JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Procurement and Supply Management System for MDR-TB in Nigeria: Are the Early Warning Targets for Drug Stock Outs and Over Stock of Drugs Being Achieved?
PUBLISHED: 06-23-2015
The World Health Organisation (WHO) introduced the twelve early warning indicators for monitoring and evaluating drug Procurement and Supply management (PSM) systems, intended to prevent drug stock-outs and overstocking. Nigeria- one of the high Multi Drug Resistant Tuberculosis (MDR-TB) burden countries, scaled-up treatment in 2012 with the concurrent implementation of a PSM system.
Authors: Mark F Brady, Jorge Coronel, Robert H Gilman, David AJ Moore.
Published: 08-11-2008
Patients with active pulmonary tuberculosis (TB) infect 10-15 other persons per year, making diagnosing active TB essential to both curing the patient and preventing new infections. Furthermore, the emergence of multidrug resistant tuberculosis (MDRTB) means that detection of drug resistance is necessary for stopping the spread of drug-resistant strains. The microscopic-observation drug-susceptibility (MODS) assay is a low-cost, low-tech tool for high-performance detection of TB and MDRTB. The MODS assay is based on three principles: 1) mycobacterium tuberculosis (MTB) grows faster in liquid media than on solid media 2) microscopic MTB growth can be detected earlier in liquid media than waiting for the macroscopic appearance of colonies on solid media, and that growth is characteristic of MTB, allowing it to be distinguished from atypical mycobacteria or fungal or bacterial contamination 3) the drugs isoniazid and rifampicin can be incorporated into the MODS assay to allow for simultaneous direct detection of MDRTB, obviating the need for subculture to perform an indirect drug susceptibility test. Competing current diagnostics are hampered by low sensitivity with sputum smear, long delays until diagnosis with solid media culture, prohibitively high cost with existing liquid media culture methods, and the need to do subculture for indirect drug susceptibility testing to detect MDRTB. In contrast, the non-proprietary MODS method has a high sensitivity for TB and MDRTB, is a relatively rapid culture method, provides simultaneous drug susceptibility testing for MDRTB, and is accessible to resource-limited settings at just under $3 for testing for TB and MDRTB.
18 Related JoVE Articles!
Play Button
Diagnosing Pulmonary Tuberculosis with the Xpert MTB/RIF Test
Authors: Thomas Bodmer, Angelika Ströhle.
Institutions: University of Bern, MCL Laboratories Inc..
Tuberculosis (TB) due to Mycobacterium tuberculosis (MTB) remains a major public health issue: the infection affects up to one third of the world population1, and almost two million people are killed by TB each year.2 Universal access to high-quality, patient-centered treatment for all TB patients is emphasized by WHO's Stop TB Strategy.3 The rapid detection of MTB in respiratory specimens and drug therapy based on reliable drug resistance testing results are a prerequisite for the successful implementation of this strategy. However, in many areas of the world, TB diagnosis still relies on insensitive, poorly standardized sputum microscopy methods. Ineffective TB detection and the emergence and transmission of drug-resistant MTB strains increasingly jeopardize global TB control activities.2 Effective diagnosis of pulmonary TB requires the availability - on a global scale - of standardized, easy-to-use, and robust diagnostic tools that would allow the direct detection of both the MTB complex and resistance to key antibiotics, such as rifampicin (RIF). The latter result can serve as marker for multidrug-resistant MTB (MDR TB) and has been reported in > 95% of the MDR-TB isolates.4, 5 The rapid availability of reliable test results is likely to directly translate into sound patient management decisions that, ultimately, will cure the individual patient and break the chain of TB transmission in the community.2 Cepheid's (Sunnyvale, CA, U.S.A.) Xpert MTB/RIF assay6, 7 meets the demands outlined above in a remarkable manner. It is a nucleic-acids amplification test for 1) the detection of MTB complex DNA in sputum or concentrated sputum sediments; and 2) the detection of RIF resistance-associated mutations of the rpoB gene.8 It is designed for use with Cepheid's GeneXpert Dx System that integrates and automates sample processing, nucleic acid amplification, and detection of the target sequences using real-time PCR and reverse transcriptase PCR. The system consists of an instrument, personal computer, barcode scanner, and preloaded software for running tests and viewing the results.9 It employs single-use disposable Xpert MTB/RIF cartridges that hold PCR reagents and host the PCR process. Because the cartridges are self-contained, cross-contamination between samples is eliminated.6 Current nucleic acid amplification methods used to detect MTB are complex, labor-intensive, and technically demanding. The Xpert MTB/RIF assay has the potential to bring standardized, sensitive and very specific diagnostic testing for both TB and drug resistance to universal-access point-of-care settings3, provided that they will be able to afford it. In order to facilitate access, the Foundation for Innovative New Diagnostics (FIND) has negotiated significant price reductions. Current FIND-negotiated prices, along with the list of countries eligible for the discounts, are available on the web.10
Immunology, Issue 62, tuberculosis, drug resistance, rifampicin, rapid diagnosis, Xpert MTB/RIF test
Play Button
Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray
Authors: Yvonne Linger, Alexander Kukhtin, Julia Golova, Alexander Perov, Peter Qu, Christopher Knickerbocker, Christopher G. Cooney, Darrell P. Chandler.
Institutions: Akonni Biosystems, Inc..
Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.
Immunology, Issue 86, MDR-TB, gel element microarray, closed amplicon, drug resistance, rifampin, isoniazid, streptomycin, ethambutol
Play Button
Studying Interactions of Staphylococcus aureus with Neutrophils by Flow Cytometry and Time Lapse Microscopy
Authors: Bas G.J. Surewaard, Jos A.G. van Strijp, Reindert Nijland.
Institutions: University Medical Center Utrecht.
We present methods to study the effect of phenol soluble modulins (PSMs) and other toxins produced and secreted by Staphylococcus aureus on neutrophils. To study the effects of the PSMs on neutrophils we isolate fresh neutrophils using density gradient centrifugation. These neutrophils are loaded with a dye that fluoresces upon calcium mobilization. The activation of neutrophils by PSMs initiates a rapid and transient increase in the free intracellular calcium concentration. In a flow cytometry experiment this rapid mobilization can be measured by monitoring the fluorescence of a pre-loaded dye that reacts to the increased concentration of free Ca2+. Using this method we can determine the PSM concentration necessary to activate the neutrophil, and measure the effects of specific and general inhibitors of the neutrophil activation. To investigate the expression of the PSMs in the intracellular space, we have constructed reporter fusions of the promoter of the PSMα operon to GFP. When these reporter strains of S. aureus are phagocytosed by neutrophils, the induction of expression can be observed using fluorescence microscopy.
Infection, Issue 77, Immunology, Cellular Biology, Infectious Diseases, Microbiology, Genetics, Medicine, Biomedical Engineering, Bioengineering, Neutrophils, Staphylococcus aureus, Bacterial Toxins, Microscopy, Fluorescence, Time-Lapse Imaging, Phagocytosis, phenol soluble modulins, PSMs, Polymorphonuclear Neutrophils, PMNs, intracellular expression, time-lapse microscopy, flow cytometry, cell, isolation, cell culture
Play Button
A Microscopic Phenotypic Assay for the Quantification of Intracellular Mycobacteria Adapted for High-throughput/High-content Screening
Authors: Christophe. J Queval, Ok-Ryul Song, Vincent Delorme, Raffaella Iantomasi, Romain Veyron-Churlet, Nathalie Deboosère, Valérie Landry, Alain Baulard, Priscille Brodin.
Institutions: Université de Lille.
Despite the availability of therapy and vaccine, tuberculosis (TB) remains one of the most deadly and widespread bacterial infections in the world. Since several decades, the sudden burst of multi- and extensively-drug resistant strains is a serious threat for the control of tuberculosis. Therefore, it is essential to identify new targets and pathways critical for the causative agent of the tuberculosis, Mycobacterium tuberculosis (Mtb) and to search for novel chemicals that could become TB drugs. One approach is to set up methods suitable for the genetic and chemical screens of large scale libraries enabling the search of a needle in a haystack. To this end, we developed a phenotypic assay relying on the detection of fluorescently labeled Mtb within fluorescently labeled host cells using automated confocal microscopy. This in vitro assay allows an image based quantification of the colonization process of Mtb into the host and was optimized for the 384-well microplate format, which is proper for screens of siRNA-, chemical compound- or Mtb mutant-libraries. The images are then processed for multiparametric analysis, which provides read out inferring on the pathogenesis of Mtb within host cells.
Infection, Issue 83, Mycobacterium tuberculosis, High-content/High-throughput screening, chemogenomics, Drug Discovery, siRNA library, automated confocal microscopy, image-based analysis
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
Play Button
Nucleocapsid Annealing-Mediated Electrophoresis (NAME) Assay Allows the Rapid Identification of HIV-1 Nucleocapsid Inhibitors
Authors: Alice Sosic, Marta Cappellini, Matteo Scalabrin, Barbara Gatto.
Institutions: University of Padova, SUNY Albany.
RNA or DNA folded in stable tridimensional folding are interesting targets in the development of antitumor or antiviral drugs. In the case of HIV-1, viral proteins involved in the regulation of the virus activity recognize several nucleic acids. The nucleocapsid protein NCp7 (NC) is a key protein regulating several processes during virus replication. NC is in fact a chaperone destabilizing the secondary structures of RNA and DNA and facilitating their annealing. The inactivation of NC is a new approach and an interesting target for anti-HIV therapy. The Nucleocapsid Annealing-Mediated Electrophoresis (NAME) assay was developed to identify molecules able to inhibit the melting and annealing of RNA and DNA folded in thermodynamically stable tridimensional conformations, such as hairpin structures of TAR and cTAR elements of HIV, by the nucleocapsid protein of HIV-1. The new assay employs either the recombinant or the synthetic protein, and oligonucleotides without the need of their previous labeling. The analysis of the results is achieved by standard polyacrylamide gel electrophoresis (PAGE) followed by conventional nucleic acid staining. The protocol reported in this work describes how to perform the NAME assay with the full-length protein or its truncated version lacking the basic N-terminal domain, both competent as nucleic acids chaperones, and how to assess the inhibition of NC chaperone activity by a threading intercalator. Moreover, NAME can be performed in two different modes, useful to obtain indications on the putative mechanism of action of the identified NC inhibitors.
Immunology, Issue 95, HIV-1, Nucleocapsid protein, NCp7, TAR-RNA, DNA, oligonucleotides, annealing, Gel electrophoresis, NAME
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Generation of Dispersed Presomitic Mesoderm Cell Cultures for Imaging of the Zebrafish Segmentation Clock in Single Cells
Authors: Alexis B. Webb, Daniele Soroldoni, Annelie Oswald, Johannes Schindelin, Andrew C. Oates.
Institutions: Max Planck Institute of Molecular Cell Biology and Genetics.
Segmentation is a periodic and sequential morphogenetic process in vertebrates. This rhythmic formation of blocks of tissue called somites along the body axis is evidence of a genetic oscillator patterning the developing embryo. In zebrafish, the intracellular clock driving segmentation is comprised of members of the Her/Hes transcription factor family organized into negative feedback loops. We have recently generated transgenic fluorescent reporter lines for the cyclic gene her1 that recapitulate the spatio-temporal pattern of oscillations in the presomitic mesoderm (PSM). Using these lines, we developed an in vitro culture system that allows real-time analysis of segmentation clock oscillations within single, isolated PSM cells. By removing PSM tissue from transgenic embryos and then dispersing cells from oscillating regions onto glass-bottom dishes, we generated cultures suitable for time-lapse imaging of fluorescence signal from individual clock cells. This approach provides an experimental and conceptual framework for direct manipulation of the segmentation clock with unprecedented single-cell resolution, allowing its cell-autonomous and tissue-level properties to be distinguished and dissected.
Developmental Biology, Issue 89, Zebrafish, Primary Cell Culture, Biological Clocks, Somitogenesis, Oscillator, In Vitro, Time-lapse Imaging, Primary Culture, Fluorescence
Play Button
Multi-target Parallel Processing Approach for Gene-to-structure Determination of the Influenza Polymerase PB2 Subunit
Authors: Brianna L. Armour, Steve R. Barnes, Spencer O. Moen, Eric Smith, Amy C. Raymond, James W. Fairman, Lance J. Stewart, Bart L. Staker, Darren W. Begley, Thomas E. Edwards, Donald D. Lorimer.
Institutions: Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio, Emerald Bio.
Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year 1. Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans 2. Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains.
Infection, Issue 76, Structural Biology, Virology, Genetics, Medicine, Biomedical Engineering, Molecular Biology, Infectious Diseases, Microbiology, Genomics, high throughput, multi-targeting, structural genomics, protein crystallization, purification, protein production, X-ray crystallography, Gene Composer, Protein Maker, expression, E. coli, fermentation, influenza, virus, vector, plasmid, cell, cell culture, PCR, sequencing
Play Button
Growth of Mycobacterium tuberculosis Biofilms
Authors: Kathleen Kulka, Graham Hatfull, Anil K. Ojha.
Institutions: University of Pittsburgh, University of Pittsburgh.
Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, has an extraordinary ability to survive against environmental stresses including antibiotics. Although stress tolerance of M. tuberculosis is one of the likely contributors to the 6-month long chemotherapy of tuberculosis 1, the molecular mechanisms underlying this characteristic phenotype of the pathogen remain unclear. Many microbial species have evolved to survive in stressful environments by self-assembling in highly organized, surface attached, and matrix encapsulated structures called biofilms 2-4. Growth in communities appears to be a preferred survival strategy of microbes, and is achieved through genetic components that regulate surface attachment, intercellular communications, and synthesis of extracellular polymeric substances (EPS) 5,6. The tolerance to environmental stress is likely facilitated by EPS, and perhaps by the physiological adaptation of individual bacilli to heterogeneous microenvironments within the complex architecture of biofilms 7. In a series of recent papers we established that M. tuberculosis and Mycobacterium smegmatis have a strong propensity to grow in organized multicellular structures, called biofilms, which can tolerate more than 50 times the minimal inhibitory concentrations of the anti-tuberculosis drugs isoniazid and rifampicin 8-10. M. tuberculosis, however, intriguingly requires specific conditions to form mature biofilms, in particular 9:1 ratio of headspace: media as well as limited exchange of air with the atmosphere 9. Requirements of specialized environmental conditions could possibly be linked to the fact that M. tuberculosis is an obligate human pathogen and thus has adapted to tissue environments. In this publication we demonstrate methods for culturing M. tuberculosis biofilms in a bottle and a 12-well plate format, which is convenient for bacteriological as well as genetic studies. We have described the protocol for an attenuated strain of M. tuberculosis, mc27000, with deletion in the two loci, panCD and RD1, that are critical for in vivo growth of the pathogen 9. This strain can be safely used in a BSL-2 containment for understanding the basic biology of the tuberculosis pathogen thus avoiding the requirement of an expensive BSL-3 facility. The method can be extended, with appropriate modification in media, to grow biofilm of other culturable mycobacterial species. Overall, a uniform protocol of culturing mycobacterial biofilms will help the investigators interested in studying the basic resilient characteristics of mycobacteria. In addition, a clear and concise method of growing mycobacterial biofilms will also help the clinical and pharmaceutical investigators to test the efficacy of a potential drug.
Immunology, Issue 60, Mycobacterium tuberculosis, tuberculosis, drug tolerance, biofilms
Play Button
A Functional Whole Blood Assay to Measure Viability of Mycobacteria, using Reporter-Gene Tagged BCG or M.Tb (BCG lux/M.Tb lux)
Authors: Sandra Newton, Adrian Martineau, Beate Kampmann.
Institutions: Imperial College London , Barts & The London School of Medicine and Dentistry.
Functional assays have long played a key role in measuring of immunogenicity of a given vaccine. This is conventionally expressed as serum bactericidal titers. Studies of serum bactericidal titers in response to childhood vaccines have enabled us to develop and validate cut-off levels for protective immune responses and such cut-offs are in routine use. No such assays have been taken forward into the routine assessment of vaccines that induce primarily cell-mediated immunity in the form of effector T cell responses, such as TB vaccines. In the animal model, the performance of a given vaccine candidate is routinely evaluated in standardized bactericidal assays, and all current novel TB-vaccine candidates have been subjected to this step in their evaluation prior to phase 1 human trials. The assessment of immunogenicity and therefore likelihood of protective efficacy of novel anti-TB vaccines should ideally undergo a similar step-wise evaluation in the human models now, including measurements in bactericidal assays. Bactericidal assays in the context of tuberculosis vaccine research are already well established in the animal models, where they are applied to screen potentially promising vaccine candidates. Reduction of bacterial load in various organs functions as the main read-out of immunogenicity. However, no such assays have been incorporated into clinical trials for novel anti-TB vaccines to date. Although there is still uncertainty about the exact mechanisms that lead to killing of mycobacteria inside human macrophages, the interaction of macrophages and T cells with mycobacteria is clearly required. The assay described in this paper represents a novel generation of bactericidal assays that enables studies of such key cellular components with all other cellular and humoral factors present in whole blood without making assumptions about their relative individual contribution. The assay described by our group uses small volumes of whole blood and has already been employed in studies of adults and children in TB-endemic settings. We have shown immunogenicity of the BCG vaccine, increased growth of mycobacteria in HIV-positive patients, as well as the effect of anti-retroviral therapy and Vitamin D on mycobacterial survival in vitro. Here we summarise the methodology, and present our reproducibility data using this relatively simple, low-cost and field-friendly model. Note: Definitions/Abbreviations BCG lux = M. bovis BCG, Montreal strain, transformed with shuttle plasmid pSMT1 carrying the luxAB genes from Vibrio harveyi, under the control of the mycobacterial GroEL (hsp60) promoter. CFU = Colony Forming Unit (a measure of mycobacterial viability).
Immunology, Issue 55, M.tuberculosis, BCG, whole blood assay, lux reporter genes, immune responses, tuberculosis, host pathogen interactions
Play Button
Antimicrobial Susceptibility Testing of Mycobacterium Tuberculosis Complex for First and Second Line Drugs by Broth Dilution in a Microtiter Plate Format
Authors: Leslie Hall, Kurt P. Jude, Shirley L. Clark, Nancy L. Wengenack.
Institutions: Mayo Clinic .
The rapid detection of antimicrobial resistance is important in the effort to control the increase in resistant Mycobacterium tuberculosis (Mtb). Antimicrobial susceptibility testing (AST) of Mtb has traditionally been performed by the agar method of proportion or by macrobroth testing on an instrument such as the BACTEC (Becton Dickinson, Sparks, MD), VersaTREK (TREK Diagnostics, Cleveland, OH) or BacT/ALERT (bioMérieux, Hazelwood, MO). The agar proportion method, while considered the “gold” standard of AST, is labor intensive and requires calculation of resistance by performing colony counts on drug-containing agar as compared to drug-free agar. If there is ≥1% growth on the drug-containing medium as compared to drug-free medium, the organism is considered resistant to that drug. The macrobroth methods require instrumentation and test break point ("critical") drug concentrations for the first line drugs (isoniazid, ethambutol, rifampin, and pyrazinamide). The method described here is commercially available in a 96 well microtiter plate format [MYCOTB (TREK Diagnostics)] and contains increasing concentrations of 12 antimicrobials used for treatment of tuberculosis including both first (isoniazid, rifampin, ethambutol) and second line drugs (amikacin, cycloserine, ethionamide, kanamycin, moxifloxacin, ofloxacin, para-aminosalicylic acid, rifabutin, and streptomycin). Pyrazinamide, a first line drug, is not included in the microtiter plate due to its need for acidic test conditions. Advantages of the microtiter system include both ease of set up and faster turn around time (14 days) compared with traditional agar proportion (21 days). In addition, the plate can be set up from inoculum prepared using either broth or solid medium. Since the microtiter plate format is new and since Mtb presents unique safety challenges in the laboratory, this protocol will describe how to safely setup, incubate and read the microtiter plate.
Immunology, Issue 52, Mycobacterium tuberculosis, MIC, antimicrobial susceptibility testing, first and second line drugs, microtiter plate, broth dilution
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
Cost-effective Method for Microbial Source Tracking Using Specific Human and Animal Viruses
Authors: Sílvia Bofill-Mas, Ayalkibet Hundesa, Byron Calgua, Marta Rusiñol, Carlos Maluquer de Motes, Rosina Girones.
Institutions: University of Barcelona.
Microbial contamination of the environment represents a significant health risk. Classical bacterial fecal indicators have shown to have significant limitations, viruses are more resistant to many inactivation processes and standard fecal indicators do not inform on the source of contamination. The development of cost-effective methods for the concentration of viruses from water and molecular assays facilitates the applicability of viruses as indicators of fecal contamination and as microbial source tracking (MST) tools. Adenoviruses and polyomaviruses are DNA viruses infecting specific vertebrate species including humans and are persistently excreted in feces and/or urine in all geographical areas studied. In previous studies, we suggested the quantification of human adenoviruses (HAdV) and JC polyomaviruses (JCPyV) by quantitative PCR (qPCR) as an index of human fecal contamination. Recently, we have developed qPCR assays for the specific quantification of porcine adenoviruses (PAdV) and bovine polyomaviruses (BPyV) as animal fecal markers of contamination with sensitivities of 1-10 genome copies per test tube. In this study, we present the procedure to be followed to identify the source of contamination in water samples using these tools. As example of representative results, analysis of viruses in ground water presenting high levels of nitrates is shown. Detection of viruses in low or moderately polluted waters requires the concentration of the viruses from at least several liters of water into a much smaller volume, a procedure that usually includes two concentration steps in series. This somewhat cumbersome procedure and the variability observed in viral recoveries significantly hamper the simultaneous processing of a large number of water samples. In order to eliminate the bottleneck caused by the two-step procedures we have applied a one-step protocol developed in previous studies and applicable to a diversity of water matrices. The procedure includes: acidification of ten-liter water samples, flocculation by skimmed milk, gravity sedimentation of the flocculated materials, collection of the precipitate and centrifugation, resuspension of the precipitate in 10 ml phosphate buffer. The viral concentrate is used for the extraction of viral nucleic acids and the specific adenoviruses and polyomaviruses of interest are quantified by qPCR. High number of samples may be simultaneously analyzed using this low-cost concentration method. The procedure has been applied to the analysis of bathing waters, seawater and river water and in this study, we present results analyzing groundwater samples. This high-throughput quantitative method is reliable, straightforward, and cost-effective.
Immunology, Issue 58, Quantitative PCR, qPCR, flocculation, virus, adenovirus, polyomavirus, water, Microbial Source Tracking, bovine, human, porcine, contamination
Play Button
Bacterial Delivery of RNAi Effectors: Transkingdom RNAi
Authors: Hermann Lage, Andrea Krühn.
Institutions: Charité Campus Mitte.
RNA interference (RNAi) represents a high effective mechanism for specific inhibition of mRNA expression. Besides its potential as a powerful laboratory tool, the RNAi pathway appears to be promising for therapeutic utilization. For development of RNA interference (RNAi)-based therapies, delivery of RNAi-mediating agents to target cells is one of the major obstacles. A novel strategy to overcome this hurdle is transkingdom RNAi (tkRNAi). This technology uses non-pathogenic bacteria, e.g. Escherichia coli, to produce and deliver therapeutic short hairpin RNA (shRNA) into target cells to induce RNAi. A first-generation tkRNAi-mediating vector, TRIP, contains the bacteriophage T7 promoter for expression regulation of a therapeutic shRNA of interest. Furthermore, TRIP has the Inv locus from Yersinia pseudotuberculosis that encodes invasin, which permits natural noninvasive bacteria to enter β1-integrin-positive mammalian cells and the HlyA gene from Listeria monocytogenes, which produces listeriolysin O. This enzyme allows the therapeutic shRNA to escape from entry vesicles within the cytoplasm of the target cell. TRIP constructs are introduced into a competent non-pathogenic Escherichia coli strain, which encodes T7 RNA polymerase necessary for the T7 promoter-driven synthesis of shRNAs. A well-characterized cancer-associated target molecule for different RNAi strategies is ABCB1 (MDR1/P-glycoprotein, MDR1/P-gp). This ABC-transporter acts as a drug extrusion pump and mediates the "classical" ABCB1-mediated multidrug resistance (MDR) phenotype of human cancer cells which is characterized by a specific cross resistance pattern. Different ABCB1-expressing MDR cancer cells were treated with anti-ABCB1 shRNA expression vector bearing E. coli. This procedure resulted in activation of the RNAi pathways within the cancer cells and a considerable down regulation of the ABCB1 encoding mRNA as well as the corresponding drug extrusion pump. Accordingly, drug accumulation was enhanced in the pristine drug-resistant cancer cells and the MDR phenotype was reversed. By means of this model the data provide the proof-of-concept that tkRNAi is suitable for modulation of cancer-associated factors, e.g. ABCB1, in human cancer cells.
Microbiology, Issue 42, Transkingdom RNAi, shRNA, gene therapy, cancer, multidrug resistance, bacteria
Play Button
Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System
Authors: Michael K. Conway, Michael J. Gerger, Erin E. Balay, Rachel O'Connell, Seth Hanson, Neil J. Daily, Tetsuro Wakatsuki.
Institutions: InvivoSciences, Inc., Gilson, Inc..
Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.
Developmental Biology, Issue 99, iPSC, high-throughput, robotic, liquid-handling, scalable, stem cell, automated stem cell culture, 96-well
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.