill Cornell Medical College, Weill Cornell Medical College, Weill Cornell Medical College.
The last 15 years have been characterized by an explosion in the ability to overexpress and purify membrane proteins from prokaryotic organisms as well as from eukaryotes. This increase has been largely driven by the successful push to obtain structural information on membrane proteins. However, the ability to functionally interrogate these proteins has not advanced at the same rate and is often limited to qualitative assays of limited quantitative value, thereby limiting the mechanistic insights that they can provide. An assay to quantitatively investigate the transport activity of reconstituted Cl- channels or transporters is described. The assay is based on the measure of the efflux rate of Cl- from proteoliposomes following the addition of the K+ ionophore valinomycin to shunt the membrane potential. An ion sensitive electrode is used to follow the time-course of ion efflux from proteoliposomes reconstituted with the desired protein. The method is highly suited for mechanistic studies, as it allows for the quantitative determination of key properties of the reconstituted protein, such as its unitary transport rate, the fraction of active protein and the molecular mass of the functional unit. The assay can also be utilized to determine the effect of small molecule compounds that directly inhibit/activate the reconstituted protein, as well as to test the modulatory effects of the membrane composition or lipid-modifying reagents. Where possible, direct comparison between results obtained using this method were found to be in good agreement with those obtained using electrophysiological approaches. The technique is illustrated using CLC-ec1, a CLC-type H+/Cl- exchanger, as a model system. The efflux assay can be utilized to study any Cl- conducting channel/transporter and, with minimal changes, can be adapted to study any ion-transporting protein.
Biochemistry, Issue 98, Membrane protein, purification, reconstitution, Poisson statistics, CLC, turnover rate
Play Button
A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique
Authors: Lorissa Lamoureux, Jeejabai Radhakrishnan, Raúl J. Gazmuri.
Institutions: Rosalind Franklin University of Medicine and Science.
A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation.
Medicine, Issue 98, Cardiopulmonary resuscitation, Hemodynamics, Myocardial ischemia, Rats, Reperfusion, Ventilation, Ventricular fibrillation, Ventricular function, Translational medical research
Play Button
The Multifaceted Benefits of Protein Co-expression in Escherichia coli
Authors: Alessandra Stefan, Alessandro Ceccarelli, Emanuele Conte, Alejandro Montón Silva, Alejandro Hochkoeppler.
Institutions: University of Bologna, University of Firenze.
We report here that the expression of protein complexes in vivo in Escherichia coli can be more convenient than traditional reconstitution experiments in vitro. In particular, we show that the poor solubility of Escherichia coli DNA polymerase III ε subunit (featuring 3’-5’ exonuclease activity) is highly improved when the same protein is co-expressed with the α and θ subunits (featuring DNA polymerase activity and stabilizing ε, respectively). We also show that protein co-expression in E. coli can be used to efficiently test the competence of subunits from different bacterial species to associate in a functional protein complex. We indeed show that the α subunit of Deinococcus radiodurans DNA polymerase III can be co-expressed in vivo with the ε subunit of E. coli. In addition, we report on the use of protein co-expression to modulate mutation frequency in E. coli. By expressing the wild-type ε subunit under the control of the araBAD promoter (arabinose-inducible), and co-expressing the mutagenic D12A variant of the same protein, under the control of the lac promoter (inducible by isopropyl-thio-β-D-galactopyranoside, IPTG), we were able to alter the E. coli mutation frequency using appropriate concentrations of the inducers arabinose and IPTG. Finally, we discuss recent advances and future challenges of protein co-expression in E. coli.
Biochemistry, Issue 96, Escherichia coli, protein co-expression, compatible plasmids, complementation test, DNA polymerase III, mutator strains
Play Button
Imaging Local Ca2+ Signals in Cultured Mammalian Cells
Authors: Jeffrey T. Lock, Kyle L. Ellefsen, Bret Settle, Ian Parker, Ian F. Smith.
Institutions: University of California, Irvine, University of California, Irvine.
Cytosolic Ca2+ ions regulate numerous aspects of cellular activity in almost all cell types, controlling processes as wide-ranging as gene transcription, electrical excitability and cell proliferation. The diversity and specificity of Ca2+ signaling derives from mechanisms by which Ca2+ signals are generated to act over different time and spatial scales, ranging from cell-wide oscillations and waves occurring over the periods of minutes to local transient Ca2+ microdomains (Ca2+ puffs) lasting milliseconds. Recent advances in electron multiplied CCD (EMCCD) cameras now allow for imaging of local Ca2+ signals with a 128 x 128 pixel spatial resolution at rates of >500 frames sec-1 (fps). This approach is highly parallel and enables the simultaneous monitoring of hundreds of channels or puff sites in a single experiment. However, the vast amounts of data generated (ca. 1 Gb per min) render visual identification and analysis of local Ca2+ events impracticable. Here we describe and demonstrate the procedures for the acquisition, detection, and analysis of local IP3-mediated Ca2+ signals in intact mammalian cells loaded with Ca2+ indicators using both wide-field epi-fluorescence (WF) and total internal reflection fluorescence (TIRF) microscopy. Furthermore, we describe an algorithm developed within the open-source software environment Python that automates the identification and analysis of these local Ca2+ signals. The algorithm localizes sites of Ca2+ release with sub-pixel resolution; allows user review of data; and outputs time sequences of fluorescence ratio signals together with amplitude and kinetic data in an Excel-compatible table.
Cellular Biology, Issue 97, Calcium, imaging, total internal reflection microscopy, algorithm, automation, fluorescence
Play Button
Biofunctionalized Prussian Blue Nanoparticles for Multimodal Molecular Imaging Applications
Authors: Jennifer M. Vojtech, Juliana Cano-Mejia, Matthieu F. Dumont, Raymond W. Sze, Rohan Fernandes.
Institutions: Children's National Medical Center, University of Maryland, George Washington University, George Washington University.
Multimodal, molecular imaging allows the visualization of biological processes at cellular, subcellular, and molecular-level resolutions using multiple, complementary imaging techniques. These imaging agents facilitate the real-time assessment of pathways and mechanisms in vivo, which enhance both diagnostic and therapeutic efficacy. This article presents the protocol for the synthesis of biofunctionalized Prussian blue nanoparticles (PB NPs) - a novel class of agents for use in multimodal, molecular imaging applications. The imaging modalities incorporated in the nanoparticles, fluorescence imaging and magnetic resonance imaging (MRI), have complementary features. The PB NPs possess a core-shell design where gadolinium and manganese ions incorporated within the interstitial spaces of the PB lattice generate MRI contrast, both in T1 and T2-weighted sequences. The PB NPs are coated with fluorescent avidin using electrostatic self-assembly, which enables fluorescence imaging. The avidin-coated nanoparticles are modified with biotinylated ligands that confer molecular targeting capabilities to the nanoparticles. The stability and toxicity of the nanoparticles are measured, as well as their MRI relaxivities. The multimodal, molecular imaging capabilities of these biofunctionalized PB NPs are then demonstrated by using them for fluorescence imaging and molecular MRI in vitro.
Bioengineering, Issue 98, Prussian blue, nanoparticles, multimodal imaging, molecular imaging, fluorescence, magnetic resonance imaging, gadolinium, manganese
Play Button
Measurement and Analysis of Atomic Hydrogen and Diatomic Molecular AlO, C2, CN, and TiO Spectra Following Laser-induced Optical Breakdown
Authors: Christian G. Parigger, Alexander C. Woods, Michael J. Witte, Lauren D. Swafford, David M. Surmick.
Institutions: University of Tennessee Space Institute.
In this work, we present time-resolved measurements of atomic and diatomic spectra following laser-induced optical breakdown. A typical LIBS arrangement is used. Here we operate a Nd:YAG laser at a frequency of 10 Hz at the fundamental wavelength of 1,064 nm. The 14 nsec pulses with anenergy of 190 mJ/pulse are focused to a 50 µm spot size to generate a plasma from optical breakdown or laser ablation in air. The microplasma is imaged onto the entrance slit of a 0.6 m spectrometer, and spectra are recorded using an 1,800 grooves/mm grating an intensified linear diode array and optical multichannel analyzer (OMA) or an ICCD. Of interest are Stark-broadened atomic lines of the hydrogen Balmer series to infer electron density. We also elaborate on temperature measurements from diatomic emission spectra of aluminum monoxide (AlO), carbon (C2), cyanogen (CN), and titanium monoxide (TiO). The experimental procedures include wavelength and sensitivity calibrations. Analysis of the recorded molecular spectra is accomplished by the fitting of data with tabulated line strengths. Furthermore, Monte-Carlo type simulations are performed to estimate the error margins. Time-resolved measurements are essential for the transient plasma commonly encountered in LIBS.
Physics, Issue 84, Laser Induced Breakdown Spectroscopy, Laser Ablation, Molecular Spectroscopy, Atomic Spectroscopy, Plasma Diagnostics
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Engineering Cell-permeable Protein
Authors: Bernhard Münst, Christoph Patsch, Frank Edenhofer.
Institutions: University of Bonn - Life & Brain Center and Hertie Foundation.
The protein transduction technique enables the direct delivery of biologically active material into mammalian cells [for review see 1,2]. For this one can make use of the translocating ability of so-called cell penetrating peptides (CPPs), also designated as protein transduction domains (PTDs). The TAT-CPP derived from the human immunodeficiency virus type 1 (HIV-1) Tat (trans-activator of transcription) protein has been widely used. The positively charged TAT promotes cell permeability thereby overcoming the barriers of the cellular membrane by endocytosis or/and direct membrane penetration2. In combination with a nuclear localization signal (NLS) fusion proteins are able to enter the nucleus exhibiting functionality. Our video presentation demonstrates, as an exemplification for the engineering of cell-permeable proteins, the construction, production and application of a cell-permeable version of the DNA-modifying enzyme Cre. Cre is a site-specific recombinase that is able to recognize and recombine 34 base pair loxP sites in mammalian cells in vitro and in vivo. Therefore the Cre/loxP system is widely used to conditionally induce mutations in the genome of living cells3,4. The delivery of active Cre recombinase to cells, however, represents a limitation. We describe the pSESAME vector system, which allows a direct insertion of the gene-of-interest and provides a platform to rapidly clone different domains and tags used within the vector in a convenient and standardized manner. Rearranging of the different tags has been shown to modify the biochemical properties of the fusion proteins providing a possibility to achieve higher yield and better solubility. We demonstrate how to express and purify recombinant cell-permeant proteins in and from E. coli. The functionality of the recombinant Cre protein is finally validated in cell culture by assessing its intracellular recombinase activity.
Cellular Biology, Issue 34, Protein transduction, Cell penetrating peptide, Site-specific recombination, Stem cells, Protein purification
Play Button
Using the optokinetic response to study visual function of zebrafish
Authors: Su-Qi Zou, Wu Yin, Ming-Jing Zhang, Chun-Rui Hu, Yu-Bin Huang, Bing Hu.
Institutions: University of Science and Technology of China (USTC).
Optokinetic response (OKR) is a behavior that an animal vibrates its eyes to follow a rotating grating around it. It has been widely used to assess the visual functions of larval zebrafish1-5. Nevertheless, the standard protocol for larval fish is not yet readily applicable in adult zabrafish. Here, we introduce how to measure the OKR of adult zebrafish with our simple custom-built apparatus using a new protocol which is established in our lab. Both our apparatus and step-by-step procedure of OKR in adult zebrafish are illustrated in this video. In addition, the measurements of the larval OKR, as well as the optomotor response (OMR) test of adult zebrafish, are also demonstrated in this video. This OKR assay of adult zebrafish in our experiment may last for up to 4 hours. Such OKR test applied in adult fish will benefit to visual function investigation more efficiently when the adult fish vision system is manipulated. Su-Qi Zou and Wu Yin contributed equally to this paper.
Neuroscience, Issue 36, Zebrafish, OKR, OMR, behavior, optokinetic, vision
Play Button
Measurement of Bioelectric Current with a Vibrating Probe
Authors: Brian Reid, Min Zhao.
Institutions: University of California, Davis.
Electric fields, generated by active transport of ions, are present in many biological systems and often serve important functions in tissues and organs. For example, they play an important role in directing cell migration during wound healing. Here we describe the manufacture and use of ultrasensitive vibrating probes for measuring extracellular electric currents. The probe is an insulated, sharpened metal wire with a small platinum-black tip (30-35 μm), which can detect ionic currents in the μA/cm2 range in physiological saline. The probe is vibrated at about 200 Hz by a piezoelectric bender. In the presence of an ionic current, the probe detects a voltage difference between the extremes of its movement. A lock-in amplifier filters out extraneous noise by locking on to the probe's frequency of vibration. Data are recorded onto computer. The probe is calibrated at the start and end of experiments in appropriate saline, using a chamber which applies a current of exactly 1.5 μA/cm2. We describe how to make the probes, set up the system and calibrate. We also demonstrate the technique of cornea measurement, and show some representative results from different specimens (cornea, skin, brain).
Bioengineering, Issue 47, electric, field, current, vibrating, probe
Play Button
A Protocol for Computer-Based Protein Structure and Function Prediction
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Institutions: University of Michigan , University of Kansas.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
Biochemistry, Issue 57, On-line server, I-TASSER, protein structure prediction, function prediction
Play Button
Dissection of Adult Mouse Utricle and Adenovirus-mediated Supporting-cell Infection
Authors: Carlene S. Brandon, Christina Voelkel-Johnson, Lindsey A. May, Lisa L. Cunningham.
Institutions: Medical University of South Carolina, Medical University of South Carolina, National Institutes of Health.
Hearing loss and balance disturbances are often caused by death of mechanosensory hair cells, which are the receptor cells of the inner ear. Since there is no cell line that satisfactorily represents mammalian hair cells, research on hair cells relies on primary organ cultures. The best-characterized in vitro model system of mature mammalian hair cells utilizes organ cultures of utricles from adult mice (Figure 1) 1-6. The utricle is a vestibular organ, and the hair cells of the utricle are similar in both structure and function to the hair cells in the auditory organ, the organ of Corti. The adult mouse utricle preparation represents a mature sensory epithelium for studies of the molecular signals that regulate the survival, homeostasis, and death of these cells. Mammalian cochlear hair cells are terminally differentiated and are not regenerated when they are lost. In non-mammalian vertebrates, auditory or vestibular hair cell death is followed by robust regeneration which restores hearing and balance functions 7, 8. Hair cell regeneration is mediated by glia-like supporting cells, which contact the basolateral surfaces of hair cells in the sensory epithelium 9, 10. Supporting cells are also important mediators of hair cell survival and death 11. We have recently developed a technique for infection of supporting cells in cultured utricles using adenovirus. Using adenovirus type 5 (dE1/E3) to deliver a transgene containing GFP under the control of the CMV promoter, we find that adenovirus specifically and efficiently infects supporting cells. Supporting cell infection efficiency is approximately 25-50%, and hair cells are not infected (Figure 2). Importantly, we find that adenoviral infection of supporting cells does not result in toxicity to hair cells or supporting cells, as cell counts in Ad-GFP infected utricles are equivalent to those in non-infected utricles (Figure 3). Thus adenovirus-mediated gene expression in supporting cells of cultured utricles provides a powerful tool to study the roles of supporting cells as mediators of hair cell survival, death, and regeneration.
Neuroscience, Issue 61, Hair cell, ototoxicity, hearing loss, organ culture
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Fabrication And Characterization Of Photonic Crystal Slow Light Waveguides And Cavities
Authors: Christopher Paul Reardon, Isabella H. Rey, Karl Welna, Liam O'Faolain, Thomas F. Krauss.
Institutions: University of St Andrews.
Slow light has been one of the hot topics in the photonics community in the past decade, generating great interest both from a fundamental point of view and for its considerable potential for practical applications. Slow light photonic crystal waveguides, in particular, have played a major part and have been successfully employed for delaying optical signals1-4 and the enhancement of both linear5-7 and nonlinear devices.8-11 Photonic crystal cavities achieve similar effects to that of slow light waveguides, but over a reduced band-width. These cavities offer high Q-factor/volume ratio, for the realization of optically12 and electrically13 pumped ultra-low threshold lasers and the enhancement of nonlinear effects.14-16 Furthermore, passive filters17 and modulators18-19 have been demonstrated, exhibiting ultra-narrow line-width, high free-spectral range and record values of low energy consumption. To attain these exciting results, a robust repeatable fabrication protocol must be developed. In this paper we take an in-depth look at our fabrication protocol which employs electron-beam lithography for the definition of photonic crystal patterns and uses wet and dry etching techniques. Our optimised fabrication recipe results in photonic crystals that do not suffer from vertical asymmetry and exhibit very good edge-wall roughness. We discuss the results of varying the etching parameters and the detrimental effects that they can have on a device, leading to a diagnostic route that can be taken to identify and eliminate similar issues. The key to evaluating slow light waveguides is the passive characterization of transmission and group index spectra. Various methods have been reported, most notably resolving the Fabry-Perot fringes of the transmission spectrum20-21 and interferometric techniques.22-25 Here, we describe a direct, broadband measurement technique combining spectral interferometry with Fourier transform analysis.26 Our method stands out for its simplicity and power, as we can characterise a bare photonic crystal with access waveguides, without need for on-chip interference components, and the setup only consists of a Mach-Zehnder interferometer, with no need for moving parts and delay scans. When characterising photonic crystal cavities, techniques involving internal sources21 or external waveguides directly coupled to the cavity27 impact on the performance of the cavity itself, thereby distorting the measurement. Here, we describe a novel and non-intrusive technique that makes use of a cross-polarised probe beam and is known as resonant scattering (RS), where the probe is coupled out-of plane into the cavity through an objective. The technique was first demonstrated by McCutcheon et al.28 and further developed by Galli et al.29
Physics, Issue 69, Optics and Photonics, Astronomy, light scattering, light transmission, optical waveguides, photonics, photonic crystals, Slow-light, Cavities, Waveguides, Silicon, SOI, Fabrication, Characterization
Play Button
High-throughput, Automated Extraction of DNA and RNA from Clinical Samples using TruTip Technology on Common Liquid Handling Robots
Authors: Rebecca C. Holmberg, Alissa Gindlesperger, Tinsley Stokes, Dane Brady, Nitu Thakore, Philip Belgrader, Christopher G. Cooney, Darrell P. Chandler.
Institutions: Akonni Biosystems, Inc., Akonni Biosystems, Inc., Akonni Biosystems, Inc., Akonni Biosystems, Inc..
TruTip is a simple nucleic acid extraction technology whereby a porous, monolithic binding matrix is inserted into a pipette tip. The geometry of the monolith can be adapted for specific pipette tips ranging in volume from 1.0 to 5.0 ml. The large porosity of the monolith enables viscous or complex samples to readily pass through it with minimal fluidic backpressure. Bi-directional flow maximizes residence time between the monolith and sample, and enables large sample volumes to be processed within a single TruTip. The fundamental steps, irrespective of sample volume or TruTip geometry, include cell lysis, nucleic acid binding to the inner pores of the TruTip monolith, washing away unbound sample components and lysis buffers, and eluting purified and concentrated nucleic acids into an appropriate buffer. The attributes and adaptability of TruTip are demonstrated in three automated clinical sample processing protocols using an Eppendorf epMotion 5070, Hamilton STAR and STARplus liquid handling robots, including RNA isolation from nasopharyngeal aspirate, genomic DNA isolation from whole blood, and fetal DNA extraction and enrichment from large volumes of maternal plasma (respectively).
Genetics, Issue 76, Bioengineering, Biomedical Engineering, Molecular Biology, Automation, Laboratory, Clinical Laboratory Techniques, Molecular Diagnostic Techniques, Analytic Sample Preparation Methods, Clinical Laboratory Techniques, Molecular Diagnostic Techniques, Genetic Techniques, Molecular Diagnostic Techniques, Automation, Laboratory, Chemistry, Clinical, DNA/RNA extraction, automation, nucleic acid isolation, sample preparation, nasopharyngeal aspirate, blood, plasma, high-throughput, sequencing
Play Button
Osmotic Drug Delivery to Ischemic Hindlimbs and Perfusion of Vasculature with Microfil for Micro-Computed Tomography Imaging
Authors: Xiaobing Liu, Toya Terry, Su Pan, Zhongwei Yang, James T. Willerson, Richard A. F. Dixon, Qi Liu.
Institutions: The Texas Heart Institute at St. Luke's Episcopal Hospital, Shanghai Jiao Tong University.
Preclinical research in animal models of peripheral arterial disease plays a vital role in testing the efficacy of therapeutic agents designed to stimulate microcirculation. The choice of delivery method for these agents is important because the route of administration profoundly affects the bioactivity and efficacy of these agents1,2. In this article, we demonstrate how to locally administer a substance in ischemic hindlimbs by using a catheterized osmotic pump. This pump can deliver a fixed volume of aqueous solution continuously for an allotted period of time. We also present our mouse model of unilateral hindlimb ischemia induced by ligation of the common femoral artery proximal to the origin of profunda femoris and epigastrica arteries in the left hindlimb. Lastly, we describe the in vivo cannulation and ligation of the infrarenal abdominal aorta and perfusion of the hindlimb vasculature with Microfil, a silicone radiopaque casting agent. Microfil can perfuse and fill the entire vascular bed (arterial and venous), and because we have ligated the major vascular conduit for exit, the agent can be retained in the vasculature for future ex vivo imaging with the use of small specimen micro-CT3.
Medicine, Issue 76, Immunology, Biomedical Engineering, Bioengineering, Molecular Biology, Cellular Biology, Pharmacology, Cardiovascular Diseases, Therapeutics, Hindlimb ischemia, ischemia, osmotic pump, drug delivery, Microfil, micro-computed tomography, 3D vessel imaging, vascular medicine, vasculature, CT, tomography, imaging, animal model
Play Button
Setting Limits on Supersymmetry Using Simplified Models
Authors: Christian Gütschow, Zachary Marshall.
Institutions: University College London, CERN, Lawrence Berkeley National Laboratories.
Experimental limits on supersymmetry and similar theories are difficult to set because of the enormous available parameter space and difficult to generalize because of the complexity of single points. Therefore, more phenomenological, simplified models are becoming popular for setting experimental limits, as they have clearer physical interpretations. The use of these simplified model limits to set a real limit on a concrete theory has not, however, been demonstrated. This paper recasts simplified model limits into limits on a specific and complete supersymmetry model, minimal supergravity. Limits obtained under various physical assumptions are comparable to those produced by directed searches. A prescription is provided for calculating conservative and aggressive limits on additional theories. Using acceptance and efficiency tables along with the expected and observed numbers of events in various signal regions, LHC experimental results can be recast in this manner into almost any theoretical framework, including nonsupersymmetric theories with supersymmetry-like signatures.
Physics, Issue 81, high energy physics, particle physics, Supersymmetry, LHC, ATLAS, CMS, New Physics Limits, Simplified Models
Play Button
Fabrication and Characterization of Disordered Polymer Optical Fibers for Transverse Anderson Localization of Light
Authors: Salman Karbasi, Ryan J. Frazier, Craig R. Mirr, Karl W. Koch, Arash Mafi.
Institutions: University of Wisconsin-Milwaukee, Corning Incorporated, Corning, New York.
We develop and characterize a disordered polymer optical fiber that uses transverse Anderson localization as a novel waveguiding mechanism. The developed polymer optical fiber is composed of 80,000 strands of poly (methyl methacrylate) (PMMA) and polystyrene (PS) that are randomly mixed and drawn into a square cross section optical fiber with a side width of 250 μm. Initially, each strand is 200 μm in diameter and 8-inches long. During the mixing process of the original fiber strands, the fibers cross over each other; however, a large draw ratio guarantees that the refractive index profile is invariant along the length of the fiber for several tens of centimeters. The large refractive index difference of 0.1 between the disordered sites results in a small localized beam radius that is comparable to the beam radius of conventional optical fibers. The input light is launched from a standard single mode optical fiber using the butt-coupling method and the near-field output beam from the disordered fiber is imaged using a 40X objective and a CCD camera. The output beam diameter agrees well with the expected results from the numerical simulations. The disordered optical fiber presented in this work is the first device-level implementation of 2D Anderson localization, and can potentially be used for image transport and short-haul optical communication systems.
Physics, Issue 77, Chemistry, Optics, Physics (General), Transverse Anderson Localization, Polymer Optical Fibers, Scattering, Random Media, Optical Fiber Materials, electromagnetism, optical fibers, optical materials, optical waveguides, photonics, wave propagation (optics), fiber optics
Play Button
Three-Dimensional (3D) Tumor Spheroid Invasion Assay
Authors: Maria Vinci, Carol Box, Suzanne A. Eccles.
Institutions: The Institute of Cancer Research, The Institute of Cancer Research.
Invasion of surrounding normal tissues is generally considered to be a key hallmark of malignant (as opposed to benign) tumors. For some cancers in particular (e.g., brain tumors such as glioblastoma multiforme and squamous cell carcinoma of the head and neck – SCCHN) it is a cause of severe morbidity and can be life-threatening even in the absence of distant metastases. In addition, cancers which have relapsed following treatment unfortunately often present with a more aggressive phenotype. Therefore, there is an opportunity to target the process of invasion to provide novel therapies that could be complementary to standard anti-proliferative agents. Until now, this strategy has been hampered by the lack of robust, reproducible assays suitable for a detailed analysis of invasion and for drug screening. Here we provide a simple micro-plate method (based on uniform, self-assembling 3D tumor spheroids) which has great potential for such studies. We exemplify the assay platform using a human glioblastoma cell line and also an SCCHN model where the development of resistance against targeted epidermal growth factor receptor (EGFR) inhibitors is associated with enhanced matrix-invasive potential. We also provide two alternative methods of semi-automated quantification: one using an imaging cytometer and a second which simply requires standard microscopy and image capture with digital image analysis.
Medicine, Issue 99, invasion, metastasis, 3D, tumor spheroids, extracellular matrix, imaging, high-throughput, drug development.
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.