JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
AMP-Activated Kinase Regulates Lipid Droplet Localization and Stability of Adipose Triglyceride Lipase in C. elegans Dauer Larvae.
.
PLoS ONE
PUBLISHED: 06-23-2015
Animals have developed diverse mechanisms to adapt to their changing environment. Like many organisms the free-living nematode C. elegans can alternate between a reproductive mode or a diapause-like "dauer" stage during larval development to circumvent harsh environmental conditions. The master metabolic regulator AMP-activated protein kinase (AMPK) is critical for survival during the dauer stage, where it phosphorylates adipose triglyceride lipase (ATGL-1) at multiple sites to block lipid hydrolysis and ultimately protect the cellular triglyceride-based energy depot from rapid depletion. However, how the AMPK-mediated phosphorylation affects the function of ATGL-1 has not been characterised at the molecular level. Here we show that AMPK phosphorylation leads to the generation of 14-3-3 binding sites on ATGL-1, which are recognized by the C. elegans 14-3-3 protein orthologue PAR-5. Physical interaction of ATGL-1 with PAR-5 results in sequestration of ATGL-1 away from the lipid droplets and eventual proteasome-mediated degradation. In addition, we also show that the major AMPK phosphorylation site on ATGL-1, Ser 303, is required for both modification of its lipid droplet localization and its degradation. Our data provide mechanistic insight as to how AMPK functions to enhance survival through its ability to protect the accumulated triglyceride deposits from rapid hydrolysis to preserve the energy stores during periods of extended environmental duress.
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Published: 03-30-2013
ABSTRACT
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
23 Related JoVE Articles!
Play Button
Single Molecule Methods for Monitoring Changes in Bilayer Elastic Properties
Authors: Helgi Ingolfson, Ruchi Kapoor, Shemille A. Collingwood, Olaf Sparre Andersen.
Institutions: Weill Cornell Medical College, Weill Cornell Medical College of Cornell University.
Membrane protein function is regulated by the cell membrane lipid composition. This regulation is due to a combination of specific lipid-protein interactions and more general lipid bilayer-protein interactions. These interactions are particularly important in pharmacological research, as many current pharmaceuticals on the market can alter the lipid bilayer material properties, which can lead to altered membrane protein function. The formation of gramicidin channels are dependent on conformational changes in gramicidin subunits which are in turn dependent on the properties of the lipid. Hence the gramicidin channel current is a reporter of altered properties of the bilayer due to certain compounds.
Cellular Biology, Issue 21, Springer Protocols, Membrane Biophysics, Gramicidin Channels, Artificial Bilayers, Bilayer Elastic Properties,
1032
Play Button
Reconstitution Of β-catenin Degradation In Xenopus Egg Extract
Authors: Tony W. Chen, Matthew R. Broadus, Stacey S. Huppert, Ethan Lee.
Institutions: Vanderbilt University Medical Center, Cincinnati Children's Hospital Medical Center, Vanderbilt University School of Medicine.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.
Molecular Biology, Issue 88, Xenopus laevis, Xenopus egg extracts, protein degradation, radiolabel, luciferase, autoradiography, high-throughput screening
51425
Play Button
Culturing Caenorhabditis elegans in Axenic Liquid Media and Creation of Transgenic Worms by Microparticle Bombardment
Authors: Tamika K. Samuel, Jason W. Sinclair, Katherine L. Pinter, Iqbal Hamza.
Institutions: University of Maryland, University of Maryland.
In this protocol, we present the required materials, and the procedure for making modified C. elegans Habituation and Reproduction media (mCeHR). Additionally, the steps for exposing and acclimatizing C. elegans grown on E. coli to axenic liquid media are described. Finally, downstream experiments that utilize axenic C. elegans illustrate the benefits of this procedure. The ability to analyze and determine C. elegans nutrient requirement was illustrated by growing N2 wild type worms in axenic liquid media with varying heme concentrations. This procedure can be replicated with other nutrients to determine the optimal concentration for worm growth and development or, to determine the toxicological effects of drug treatments. The effects of varied heme concentrations on the growth of wild type worms were determined through qualitative microscopic observation and by quantitating the number of worms that grew in each heme concentration. In addition, the effect of varied nutrient concentrations can be assayed by utilizing worms that express fluorescent sensors that respond to changes in the nutrient of interest. Furthermore, a large number of worms were easily produced for the generation of transgenic C. elegans using microparticle bombardment.
Molecular Biology, Issue 90, C. elegans, axenic media, transgenics, microparticle bombardment, heme, nutrition
51796
Play Button
In Vivo Imaging of Dauer-specific Neuronal Remodeling in C. elegans
Authors: Nathan E. Schroeder, Kristen M. Flatt.
Institutions: University of Illinois Urbana-Champaign.
The mechanisms controlling stress-induced phenotypic plasticity in animals are frequently complex and difficult to study in vivo. A classic example of stress-induced plasticity is the dauer stage of C. elegans. Dauers are an alternative developmental larval stage formed under conditions of low concentrations of bacterial food and high concentrations of a dauer pheromone. Dauers display extensive developmental and behavioral plasticity. For example, a set of four inner-labial quadrant (IL2Q) neurons undergo extensive reversible remodeling during dauer formation. Utilizing the well-known environmental pathways regulating dauer entry, a previously established method for the production of crude dauer pheromone from large-scale liquid nematode cultures is demonstrated. With this method, a concentration of 50,000 - 75,000 nematodes/ml of liquid culture is sufficient to produce a highly potent crude dauer pheromone. The crude pheromone potency is determined by a dose-response bioassay. Finally, the methods used for in vivo time-lapse imaging of the IL2Qs during dauer formation are described.
Neuroscience, Issue 91, C. elegans, dauer, dendrite, arborization, phenotypic plasticity, stress, imaging, pheromone
51834
Play Button
Quantitative Immunofluorescence Assay to Measure the Variation in Protein Levels at Centrosomes
Authors: Shubhra Majumder, Harold A. Fisk.
Institutions: The Ohio State University.
Centrosomes are small but important organelles that serve as the poles of mitotic spindle to maintain genomic integrity or assemble primary cilia to facilitate sensory functions in cells. The level of a protein may be regulated differently at centrosomes than at other .cellular locations, and the variation in the centrosomal level of several proteins at different points of the cell cycle appears to be crucial for the proper regulation of centriole assembly. We developed a quantitative fluorescence microscopy assay that measures relative changes in the level of a protein at centrosomes in fixed cells from different samples, such as at different phases of the cell cycle or after treatment with various reagents. The principle of this assay lies in measuring the background corrected fluorescent intensity corresponding to a protein at a small region, and normalize that measurement against the same for another protein that does not vary under the chosen experimental condition. Utilizing this assay in combination with BrdU pulse and chase strategy to study unperturbed cell cycles, we have quantitatively validated our recent observation that the centrosomal pool of VDAC3 is regulated at centrosomes during the cell cycle, likely by proteasome-mediated degradation specifically at centrosomes.
Cellular Biology, Issue 94, Centrosome assembly, cell cycle, centrosomal degradation, quantitative fluorescence microscopy, normalization, VDAC3, BrdU pulse-chase
52030
Play Button
The Mesenteric Lymph Duct Cannulated Rat Model: Application to the Assessment of Intestinal Lymphatic Drug Transport
Authors: Natalie L. Trevaskis, Luojuan Hu, Suzanne M. Caliph, Sifei Han, Christopher J.H. Porter.
Institutions: Monash University (Parkville Campus).
The intestinal lymphatic system plays key roles in fluid transport, lipid absorption and immune function. Lymph flows directly from the small intestine via a series of lymphatic vessels and nodes that converge at the superior mesenteric lymph duct. Cannulation of the mesenteric lymph duct thus enables the collection of mesenteric lymph flowing from the intestine. Mesenteric lymph consists of a cellular fraction of immune cells (99% lymphocytes), aqueous fraction (fluid, peptides and proteins such as cytokines and gut hormones) and lipoprotein fraction (lipids, lipophilic molecules and apo-proteins). The mesenteric lymph duct cannulation model can therefore be used to measure the concentration and rate of transport of a range of factors from the intestine via the lymphatic system. Changes to these factors in response to different challenges (e.g., diets, antigens, drugs) and in disease (e.g., inflammatory bowel disease, HIV, diabetes) can also be determined. An area of expanding interest is the role of lymphatic transport in the absorption of orally administered lipophilic drugs and prodrugs that associate with intestinal lipid absorption pathways. Here we describe, in detail, a mesenteric lymph duct cannulated rat model which enables evaluation of the rate and extent of lipid and drug transport via the lymphatic system for several hours following intestinal delivery. The method is easily adaptable to the measurement of other parameters in lymph. We provide detailed descriptions of the difficulties that may be encountered when establishing this complex surgical method, as well as representative data from failed and successful experiments to provide instruction on how to confirm experimental success and interpret the data obtained.
Immunology, Issue 97, Intestine, Mesenteric, Lymphatic, Lymph, Carotid artery, Cannulation, Cannula, Rat, Drug, Lipid, Absorption, Surgery
52389
Play Button
Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images
Authors: Aliya Gifford, Theodore F. Towse, Ronald C. Walker, Malcolm J. Avison, E. Brian Welch.
Institutions: Vanderbilt University, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University.
Reliably differentiating brown adipose tissue (BAT) from other tissues using a non-invasive imaging method is an important step toward studying BAT in humans. Detecting BAT is typically confirmed by the uptake of the injected radioactive tracer 18F-Fluorodeoxyglucose (18F-FDG) into adipose tissue depots, as measured by positron emission tomography/computed tomography (PET-CT) scans after exposing the subject to cold stimulus. Fat-water separated magnetic resonance imaging (MRI) has the ability to distinguish BAT without the use of a radioactive tracer. To date, MRI of BAT in adult humans has not been co-registered with cold-activated PET-CT. Therefore, this protocol uses 18F-FDG PET-CT scans to automatically generate a BAT mask, which is then applied to co-registered MRI scans of the same subject. This approach enables measurement of quantitative MRI properties of BAT without manual segmentation. BAT masks are created from two PET-CT scans: after exposure for 2 hr to either thermoneutral (TN) (24 °C) or cold-activated (CA) (17 °C) conditions. The TN and CA PET-CT scans are registered, and the PET standardized uptake and CT Hounsfield values are used to create a mask containing only BAT. CA and TN MRI scans are also acquired on the same subject and registered to the PET-CT scans in order to establish quantitative MRI properties within the automatically defined BAT mask. An advantage of this approach is that the segmentation is completely automated and is based on widely accepted methods for identification of activated BAT (PET-CT). The quantitative MRI properties of BAT established using this protocol can serve as the basis for an MRI-only BAT examination that avoids the radiation associated with PET-CT.
Medicine, Issue 96, magnetic resonance imaging, brown adipose tissue, cold-activation, adult human, fat water imaging, fluorodeoxyglucose, positron emission tomography, computed tomography
52415
Play Button
Functional Reconstitution and Channel Activity Measurements of Purified Wildtype and Mutant CFTR Protein
Authors: Paul D. W. Eckford, Canhui Li, Christine E. Bear.
Institutions: Hospital for Sick Children, University of Toronto, University of Toronto.
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.
Biochemistry, Issue 97, Cystic Fibrosis, CFTR, purification, reconstitution, chloride channel, channel function, iodide efflux, potentiation
52427
Play Button
Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans
Authors: Michal Turek, Judith Besseling, Henrik Bringmann.
Institutions: Max Planck Institute for Biophysical Chemistry.
Behavior is controlled by the nervous system. Calcium imaging is a straightforward method in the transparent nematode Caenorhabditis elegans to measure the activity of neurons during various behaviors. To correlate neural activity with behavior, the animal should not be immobilized but should be able to move. Many behavioral changes occur during long time scales and require recording over many hours of behavior. This also makes it necessary to culture the worms in the presence of food. How can worms be cultured and their neural activity imaged over long time scales? Agarose Microchamber Imaging (AMI) was previously developed to culture and observe small larvae and has now been adapted to study all life stages from early L1 until the adult stage of C. elegans. AMI can be performed on various life stages of C. elegans. Long-term calcium imaging is achieved without immobilizing the animals by using short externally triggered exposures combined with an electron multiplying charge-coupled device (EMCCD) camera recording. Zooming out or scanning can scale up this method to image up to 40 worms in parallel. Thus, a method is described to image behavior and neural activity over long time scales in all life stages of C. elegans.
Neuroscience, Issue 100, Caenorhabditis elegans, model organism, neurobiology, microfluidics, calcium imaging, behavior
52742
Play Button
Measuring Oxidative Stress Resistance of Caenorhabditis elegans in 96-well Microtiter Plates
Authors: Elite Possik, Arnim Pause.
Institutions: McGill University, McGill University.
Oxidative stress, which is the result of an imbalance between production and detoxification of reactive oxygen species, is a major contributor to chronic human disorders, including cardiovascular and neurodegenerative diseases, diabetes, aging, and cancer. Therefore, it is important to study oxidative stress not only in cell systems but also using whole organisms. C. elegans is an attractive model organism to study the genetics of oxidative stress signal transduction pathways, which are highly evolutionarily conserved. Here, we provide a protocol to measure oxidative stress resistance in C. elegans in liquid. Briefly, ROS-inducing reagents such as paraquat (PQ) and H2O2 are dissolved in M9 buffer, and solutions are aliquoted in the wells of a 96 well microtiter plate. Synchronized L4/young adult C. elegans animals are transferred to the wells (5-8 animals/well) and survival is measured every hour until most worms are dead. When performing an oxidative stress resistance assay using a low concentration of stressors in plates, aging might influence the behavior of animals upon oxidative stress, which could lead to an incorrect interpretation of the data. However, in the assay described herein, this problem is unlikely to occur since only L4/young adult animals are being used. Moreover, this protocol is inexpensive and results are obtained in one day, which renders this technique attractive for genetic screens. Overall, this will help to understand oxidative stress signal transduction pathways, which could be translated into better characterization of oxidative stress-associated human disorders.
Cellular Biology, Issue 99, Oxidative stress, paraquat, Caenorhabditis elegans, reactive oxygen species, organismal death, animal model, nematode
52746
Play Button
Identification of Post-translational Modifications of Plant Protein Complexes
Authors: Sophie J. M. Piquerez, Alexi L. Balmuth, Jan Sklenář, Alexandra M.E. Jones, John P. Rathjen, Vardis Ntoukakis.
Institutions: University of Warwick, Norwich Research Park, The Australian National University.
Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein.
Plant Biology, Issue 84, plant-microbe interactions, protein complex purification, mass spectrometry, protein phosphorylation, Prf, Pto, AvrPto, AvrPtoB
51095
Play Button
Isolation of Cellular Lipid Droplets: Two Purification Techniques Starting from Yeast Cells and Human Placentas
Authors: Jaana Mannik, Alex Meyers, Paul Dalhaimer.
Institutions: University of Tennessee, University of Tennessee.
Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method - density gradient centrifugation - is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps are suitable for subsequent proteomic and lipidomic analysis.
Bioengineering, Issue 86, Lipid droplet, lipid body, fat body, oil body, Yeast, placenta, placental villous cells, isolation, purification, density gradient centrifugation
50981
Play Button
Using Caenorhabditis elegans as a Model System to Study Protein Homeostasis in a Multicellular Organism
Authors: Ido Karady, Anna Frumkin, Shiran Dror, Netta Shemesh, Nadav Shai, Anat Ben-Zvi.
Institutions: Ben-Gurion University of the Negev.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Biochemistry, Issue 82, aging, Caenorhabditis elegans, heat shock response, neurodegenerative diseases, protein folding homeostasis, proteostasis, stress, temperature-sensitive
50840
Play Button
Preparation of Artificial Bilayers for Electrophysiology Experiments
Authors: Ruchi Kapoor, Jung H. Kim, Helgi Ingolfson, Olaf Sparre Andersen.
Institutions: Weill Cornell Medical College of Cornell University.
Planar lipid bilayers, also called artificial lipid bilayers, allow you to study ion-conducting channels in a well-defined environment. These bilayers can be used for many different studies, such as the characterization of membrane-active peptides, the reconstitution of ion channels or investigations on how changes in lipid bilayer properties alter the function of bilayer-spanning channels. Here, we show how to form a planar bilayer and how to isolate small patches from the bilayer, and in a second video will also demonstrate a procedure for using gramicidin channels to determine changes in lipid bilayer elastic properties. We also demonstrate the individual steps needed to prepare the bilayer chamber, the electrodes and how to test that the bilayer is suitable for single-channel measurements.
Cellular Biology, Issue 20, Springer Protocols, Artificial Bilayers, Bilayer Patch Experiments, Lipid Bilayers, Bilayer Punch Electrodes, Electrophysiology
1033
Play Button
Generation of Transgenic C. elegans by Biolistic Transformation
Authors: Daniel Hochbaum, Annabel A. Ferguson, Alfred L. Fisher.
Institutions: University of Pittsburgh.
The number of laboratories using the free living nematode C. elegans is rapidly growing. The popularity of this biological model is attributed to a rapid generation time and short life span, easy and inexpensive maintenance, fully sequenced genome, and array of RNAi resources and mutant animals. Additionally, analysis of the C. elegans genome revealed a great similarity between worms and higher vertebrates, which suggests that research in worms could be an important adjunct to studies performed in whole mice or cultured cells. A powerful and important part of worm research is the ability to use transgenic animals to study gene localization and function. Transgenic animals can be created either via microinjection of the worm germline or through the use of biolistic bombardment. Bombardment is a newer technique and is less familiar to a number of labs. Here we describe a simple protocol to generate transgenic worms by biolistic bombardment with gold particles using the Bio-Rad PDS-1000 system. Compared with DNA microinjection into hermaphrodite germline, this protocol has the advantage of not requiring special skills from the operator with regards to identifying worm anatomy or performing microinjection. Further multiple transgenic lines are usually obtained from a single bombardment. Also in contrast to microinjection, biolistic bombardment produces transgenic animals with both extrachromosomal arrays and integrated transgenes. The ability to obtain integrated transgenic lines can avoid the use of mutagenic protocols to integrate foreign DNA. In conclusion, biolistic bombardment can be an attractive method for the generation of transgenic animals, especially for investigators not interested in investing the time and effort needed to become skilled at microinjection.
microbiology, Issue 42, C. elegans, transgenic animals, recombinant DNA, unc-119, microparticle bombardment, transgene
2090
Play Button
Lipid Vesicle-mediated Affinity Chromatography using Magnetic Activated Cell Sorting (LIMACS): a Novel Method to Analyze Protein-lipid Interaction
Authors: Erhard Bieberich.
Institutions: Georgia Health Sciences University.
The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.
Cellular Biology, Issue 50, ceramide, phosphatidylserine, lipid-protein interaction, atypical PKC
2657
Play Button
Solid Plate-based Dietary Restriction in Caenorhabditis elegans
Authors: Tsui-Ting Ching, Ao-Lin Hsu.
Institutions: University of Michigan, University of Michigan.
Reduction of food intake without malnutrition or starvation is known to increase lifespan and delay the onset of various age-related diseases in a wide range of species, including mammals. It also causes a decrease in body weight and fertility, as well as lower levels of plasma glucose, insulin, and IGF-1 in these animals. This treatment is often referred to as dietary restriction (DR) or caloric restriction (CR). The nematode Caenorhabditis elegans has emerged as an important model organism for studying the biology of aging. Both environmental and genetic manipulations have been used to model DR and have shown to extend lifespan in C. elegans. However, many of the reported DR studies in C. elegans were done by propagating animals in liquid media, while most of the genetic studies in the aging field were done on the standard solid agar in petri plates. Here we present a DR protocol using standard solid NGM agar-based plate with killed bacteria.
Developmental Biology, Issue 51, Dietary restriction, caloric restriction, C. elegans, longevity
2701
Play Button
Visualization of Caenorhabditis elegans Cuticular Structures Using the Lipophilic Vital Dye DiI
Authors: Robbie D. Schultz, Tina L. Gumienny.
Institutions: Texas A&M University System Health Science Center, College of Medicine.
The cuticle of C. elegans is a highly resistant structure that surrounds the exterior of the animal1-4. The cuticle not only protects the animal from the environment, but also determines body shape and plays a role in motility4-6. Several layers secreted by epidermal cells comprise the cuticle, including an outermost lipid layer7. Circumferential ridges in the cuticle called annuli pattern the length of the animal and are present during all stages of development8. Alae are longitudinal ridges that are present during specific stages of development, including L1, dauer, and adult stages2,9. Mutations in genes that affect cuticular collagen organization can alter cuticular structure and animal body morphology5,6,10,11. While cuticular imaging using compound microscopy with DIC optics is possible, current methods that highlight cuticular structures include fluorescent transgene expression12, antibody staining13, and electron microscopy1. Labeled wheat germ agglutinin (WGA) has also been used to visualize cuticular glycoproteins, but is limited in resolving finer cuticular structures14. Staining of cuticular surface using fluorescent dye has been observed, but never characterized in detail15. We present a method to visualize cuticle in live C. elegans using the red fluorescent lipophilic dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), which is commonly used in C. elegans to visualize environmentally exposed neurons. This optimized protocol for DiI staining is a simple, robust method for high resolution fluorescent visualization of annuli, alae, vulva, male tail, and hermaphrodite tail spike in C. elegans.
Developmental Biology, Issue 59, Cuticle, alae, annuli, C. elegans, DiI, lipid staining, live stain
3362
Play Button
Simple Microfluidic Devices for in vivo Imaging of C. elegans, Drosophila and Zebrafish
Authors: Sudip Mondal, Shikha Ahlawat, Sandhya P. Koushika.
Institutions: NCBS-TIFR, TIFR.
Micro fabricated fluidic devices provide an accessible micro-environment for in vivo studies on small organisms. Simple fabrication processes are available for microfluidic devices using soft lithography techniques 1-3. Microfluidic devices have been used for sub-cellular imaging 4,5, in vivo laser microsurgery 2,6 and cellular imaging 4,7. In vivo imaging requires immobilization of organisms. This has been achieved using suction 5,8, tapered channels 6,7,9, deformable membranes 2-4,10, suction with additional cooling 5, anesthetic gas 11, temperature sensitive gels 12, cyanoacrylate glue 13 and anesthetics such as levamisole 14,15. Commonly used anesthetics influence synaptic transmission 16,17 and are known to have detrimental effects on sub-cellular neuronal transport 4. In this study we demonstrate a membrane based poly-dimethyl-siloxane (PDMS) device that allows anesthetic free immobilization of intact genetic model organisms such as Caenorhabditis elegans (C. elegans), Drosophila larvae and zebrafish larvae. These model organisms are suitable for in vivo studies in microfluidic devices because of their small diameters and optically transparent or translucent bodies. Body diameters range from ~10 μm to ~800 μm for early larval stages of C. elegans and zebrafish larvae and require microfluidic devices of different sizes to achieve complete immobilization for high resolution time-lapse imaging. These organisms are immobilized using pressure applied by compressed nitrogen gas through a liquid column and imaged using an inverted microscope. Animals released from the trap return to normal locomotion within 10 min. We demonstrate four applications of time-lapse imaging in C. elegans namely, imaging mitochondrial transport in neurons, pre-synaptic vesicle transport in a transport-defective mutant, glutamate receptor transport and Q neuroblast cell division. Data obtained from such movies show that microfluidic immobilization is a useful and accurate means of acquiring in vivo data of cellular and sub-cellular events when compared to anesthetized animals (Figure 1J and 3C-F 4). Device dimensions were altered to allow time-lapse imaging of different stages of C. elegans, first instar Drosophila larvae and zebrafish larvae. Transport of vesicles marked with synaptotagmin tagged with GFP (syt.eGFP) in sensory neurons shows directed motion of synaptic vesicle markers expressed in cholinergic sensory neurons in intact first instar Drosophila larvae. A similar device has been used to carry out time-lapse imaging of heartbeat in ~30 hr post fertilization (hpf) zebrafish larvae. These data show that the simple devices we have developed can be applied to a variety of model systems to study several cell biological and developmental phenomena in vivo.
Bioengineering, Issue 67, Molecular Biology, Neuroscience, Microfluidics, C. elegans, Drosophila larvae, zebrafish larvae, anesthetic, pre-synaptic vesicle transport, dendritic transport of glutamate receptors, mitochondrial transport, synaptotagmin transport, heartbeat
3780
Play Button
Creating Defined Gaseous Environments to Study the Effects of Hypoxia on C. elegans
Authors: Emily M. Fawcett, Joseph W. Horsman, Dana L. Miller.
Institutions: University of Washington, University of Washington.
Oxygen is essential for all metazoans to survive, with one known exception1. Decreased O2 availability (hypoxia) can arise during states of disease, normal development or changes in environmental conditions2-5. Understanding the cellular signaling pathways that are involved in the response to hypoxia could provide new insight into treatment strategies for diverse human pathologies, from stroke to cancer. This goal has been impeded, at least in part, by technical difficulties associated with controlled hypoxic exposure in genetically amenable model organisms. The nematode Caenorhabditis elegans is ideally suited as a model organism for the study of hypoxic response, as it is easy to culture and genetically manipulate. Moreover, it is possible to study cellular responses to specific hypoxic O2 concentrations without confounding effects since C. elegans obtain O2 (and other gasses) by diffusion, as opposed to a facilitated respiratory system6. Factors known to be involved in the response to hypoxia are conserved in C. elegans. The actual response to hypoxia depends on the specific concentration of O2 that is available. In C. elegans, exposure to moderate hypoxia elicits a transcriptional response mediated largely by hif-1, the highly-conserved hypoxia-inducible transcription factor6-9. C .elegans embryos require hif-1 to survive in 5,000-20,000 ppm O27,10. Hypoxia is a general term for "less than normal O2". Normoxia (normal O2) can also be difficult to define. We generally consider room air, which is 210,000 ppm O2 to be normoxia. However, it has been shown that C. elegans has a behavioral preference for O2 concentrations from 5-12% (50,000-120,000 ppm O2)11. In larvae and adults, hif-1 acts to prevent hypoxia-induced diapause in 5,000 ppm O212. However, hif-1 does not play a role in the response to lower concentrations of O2 (anoxia, operational definition <10 ppm O2)13. In anoxia, C. elegans enters into a reversible state of suspended animation in which all microscopically observable activity ceases10. The fact that different physiological responses occur in different conditions highlights the importance of having experimental control over the hypoxic concentration of O2. Here, we present a method for the construction and implementation of environmental chambers that produce reliable and reproducible hypoxic conditions with defined concentrations of O2. The continual flow method ensures rapid equilibration of the chamber and increases the stability of the system. Additionally, the transparency and accessibility of the chambers allow for direct visualization of animals being exposed to hypoxia. We further demonstrate an effective method of harvesting C. elegans samples rapidly after exposure to hypoxia, which is necessary to observe many of the rapidly-reversed changes that occur in hypoxia10,14. This method provides a basic foundation that can be easily modified for individual laboratory needs, including different model systems and a variety of gasses.
Biochemistry, Issue 65, Molecular Biology, Cellular Biology, Genetics, Developmental Biology, C. elegans, hypoxia, hypoxia inducible factor-1 (hif-1), anoxia, oxygen
4088
Play Button
Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria
Authors: Jeremy C. Henderson, John P. O'Brien, Jennifer S. Brodbelt, M. Stephen Trent.
Institutions: The University of Texas at Austin, The University of Texas at Austin, The University of Texas at Austin.
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.
Chemistry, Issue 79, Membrane Lipids, Toll-Like Receptors, Endotoxins, Glycolipids, Lipopolysaccharides, Lipid A, Microbiology, Lipids, lipid A, Bligh-Dyer, thin layer chromatography (TLC), lipopolysaccharide, mass spectrometry, Collision Induced Dissociation (CID), Photodissociation (PD)
50623
Play Button
Large-scale Gene Knockdown in C. elegans Using dsRNA Feeding Libraries to Generate Robust Loss-of-function Phenotypes
Authors: Kathryn N. Maher, Mary Catanese, Daniel L. Chase.
Institutions: University of Massachusetts, Amherst, University of Massachusetts, Amherst, University of Massachusetts, Amherst.
RNA interference by feeding worms bacteria expressing dsRNAs has been a useful tool to assess gene function in C. elegans. While this strategy works well when a small number of genes are targeted for knockdown, large scale feeding screens show variable knockdown efficiencies, which limits their utility. We have deconstructed previously published RNAi knockdown protocols and found that the primary source of the reduced knockdown can be attributed to the loss of dsRNA-encoding plasmids from the bacteria fed to the animals. Based on these observations, we have developed a dsRNA feeding protocol that greatly reduces or eliminates plasmid loss to achieve efficient, high throughput knockdown. We demonstrate that this protocol will produce robust, reproducible knock down of C. elegans genes in multiple tissue types, including neurons, and will permit efficient knockdown in large scale screens. This protocol uses a commercially available dsRNA feeding library and describes all steps needed to duplicate the library and perform dsRNA screens. The protocol does not require the use of any sophisticated equipment, and can therefore be performed by any C. elegans lab.
Developmental Biology, Issue 79, Caenorhabditis elegans (C. elegans), Gene Knockdown Techniques, C. elegans, dsRNA interference, gene knockdown, large scale feeding screen
50693
Play Button
Encapsulation Thermogenic Preadipocytes for Transplantation into Adipose Tissue Depots
Authors: Lu Xu, Qiwen Shen, Zhongqi Mao, L. James Lee, Ouliana Ziouzenkova.
Institutions: The Ohio State University, The First Affiliated Hospital of Soochow University, The Ohio State University.
Cell encapsulation was developed to entrap viable cells within semi-permeable membranes. The engrafted encapsulated cells can exchange low molecular weight metabolites in tissues of the treated host to achieve long-term survival. The semipermeable membrane allows engrafted encapsulated cells to avoid rejection by the immune system. The encapsulation procedure was designed to enable a controlled release of bioactive compounds, such as insulin, other hormones, and cytokines. Here we describe a method for encapsulation of catabolic cells, which consume lipids for heat production and energy dissipation (thermogenesis) in the intra-abdominal adipose tissue of obese mice. Encapsulation of thermogenic catabolic cells may be potentially applicable to the prevention and treatment of obesity and type 2 diabetes. Another potential application of catabolic cells may include detoxification from alcohols or other toxic metabolites and environmental pollutants.
Medicine, Issue 100, encapsulation, microcapsules, thermogenesis, obesity, adipocytes
52806
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.