JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Subregional Hippocampal Morphology and Psychiatric Outcome in Adolescents Who Were Born Very Preterm and at Term.
.
PLoS ONE
PUBLISHED: 06-20-2015
The hippocampus has been reported to be structurally and functionally altered as a sequel of very preterm birth (<33 weeks gestation), possibly due its vulnerability to hypoxic-ischemic damage in the neonatal period. We examined hippocampal volumes and subregional morphology in very preterm born individuals in mid- and late adolescence and their association with psychiatric outcome.
Authors: Barry M. Lester, Lynne Andreozzi-Fontaine, Edward Tronick, Rosemarie Bigsby.
Published: 08-25-2014
ABSTRACT
There has been a long-standing interest in the assessment of the neurobehavioral integrity of the newborn infant. The NICU Network Neurobehavioral Scale (NNNS) was developed as an assessment for the at-risk infant. These are infants who are at increased risk for poor developmental outcome because of insults during prenatal development, such as substance exposure or prematurity or factors such as poverty, poor nutrition or lack of prenatal care that can have adverse effects on the intrauterine environment and affect the developing fetus. The NNNS assesses the full range of infant neurobehavioral performance including neurological integrity, behavioral functioning, and signs of stress/abstinence. The NNNS is a noninvasive neonatal assessment tool with demonstrated validity as a predictor, not only of medical outcomes such as cerebral palsy diagnosis, neurological abnormalities, and diseases with risks to the brain, but also of developmental outcomes such as mental and motor functioning, behavior problems, school readiness, and IQ. The NNNS can identify infants at high risk for abnormal developmental outcome and is an important clinical tool that enables medical researchers and health practitioners to identify these infants and develop intervention programs to optimize the development of these infants as early as possible. The video shows the NNNS procedures, shows examples of normal and abnormal performance and the various clinical populations in which the exam can be used.
21 Related JoVE Articles!
Play Button
Construction of Vapor Chambers Used to Expose Mice to Alcohol During the Equivalent of all Three Trimesters of Human Development
Authors: Russell A. Morton, Marvin R. Diaz, Lauren A. Topper, C. Fernando Valenzuela.
Institutions: University of New Mexico Health Sciences Center.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Medicine, Issue 89, fetal, ethanol, exposure, paradigm, vapor, development, alcoholism, teratogenic, animal, mouse, model
51839
Play Button
Rapid Genotyping of Animals Followed by Establishing Primary Cultures of Brain Neurons
Authors: Jin-Young Koh, Sadahiro Iwabuchi, Zhengmin Huang, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Iowa Carver College of Medicine, EZ BioResearch LLC.
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Neuroscience, Issue 95, AP2, genotyping, glial feeder layer, mouse tail, neuronal culture, nucleic-acid extraction, PCR, tattoo, torsinA
51879
Play Button
Design and Implementation of an fMRI Study Examining Thought Suppression in Young Women with, and At-risk, for Depression
Authors: Caitlin L. Carew, Erica L. Tatham, Andrea M. Milne, Glenda M. MacQueen, Geoffrey B.C. Hall.
Institutions: McMaster University, McMaster University, University of Calgary, McMaster University.
Ruminative brooding is associated with increased vulnerability to major depression. Individuals who regularly ruminate will often try to reduce the frequency of their negative thoughts by actively suppressing them. We aim to identify the neural correlates underlying thought suppression in at-risk and depressed individuals. Three groups of women were studied; a major depressive disorder group, an at-risk group (having a first degree relative with depression) and controls. Participants performed a mixed block-event fMRI paradigm involving thought suppression, free thought and motor control periods. Participants identified the re-emergence of “to-be-suppressed” thoughts (“popping” back into conscious awareness) with a button press. During thought suppression the control group showed the greatest activation of the dorsolateral prefrontal cortex, followed by the at-risk, then depressed group. During the re-emergence of intrusive thoughts compared to successful re-suppression of those thoughts, the control group showed the greatest activation of the anterior cingulate cortices, followed by the at-risk, then depressed group. At-risk participants displayed anomalies in the neural regulation of thought suppression resembling the dysregulation found in depressed individuals. The predictive value of these changes in the onset of depression remains to be determined.
Behavior, Issue 99, Major Depressive Disorder, Risk, Thought Suppression, fMRI, Women, Rumination, Thought Intrusion
52061
Play Button
A Piglet Model of Neonatal Hypoxic-Ischemic Encephalopathy
Authors: Kasper J. Kyng, Torjus Skajaa, Sigrid Kerrn-Jespersen, Christer S. Andreassen, Kristine Bennedsgaard, Tine B. Henriksen.
Institutions: Institute of Clinical Medicine, Aarhus University Hospital, Institute of Clinical Medicine, Aarhus University Hospital.
Birth asphyxia, which causes hypoxic-ischemic encephalopathy (HIE), accounts for 0.66 million deaths worldwide each year, about a quarter of the world’s 2.9 million neonatal deaths. Animal models of HIE have contributed to the understanding of the pathophysiology in HIE, and have highlighted the dynamic process that occur in brain injury due to perinatal asphyxia. Thus, animal studies have suggested a time-window for post-insult treatment strategies. Hypothermia has been tested as a treatment for HIE in pdiglet models and subsequently proven effective in clinical trials. Variations of the model have been applied in the study of adjunctive neuroprotective methods and piglet studies of xenon and melatonin have led to clinical phase I and II trials1,2. The piglet HIE model is further used for neonatal resuscitation- and hemodynamic studies as well as in investigations of cerebral hypoxia on a cellular level. However, it is a technically challenging model and variations in the protocol may result in either too mild or too severe brain injury. In this article, we demonstrate the technical procedures necessary for establishing a stable piglet model of neonatal HIE. First, the newborn piglet (< 24 hr old, median weight 1500 g) is anesthetized, intubated, and monitored in a setup comparable to that found in a neonatal intensive care unit. Global hypoxia-ischemia is induced by lowering the inspiratory oxygen fraction to achieve global hypoxia, ischemia through hypotension and a flat trace amplitude integrated EEG (aEEG) indicative of cerebral hypoxia. Survival is promoted by adjusting oxygenation according to the aEEG response and blood pressure. Brain injury is quantified by histopathology and magnetic resonance imaging after 72 hr.
Medicine, Issue 99, Piglet, swine, neonatal, hypoxic-ischemic encephalopathy (HIE), asphyxia, hypoxia, amplitude integrated EEG (aEEG), neuroscience, brain injury
52454
Play Button
Gene-gun Transfection of Hippocampal Neurons
Authors: Powrnima Joshi, Anna Dunaevsky.
Institutions: Brown University.
Neuroscience, Issue 1, brain, hippocampus, neuron, transfection, gene-gun
121
Play Button
Intrauterine Telemetry to Measure Mouse Contractile Pressure In Vivo
Authors: Cara C. Rada, Stephanie L. Pierce, Chad A. Grotegut, Sarah K. England.
Institutions: Washington University in St. Louis, Duke University.
A complex integration of molecular and electrical signals is needed to transform a quiescent uterus into a contractile organ at the end of pregnancy. Despite the discovery of key regulators of uterine contractility, this process is still not fully understood. Transgenic mice provide an ideal model in which to study parturition. Previously, the only method to study uterine contractility in the mouse was ex vivo isometric tension recordings, which are suboptimal for several reasons. The uterus must be removed from its physiological environment, a limited time course of investigation is possible, and the mice must be sacrificed. The recent development of radiometric telemetry has allowed for longitudinal, real-time measurements of in vivo intrauterine pressure in mice. Here, the implantation of an intrauterine telemeter to measure pressure changes in the mouse uterus from mid-pregnancy until delivery is described. By comparing differences in pressures between wild type and transgenic mice, the physiological impact of a gene of interest can be elucidated. This technique should expedite the development of therapeutics used to treat myometrial disorders during pregnancy, including preterm labor.
Medicine, Issue 98, Intrauterine pressure, telemetry, pregnancy, mouse, uterus, in vivo recording, preterm labor, reproductive
52541
Play Button
Immunohistochemistry and Multiple Labeling with Antibodies from the Same Host Species to Study Adult Hippocampal Neurogenesis
Authors: Anne Ansorg, Katja Bornkessel, Otto W. Witte, Anja Urbach.
Institutions: Jena University Hospital.
Adult neurogenesis is a highly regulated, multi-stage process in which new neurons are generated from an activated neural stem cell via increasingly committed intermediate progenitor subtypes. Each of these subtypes expresses a set of specific molecular markers that, together with specific morphological criteria, can be used for their identification. Typically, immunofluorescent techniques are applied involving subtype-specific antibodies in combination with exo- or endogenous proliferation markers. We herein describe immunolabeling methods for the detection and quantification of all stages of adult hippocampal neurogenesis. These comprise the application of thymidine analogs, transcardial perfusion, tissue processing, heat-induced epitope retrieval, ABC immunohistochemistry, multiple indirect immunofluorescence, confocal microscopy and cell quantification. Furthermore we present a sequential multiple immunofluorescence protocol which circumvents problems usually arising from the need of using primary antibodies raised in the same host species. It allows an accurate identification of all hippocampal progenitor subtypes together with a proliferation marker within a single section. These techniques are a powerful tool to study the regulation of different progenitor subtypes in parallel, their involvement in brain pathologies and their role in specific brain functions.
Neuroscience, Issue 98, Immunohistochemistry, immunofluorescence, antibodies, epitope retrieval, thymidine analogs, 5-Chloro-2′-deoxyuridine (CldU), 5-Iodo-2′-deoxyuridine (IdU), 5-Bromo-2′-deoxyuridine (BrdU), dentate gyrus, adult neurogenesis, free-floating, hippocampal progenitor cells
52551
Play Button
Quantification of Neurovascular Protection Following Repetitive Hypoxic Preconditioning and Transient Middle Cerebral Artery Occlusion in Mice
Authors: Katherine Poinsatte, Uma Maheswari Selvaraj, Sterling B. Ortega, Erik J. Plautz, Xiangmei Kong, Jeffrey M. Gidday, Ann M. Stowe.
Institutions: University of Texas Southwestern Medical Center, Washington University School of Medicine.
Experimental animal models of stroke are invaluable tools for understanding stroke pathology and developing more effective treatment strategies. A 2 week protocol for repetitive hypoxic preconditioning (RHP) induces long-term protection against central nervous system (CNS) injury in a mouse model of focal ischemic stroke. RHP consists of 9 stochastic exposures to hypoxia that vary in both duration (2 or 4 hr) and intensity (8% and 11% O2). RHP reduces infarct volumes, blood-brain barrier (BBB) disruption, and the post-stroke inflammatory response for weeks following the last exposure to hypoxia, suggesting a long-term induction of an endogenous CNS-protective phenotype. The methodology for the dual quantification of infarct volume and BBB disruption is effective in assessing neurovascular protection in mice with RHP or other putative neuroprotectants. Adult male Swiss Webster mice were preconditioned by RHP or duration-equivalent exposures to 21% O2 (i.e. room air). A 60 min transient middle cerebral artery occlusion (tMCAo) was induced 2 weeks following the last hypoxic exposure. Both the occlusion and reperfusion were confirmed by transcranial laser Doppler flowmetry. Twenty-two hr after reperfusion, Evans Blue (EB) was intravenously administered through a tail vein injection. 2 hr later, animals were sacrificed by isoflurane overdose and brain sections were stained with 2,3,5- triphenyltetrazolium chloride (TTC). Infarcts volumes were then quantified. Next, EB was extracted from the tissue over 48 hr to determine BBB disruption after tMCAo. In summary, RHP is a simple protocol that can be replicated, with minimal cost, to induce long-term endogenous neurovascular protection from stroke injury in mice, with the translational potential for other CNS-based and systemic pro-inflammatory disease states.
Medicine, Issue 99, Hypoxia, preconditioning, transient middle cerebral artery occlusion, stroke, neuroprotection, blood-brain barrier disruption
52675
Play Button
Quantifying Learning in Young Infants: Tracking Leg Actions During a Discovery-learning Task
Authors: Barbara Sargent, Hendrik Reimann, Masayoshi Kubo, Linda Fetters.
Institutions: University of Southern California, Temple University, Niigata University of Health and Welfare.
Task-specific actions emerge from spontaneous movement during infancy. It has been proposed that task-specific actions emerge through a discovery-learning process. Here a method is described in which 3-4 month old infants learn a task by discovery and their leg movements are captured to quantify the learning process. This discovery-learning task uses an infant activated mobile that rotates and plays music based on specified leg action of infants. Supine infants activate the mobile by moving their feet vertically across a virtual threshold. This paradigm is unique in that as infants independently discover that their leg actions activate the mobile, the infants’ leg movements are tracked using a motion capture system allowing for the quantification of the learning process. Specifically, learning is quantified in terms of the duration of mobile activation, the position variance of the end effectors (feet) that activate the mobile, changes in hip-knee coordination patterns, and changes in hip and knee muscle torque. This information describes infant exploration and exploitation at the interplay of person and environmental constraints that support task-specific action. Subsequent research using this method can investigate how specific impairments of different populations of infants at risk for movement disorders influence the discovery-learning process for task-specific action.
Behavior, Issue 100, infant, discovery-learning, motor learning, motor control, kinematics, kinetics
52841
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
51651
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
51458
Play Button
The Hypoxic Ischemic Encephalopathy Model of Perinatal Ischemia
Authors: Hidetoshi Taniguchi, Katrin Andreasson.
Institutions: Stanford University School of Medicine.
Hypoxic-Ischemic Encephalopathy (HIE) is the consequence of systemic asphyxia occurring at birth. Twenty five percent of neonates with HIE develop severe and permanent neuropsychological sequelae, including mental retardation, cerebral palsy, and epilepsy. The outcomes of HIE are devastating and permanent, making it critical to identify and develop therapeutic strategies to reduce brain injury in newborns with HIE. To that end, the neonatal rat model for hypoxic-ischemic brain injury has been developed to model this human condition. The HIE model was first validated by Vannucci et al 1 and has since been extensively used to identify mechanisms of brain injury resulting from perinatal hypoxia-ischemia 2 and to test potential therapeutic interventions 3,4. The HIE model is a two step process and involves the ligation of the left common carotid artery followed by exposure to a hypoxic environment. Cerebral blood flow (CBF) in the hemisphere ipsilateral to the ligated carotid artery does not decrease because of the collateral blood flow via the circle of Willis; however with lower oxygen tension, the CBF in the ipsilateral hemisphere decreases significantly and results in unilateral ischemic injury. The use of 2,3,5-triphenyltetrazolium chloride (TTC) to stain and identify ischemic brain tissue was originally developed for adult models of rodent cerebral ischemia 5, and is used to evaluate the extent of cerebral infarctin at early time points up to 72 hours after the ischemic event 6. In this video, we demonstrate the hypoxic-ischemic injury model in postnatal rat brain and the evaluation of the infarct size using TTC staining.
Neuroscience, Issue 21, Hypoxic-ischemic encephalopathy (HIE), 2 3 5-triphenyltetrazolium chloride (TTC), brain infarct
955
Play Button
Mouse Models of Periventricular Leukomalacia
Authors: Yan Shen, Jennifer M. Plane, Wenbin Deng.
Institutions: University of California, Davis.
We describe a protocol for establishing mouse models of periventricular leukomalacia (PVL). PVL is the predominant form of brain injury in premature infants and the most common antecedent of cerebral palsy. PVL is characterized by periventricular white matter damage with prominent oligodendroglial injury. Hypoxia/ischemia with or without systemic infection/inflammation are the primary causes of PVL. We use P6 mice to create models of neonatal brain injury by the induction of hypoxia/ischemia with or without systemic infection/inflammation with unilateral carotid ligation followed by exposure to hypoxia with or without injection of the endotoxin lipopolysaccharide (LPS). Immunohistochemistry of myelin basic protein (MBP) or O1 and electron microscopic examination show prominent myelin loss in cerebral white matter with additional damage to the hippocampus and thalamus. Establishment of mouse models of PVL will greatly facilitate the study of disease pathogenesis using available transgenic mouse strains, conduction of drug trials in a relatively high throughput manner to identify candidate therapeutic agents, and testing of stem cell transplantation using immunodeficiency mouse strains.
JoVE Neuroscience, Issue 39, brain, mouse, white matter injury, oligodendrocyte, periventricular leukomalacia
1951
Play Button
Biochemical Measurement of Neonatal Hypoxia
Authors: Megan S. Plank, Teleka C. Calderon, Yayesh Asmerom, Danilo S. Boskovic, Danilyn M. Angeles.
Institutions: Loma Linda University, Loma Linda University.
Neonatal hypoxia ischemia is characterized by inadequate blood perfusion of a tissue or a systemic lack of oxygen. This condition is thought to cause/exacerbate well documented neonatal disorders including neurological impairment 1-3. Decreased adenosine triphosphate production occurs due to a lack of oxidative phosphorylation. To compensate for this energy deprived state molecules containing high energy phosphate bonds are degraded 2. This leads to increased levels of adenosine which is subsequently degraded to inosine, hypoxanthine, xanthine, and finally to uric acid. The final two steps in this degradation process are performed by xanthine oxidoreductase. This enzyme exists in the form of xanthine dehydrogenase under normoxic conditions but is converted to xanthine oxidase (XO) under hypoxia-reperfusion circumstances 4, 5. Unlike xanthine dehydrogenase, XO generates hydrogen peroxide as a byproduct of purine degradation 4, 6. This hydrogen peroxide in combination with other reactive oxygen species (ROS) produced during hypoxia, oxidizes uric acid to form allantoin and reacts with lipid membranes to generate malondialdehyde (MDA) 7-9. Most mammals, humans exempted, possess the enzyme uricase, which converts uric acid to allantoin. In humans, however, allantoin can only be formed by ROS-mediated oxidation of uric acid. Because of this, allantoin is considered to be a marker of oxidative stress in humans, but not in the mammals that have uricase. We describe methods employing high pressure liquid chromatography (HPLC) and gas chromatography mass spectrometry (GCMS) to measure biochemical markers of neonatal hypoxia ischemia. Human blood is used for most tests. Animal blood may also be used while recognizing the potential for uricase-generated allantoin. Purine metabolites were linked to hypoxia as early as 1963 and the reliability of hypoxanthine, xanthine, and uric acid as biochemical indicators of neonatal hypoxia was validated by several investigators 10-13. The HPLC method used for the quantification of purine compounds is fast, reliable, and reproducible. The GC/MS method used for the quantification of allantoin, a relatively new marker of oxidative stress, was adapted from Gruber et al 7. This method avoids certain artifacts and requires low volumes of sample. Methods used for synthesis of MMDA were described elsewhere 14, 15. GC/MS based quantification of MDA was adapted from Paroni et al. and Cighetti et al. 16, 17. Xanthine oxidase activity was measured by HPLC by quantifying the conversion of pterin to isoxanthopterin 18. This approach proved to be sufficiently sensitive and reproducible.
Medicine, Issue 54, hypoxia, Ischemia, Neonate, Hypoxanthine, Xanthine, Uric Acid, Allantoin, Xanthine Oxidase, Malondialdehyde
2948
Play Button
A Swine Model of Neonatal Asphyxia
Authors: Po-Yin Cheung, Richdeep S. Gill, David L. Bigam.
Institutions: University of Alberta, University of Alberta.
Annually more than 1 million neonates die worldwide as related to asphyxia. Asphyxiated neonates commonly have multi-organ failure including hypotension, perfusion deficit, hypoxic-ischemic encephalopathy, pulmonary hypertension, vasculopathic enterocolitis, renal failure and thrombo-embolic complications. Animal models are developed to help us understand the patho-physiology and pharmacology of neonatal asphyxia. In comparison to rodents and newborn lambs, the newborn piglet has been proven to be a valuable model. The newborn piglet has several advantages including similar development as that of 36-38 weeks human fetus with comparable body systems, large body size (˜1.5-2 kg at birth) that allows the instrumentation and monitoring of the animal and controls the confounding variables of hypoxia and hemodynamic derangements. We here describe an experimental protocol to simulate neonatal asphyxia and allow us to examine the systemic and regional hemodynamic changes during the asphyxiating and reoxygenation process as well as the respective effects of interventions. Further, the model has the advantage of studying multi-organ failure or dysfunction simultaneously and the interaction with various body systems. The experimental model is a non-survival procedure that involves the surgical instrumentation of newborn piglets (1-3 day-old and 1.5-2.5 kg weight, mixed breed) to allow the establishment of mechanical ventilation, vascular (arterial and central venous) access and the placement of catheters and flow probes (Transonic Inc.) for the continuously monitoring of intra-vascular pressure and blood flow across different arteries including main pulmonary, common carotid, superior mesenteric and left renal arteries. Using these surgically instrumented piglets, after stabilization for 30-60 minutes as defined by Z<10% variation in hemodynamic parameters and normal blood gases, we commence an experimental protocol of severe hypoxemia which is induced via normocapnic alveolar hypoxia. The piglet is ventilated with 10-15% oxygen by increasing the inhaled concentration of nitrogen gas for 2h, aiming for arterial oxygen saturations of 30-40%. This degree of hypoxemia will produce clinical asphyxia with severe metabolic acidosis, systemic hypotension and cardiogenic shock with hypoperfusion to vital organs. The hypoxia is followed by reoxygenation with 100% oxygen for 0.5h and then 21% oxygen for 3.5h. Pharmacologic interventions can be introduced in due course and their effects investigated in a blinded, block-randomized fashion.
Medicine, Issue 56, Developmental Biology, pigs, newborn, hypoxia, asphyxia, reoxygenation
3166
Play Button
Preterm EEG: A Multimodal Neurophysiological Protocol
Authors: Susanna Stjerna, Juha Voipio, Marjo Metsäranta, Kai Kaila, Sampsa Vanhatalo.
Institutions: University of Helsinki , University of Helsinki , University of Helsinki , University of Helsinki .
Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.
Neuroscience, Issue 60, neurophysiology, preterm baby, neonatal, EEG, evoked response, high density EEG, FbEEG, sensory evoked response, neonatal intensive care unit
3774
Play Button
2-Vessel Occlusion/Hypotension: A Rat Model of Global Brain Ischemia
Authors: Thomas H. Sanderson, Joseph M. Wider.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine, Wayne State University School of Medicine.
Cardiac arrest followed by resuscitation often results in dramatic brain damage caused by ischemia and subsequent reperfusion of the brain. Global brain ischemia produces damage to specific brain regions shown to be highly sensitive to ischemia 1. Hippocampal neurons have higher sensitivity to ischemic insults compared to other cell populations, and specifically, the CA1 region of the hippocampus is particularly vulnerable to ischemia/reperfusion 2. The design of therapeutic interventions, or study of mechanisms involved in cerebral damage, requires a model that produces damage similar to the clinical condition and in a reproducible manner. Bilateral carotid vessel occlusion with hypotension (2VOH) is a model that produces reversible forebrain ischemia, emulating the cerebral events that can occur during cardiac arrest and resuscitation. We describe a model modified from Smith et al. (1984) 2, as first presented in its current form in Sanderson, et al. (2008) 3, which produces reproducible injury to selectively vulnerable brain regions 3-6. The reliability of this model is dictated by precise control of systemic blood pressure during applied hypotension, the duration of ischemia, close temperature control, a specific anesthesia regimen, and diligent post-operative care. An 8-minute ischemic insult produces cell death of CA1 hippocampal neurons that progresses over the course of 6 to 24 hr of reperfusion, while less vulnerable brain regions are spared. This progressive cell death is easily quantified after 7-14 days of reperfusion, as a near complete loss of CA1 neurons is evident at this time. In addition to this brain injury model, we present a method for CA1 damage quantification using a simple, yet thorough, methodology. Importantly, quantification can be accomplished using a simple camera-mounted microscope, and a free ImageJ (NIH) software plugin, obviating the need for cost-prohibitive stereology software programs and a motorized microscopic stage for damage assessment.
Medicine, Issue 76, Biomedical Engineering, Neurobiology, Neuroscience, Immunology, Anatomy, Physiology, Cardiology, Brain Ischemia, ischemia, reperfusion, cardiac arrest, resuscitation, 2VOH, brain injury model, CA1 hippocampal neurons, brain, neuron, blood vessel, occlusion, hypotension, animal model
50173
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
50716
Play Button
Use of an Eight-arm Radial Water Maze to Assess Working and Reference Memory Following Neonatal Brain Injury
Authors: Stephanie C. Penley, Cynthia M. Gaudet, Steven W. Threlkeld.
Institutions: Rhode Island College, Rhode Island College.
Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.
Behavior, Issue 82, working memory, reference memory, hypoxia-ischemia, radial arm maze, water maze
50940
Play Button
Isolation of Leukocytes from the Murine Tissues at the Maternal-Fetal Interface
Authors: Marcia Arenas-Hernandez, Elly N. Sanchez-Rodriguez, Tara N. Mial, Sarah A. Robertson, Nardhy Gomez-Lopez.
Institutions: Wayne State University School of Medicine, The University of Adelaide, Wayne State University School of Medicine, NICHD/NIH/DHHS.
Immune tolerance in pregnancy requires that the immune system of the mother undergoes distinctive changes in order to accept and nurture the developing fetus. This tolerance is initiated during coitus, established during fecundation and implantation, and maintained throughout pregnancy. Active cellular and molecular mediators of maternal-fetal tolerance are enriched at the site of contact between fetal and maternal tissues, known as the maternal-fetal interface, which includes the placenta and the uterine and decidual tissues. This interface is comprised of stromal cells and infiltrating leukocytes, and their abundance and phenotypic characteristics change over the course of pregnancy. Infiltrating leukocytes at the maternal-fetal interface include neutrophils, macrophages, dendritic cells, mast cells, T cells, B cells, NK cells, and NKT cells that together create the local micro-environment that sustains pregnancy. An imbalance among these cells or any inappropriate alteration in their phenotypes is considered a mechanism of disease in pregnancy. Therefore, the study of leukocytes that infiltrate the maternal-fetal interface is essential in order to elucidate the immune mechanisms that lead to pregnancy-related complications. Described herein is a protocol that uses a combination of gentle mechanical dissociation followed by a robust enzymatic disaggregation with a proteolytic and collagenolytic enzymatic cocktail to isolate the infiltrating leukocytes from the murine tissues at the maternal-fetal interface. This protocol allows for the isolation of high numbers of viable leukocytes (>70%) with sufficiently conserved antigenic and functional properties. Isolated leukocytes can then be analyzed by several techniques, including immunophenotyping, cell sorting, imaging, immunoblotting, mRNA expression, cell culture, and in vitro functional assays such as mixed leukocyte reactions, proliferation, or cytotoxicity assays.
Immunology, Issue 99, Decidua, Dissociation, Isolation, Leukocytes, Myometrium, Placenta, Pregnancy, Uterus
52866
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.