JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination.
.
PLoS ONE
PUBLISHED: 06-26-2015
The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods.
ABSTRACT
To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.
18 Related JoVE Articles!
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
50977
Play Button
Vascular Occlusion Training for Inclusion Body Myositis: A Novel Therapeutic Approach
Authors: Bruno Gualano, Carlos Ugrinowitsch, Manoel Neves Jr., Fernanda R. Lima, Ana Lúcia S. Pinto, Gilberto Laurentino, Valmor A.A. Tricoli, Antonio H. Lancha Jr., Hamilton Roschel.
Institutions: University of São Paulo, University of São Paulo.
Inclusion body myositis (IBM) is a rare idiopathic inflammatory myopathy. It is known to produces remarkable muscle weakness and to greatly compromise function and quality of life. Moreover, clinical practice suggests that, unlike other inflammatory myopathies, the majority of IBM patients are not responsive to treatment with immunosuppressive or immunomodulatory drugs to counteract disease progression1. Additionally, conventional resistance training programs have been proven ineffective in restoring muscle function and muscle mass in these patients2,3. Nevertheless, we have recently observed that restricting muscle blood flow using tourniquet cuffs in association with moderate intensity resistance training in an IBM patient produced a significant gain in muscle mass and function, along with substantial benefits in quality of life4. Thus, a new non-pharmacological approach for IBM patients has been proposed. Herein, we describe the details of a proposed protocol for vascular occlusion associated with a resistance training program for this population.
Medicine, Issue 40, exercise training, therapeutical, myositis, vascular occlusion
1894
Play Button
Functional Near Infrared Spectroscopy of the Sensory and Motor Brain Regions with Simultaneous Kinematic and EMG Monitoring During Motor Tasks
Authors: Theresa Sukal-Moulton, Ana Carolina de Campos, Christopher J. Stanley, Diane L. Damiano.
Institutions: National Institutes of Health.
There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, as well as those with movement disorders, such as cerebral palsy. An additional consideration when studying movement disorders, however, is the quality of actual movements performed and the potential for additional, unintended movements. Therefore, concurrent monitoring of both blood flow changes in the brain and actual movements of the body during testing is required for appropriate interpretation of fNIRS results. Here, we show a protocol for the combination of fNIRS with muscle and kinematic monitoring during motor tasks. We explore gait, a unilateral multi-joint movement (cycling), and two unilateral single-joint movements (isolated ankle dorsiflexion, and isolated hand squeezing). The techniques presented can be useful in studying both typical and atypical motor control, and can be modified to investigate a broad range of tasks and scientific questions.
Behavior, Issue 94, functional near infrared spectroscopy, fNIRS, brain activity, gait, motor tasks, cerebral palsy, coordination
52391
Play Button
An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents
Authors: Joy A. Franco, Heidi E. Kloefkorn, Shawn Hochman, Katherine A. Wilkinson.
Institutions: San José State University, University of Florida, Emory University School of Medicine, San José State University.
Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice.
Neuroscience, Issue 91, muscle spindle, muscle afferent, extensor digitorum longus, sensory neurons, electrophysiology
51948
Play Button
Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
Authors: Natalie Vanicek, Stephanie A. King, Risha Gohil, Ian C. Chetter, Patrick A Coughlin.
Institutions: University of Sydney, University of Hull, Hull and East Yorkshire Hospitals, Addenbrookes Hospital.
Computerized dynamic posturography with the EquiTest is an objective technique for measuring postural strategies under challenging static and dynamic conditions. As part of a diagnostic assessment, the early detection of postural deficits is important so that appropriate and targeted interventions can be prescribed. The Sensory Organization Test (SOT) on the EquiTest determines an individual's use of the sensory systems (somatosensory, visual, and vestibular) that are responsible for postural control. Somatosensory and visual input are altered by the calibrated sway-referenced support surface and visual surround, which move in the anterior-posterior direction in response to the individual's postural sway. This creates a conflicting sensory experience. The Motor Control Test (MCT) challenges postural control by creating unexpected postural disturbances in the form of backwards and forwards translations. The translations are graded in magnitude and the time to recover from the perturbation is computed. Intermittent claudication, the most common symptom of peripheral arterial disease, is characterized by a cramping pain in the lower limbs and caused by muscle ischemia secondary to reduced blood flow to working muscles during physical exertion. Claudicants often display poor balance, making them susceptible to falls and activity avoidance. The Ankle Brachial Pressure Index (ABPI) is a noninvasive method for indicating the presence of peripheral arterial disease and intermittent claudication, a common symptom in the lower extremities. ABPI is measured as the highest systolic pressure from either the dorsalis pedis or posterior tibial artery divided by the highest brachial artery systolic pressure from either arm. This paper will focus on the use of computerized dynamic posturography in the assessment of balance in claudicants.
Medicine, Issue 82, Posture, Computerized dynamic posturography, Ankle brachial pressure index, Peripheral arterial disease, Intermittent claudication, Balance, Posture, EquiTest, Sensory Organization Test, Motor Control Test
51077
Play Button
Proprioception and Tension Receptors in Crab Limbs: Student Laboratory Exercises
Authors: Zana R. Majeed, Josh Titlow, H. Bernard Hartman, Robin Cooper.
Institutions: University of Kentucky, University of Kentucky, University of Oregon.
The primary purpose of these procedures is to demonstrate for teaching and research purposes how to record the activity of living primary sensory neurons responsible for proprioception as they are detecting joint position and movement, and muscle tension. Electrical activity from crustacean proprioceptors and tension receptors is recorded by basic neurophysiological instrumentation, and a transducer is used to simultaneously measure force that is generated by stimulating a motor nerve. In addition, we demonstrate how to stain the neurons for a quick assessment of their anatomical arrangement or for permanent fixation. Staining reveals anatomical organization that is representative of chordotonal organs in most crustaceans. Comparing the tension nerve responses to the proprioceptive responses is an effective teaching tool in determining how these sensory neurons are defined functionally and how the anatomy is correlated to the function. Three staining techniques are presented allowing researchers and instructors to choose a method that is ideal for their laboratory.
Neuroscience, Issue 80, Crustacean, joint, Muscle, sensory, teaching, educational, neuroscience
51050
Play Button
Tibial Nerve Transection - A Standardized Model for Denervation-induced Skeletal Muscle Atrophy in Mice
Authors: Jane A. E. Batt, James Ralph Bain.
Institutions: St Michaels Hospital, McMaster University.
The tibial nerve transection model is a well-tolerated, validated, and reproducible model of denervation-induced skeletal muscle atrophy in rodents. Although originally developed and used extensively in the rat due to its larger size, the tibial nerve in mice is big enough that it can be easily manipulated with either crush or transection, leaving the peroneal and sural nerve branches of the sciatic nerve intact and thereby preserving their target muscles. Thus, this model offers the advantages of inducing less morbidity and impediment of ambulation than the sciatic nerve transection model and also allows investigators to study the physiologic, cellular and molecular biologic mechanisms regulating the process of muscle atrophy in genetically engineered mice. The tibial nerve supplies the gastrocnemius, soleus and plantaris muscles, so its transection permits the study of denervated skeletal muscle composed of fast twitch type II fibers and/or slow twitch type I fibers. Here we demonstrate the tibial nerve transection model in the C57Black6 mouse. We assess the atrophy of the gastrocnemius muscle, as a representative muscle, at 1, 2, and 4 weeks post-denervation by measuring muscle weights and fiber type specific cross-sectional area on paraffin-embedded histologic sections immunostained for fast twitch myosin.
Medicine, Issue 81, mouse, tibial nerve, gastronemius, soleus, atrophy, denervation, reinnervation, myofiber, transection
50657
Play Button
Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding
Authors: Thomas C. Bulea, Atilla Kilicarslan, Recep Ozdemir, William H. Paloski, Jose L. Contreras-Vidal.
Institutions: National Institutes of Health, University of Houston, University of Houston, University of Houston, University of Houston.
Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG.
Behavior, Issue 77, Neuroscience, Neurobiology, Medicine, Anatomy, Physiology, Biomedical Engineering, Molecular Biology, Electroencephalography, EEG, Electromyography, EMG, electroencephalograph, gait, brain-computer interface, brain machine interface, neural decoding, over-ground walking, robotic gait, brain, imaging, clinical techniques
50602
Play Button
A Novel Application of Musculoskeletal Ultrasound Imaging
Authors: Avinash Eranki, Nelson Cortes, Zrinka Gregurić Ferenček, Siddhartha Sikdar.
Institutions: George Mason University, George Mason University, George Mason University, George Mason University.
Ultrasound is an attractive modality for imaging muscle and tendon motion during dynamic tasks and can provide a complementary methodological approach for biomechanical studies in a clinical or laboratory setting. Towards this goal, methods for quantification of muscle kinematics from ultrasound imagery are being developed based on image processing. The temporal resolution of these methods is typically not sufficient for highly dynamic tasks, such as drop-landing. We propose a new approach that utilizes a Doppler method for quantifying muscle kinematics. We have developed a novel vector tissue Doppler imaging (vTDI) technique that can be used to measure musculoskeletal contraction velocity, strain and strain rate with sub-millisecond temporal resolution during dynamic activities using ultrasound. The goal of this preliminary study was to investigate the repeatability and potential applicability of the vTDI technique in measuring musculoskeletal velocities during a drop-landing task, in healthy subjects. The vTDI measurements can be performed concurrently with other biomechanical techniques, such as 3D motion capture for joint kinematics and kinetics, electromyography for timing of muscle activation and force plates for ground reaction force. Integration of these complementary techniques could lead to a better understanding of dynamic muscle function and dysfunction underlying the pathogenesis and pathophysiology of musculoskeletal disorders.
Medicine, Issue 79, Anatomy, Physiology, Joint Diseases, Diagnostic Imaging, Muscle Contraction, ultrasonic applications, Doppler effect (acoustics), Musculoskeletal System, biomechanics, musculoskeletal kinematics, dynamic function, ultrasound imaging, vector Doppler, strain, strain rate
50595
Play Button
Movement Retraining using Real-time Feedback of Performance
Authors: Michael Anthony Hunt.
Institutions: University of British Columbia .
Any modification of movement - especially movement patterns that have been honed over a number of years - requires re-organization of the neuromuscular patterns responsible for governing the movement performance. This motor learning can be enhanced through a number of methods that are utilized in research and clinical settings alike. In general, verbal feedback of performance in real-time or knowledge of results following movement is commonly used clinically as a preliminary means of instilling motor learning. Depending on patient preference and learning style, visual feedback (e.g. through use of a mirror or different types of video) or proprioceptive guidance utilizing therapist touch, are used to supplement verbal instructions from the therapist. Indeed, a combination of these forms of feedback is commonplace in the clinical setting to facilitate motor learning and optimize outcomes. Laboratory-based, quantitative motion analysis has been a mainstay in research settings to provide accurate and objective analysis of a variety of movements in healthy and injured populations. While the actual mechanisms of capturing the movements may differ, all current motion analysis systems rely on the ability to track the movement of body segments and joints and to use established equations of motion to quantify key movement patterns. Due to limitations in acquisition and processing speed, analysis and description of the movements has traditionally occurred offline after completion of a given testing session. This paper will highlight a new supplement to standard motion analysis techniques that relies on the near instantaneous assessment and quantification of movement patterns and the display of specific movement characteristics to the patient during a movement analysis session. As a result, this novel technique can provide a new method of feedback delivery that has advantages over currently used feedback methods.
Medicine, Issue 71, Biophysics, Anatomy, Physiology, Physics, Biomedical Engineering, Behavior, Psychology, Kinesiology, Physical Therapy, Musculoskeletal System, Biofeedback, biomechanics, gait, movement, walking, rehabilitation, clinical, training
50182
Play Button
Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles
Authors: Ki Ho Park, Leticia Brotto, Oanh Lehoang, Marco Brotto, Jianjie Ma, Xiaoli Zhao.
Institutions: UMDNJ-Robert Wood Johnson Medical School, University of Missouri-Kansas City, Ohio State University .
Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca2+ handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca2+ signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle.
Physiology, Issue 69, extensor digitorum longus, soleus, in vitro contractility, calcium signaling, muscle-tendon complex, mechanic alternans
4198
Play Button
A Murine Model of Muscle Training by Neuromuscular Electrical Stimulation
Authors: Fabrisia Ambrosio, G. Kelley Fitzgerald, Ricardo Ferrari, Giovanna Distefano, George Carvell.
Institutions: University of Pittsburgh, University of Pittsburgh, University of Pittsburgh.
Neuromuscular electrical stimulation (NMES) is a common clinical modality that is widely used to restore1, maintain2 or enhance3-5 muscle functional capacity. Transcutaneous surface stimulation of skeletal muscle involves a current flow between a cathode and an anode, thereby inducing excitement of the motor unit and the surrounding muscle fibers. NMES is an attractive modality to evaluate skeletal muscle adaptive responses for several reasons. First, it provides a reproducible experimental model in which physiological adaptations, such as myofiber hypertophy and muscle strengthening6, angiogenesis7-9, growth factor secretion9-11, and muscle precursor cell activation12 are well documented. Such physiological responses may be carefully titrated using different parameters of stimulation (for Cochrane review, see 13). In addition, NMES recruits motor units non-selectively, and in a spatially fixed and temporally synchronous manner14, offering the advantage of exerting a treatment effect on all fibers, regardless of fiber type. Although there are specified contraindications to NMES in clinical populations, including peripheral venous disorders or malignancy, for example, NMES is safe and feasible, even for those who are ill and/or bedridden and for populations in which rigorous exercise may be challenging. Here, we demonstrate the protocol for adapting commercially available electrodes and performing a NMES protocol using a murine model. This animal model has the advantage of utilizing a clinically available device and providing instant feedback regarding positioning of the electrode to elicit the desired muscle contractile effect. For the purpose of this manuscript, we will describe the protocol for muscle stimulation of the anterior compartment muscles of a mouse hindlimb.
Neuroscience, Issue 63, Neuromuscular electrical stimulation, skeletal muscle, pre-clinical, animal, medicine, physiology
3914
Play Button
Behavioral Determination of Stimulus Pair Discrimination of Auditory Acoustic and Electrical Stimuli Using a Classical Conditioning and Heart-rate Approach
Authors: Simeon J. Morgan, Antonio G. Paolini.
Institutions: La Trobe University.
Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants1-3 and auditory midbrain implants4,5. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices6,7. Several techniques such as reward-based operant conditioning6-8, conditioned avoidance9-11, or classical fear conditioning12 have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.
Neuroscience, Issue 64, Physiology, auditory, hearing, brainstem, stimulation, rat, abi
3598
Play Button
An in vivo Rodent Model of Contraction-induced Injury and Non-invasive Monitoring of Recovery
Authors: Richard M. Lovering, Joseph A. Roche, Mariah H. Goodall, Brett B. Clark, Alan McMillan.
Institutions: University of Maryland School of Medicine, University of Maryland School of Medicine, University of Maryland School of Medicine.
Muscle strains are one of the most common complaints treated by physicians. A muscle injury is typically diagnosed from the patient history and physical exam alone, however the clinical presentation can vary greatly depending on the extent of injury, the patient's pain tolerance, etc. In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies. Biological markers, such as serum creatine kinase levels, are typically elevated with muscle injury, but their levels do not always correlate with the loss of force production. This is even true of histological findings from animals, which provide a "direct measure" of damage, but do not account for all the loss of function. Some have argued that the most comprehensive measure of the overall health of the muscle in contractile force. Because muscle injury is a random event that occurs under a variety of biomechanical conditions, it is difficult to study. Here, we describe an in vivo animal model to measure torque and to produce a reliable muscle injury. We also describe our model for measurement of force from an isolated muscle in situ. Furthermore, we describe our small animal MRI procedure.
Medicine, Issue 51, Skeletal muscle, lengthening contraction, injury, regeneration, contractile function, torque
2782
Play Button
Manual Muscle Testing: A Method of Measuring Extremity Muscle Strength Applied to Critically Ill Patients
Authors: Nancy Ciesla, Victor Dinglas, Eddy Fan, Michelle Kho, Jill Kuramoto, Dale Needham.
Institutions: Johns Hopkins University, Johns Hopkins Hospital , Johns Hopkins University, University of Maryland Medical System.
Survivors of acute respiratory distress syndrome (ARDS) and other causes of critical illness often have generalized weakness, reduced exercise tolerance, and persistent nerve and muscle impairments after hospital discharge.1-6 Using an explicit protocol with a structured approach to training and quality assurance of research staff, manual muscle testing (MMT) is a highly reliable method for assessing strength, using a standardized clinical examination, for patients following ARDS, and can be completed with mechanically ventilated patients who can tolerate sitting upright in bed and are able to follow two-step commands. 7, 8 This video demonstrates a protocol for MMT, which has been taught to ≥43 research staff who have performed >800 assessments on >280 ARDS survivors. Modifications for the bedridden patient are included. Each muscle is tested with specific techniques for positioning, stabilization, resistance, and palpation for each score of the 6-point ordinal Medical Research Council scale.7,9-11 Three upper and three lower extremity muscles are graded in this protocol: shoulder abduction, elbow flexion, wrist extension, hip flexion, knee extension, and ankle dorsiflexion. These muscles were chosen based on the standard approach for evaluating patients for ICU-acquired weakness used in prior publications. 1,2.
Medicine, Issue 50, Muscle Strength, Critical illness, Intensive Care Units, Reproducibility of Results, Clinical Protocols.
2632
Play Button
Myo-mechanical Analysis of Isolated Skeletal Muscle
Authors: Peter E. Oishi, Sompob Cholsiripunlert, Wenhui Gong, Anthony J. Baker, Harold S. Bernstein.
Institutions: University of California San Francisco, University of California San Francisco, San Francisco State University, University of California San Francisco , University of California San Francisco.
To assess the in vivo effects of therapeutic interventions for the treatment of muscle disease 1,2,3, quantitative methods are needed that measure force generation and fatigability in treated muscle. We describe a detailed approach to evaluating myo-mechanical properties in freshly explanted hindlimb muscle from the mouse. We describe the atraumatic harvest of mouse extensor digitorum longus muscle, mounting the muscle in a muscle strip myograph (Model 820MS; Danish Myo Technology), and the measurement of maximal twitch and tetanic tension, contraction time, and half-relaxation time, using a square pulse stimulator (Model S48; Grass Technologies). Using these measurements, we demonstrate the calculation of specific twitch and tetanic tension normalized to muscle cross-sectional area, the twitch-to-tetanic tension ratio, the force-frequency relationship curve and the low frequency fatigue curve 4. This analysis provides a method for quantitative comparison between therapeutic interventions in mouse models of muscle disease 1,2,3,5, as well as comparison of the effects of genetic modification on muscle function 6,7,8,9.
Medicine, Issue 48, muscle, twitch, tetanus, force-frequency, fatigue
2582
Play Button
Methods to Quantify Pharmacologically Induced Alterations in Motor Function in Human Incomplete SCI
Authors: Christopher K. Thompson, Arun Jayaraman, Catherine Kinnaird, T. George Hornby.
Institutions: Rehabilitation Institute of Chicago, University of Illinois at Chicago, University of Illinois at Chicago.
Spinal cord injury (SCI) is a debilitating disorder, which produces profound deficits in volitional motor control. Following medical stabilization, recovery from SCI typically involves long term rehabilitation. While recovery of walking ability is a primary goal in many patients early after injury, those with a motor incomplete SCI, indicating partial preservation of volitional control, may have the sufficient residual descending pathways necessary to attain this goal. However, despite physical interventions, motor impairments including weakness, and the manifestation of abnormal involuntary reflex activity, called spasticity or spasms, are thought to contribute to reduced walking recovery. Doctrinaire thought suggests that remediation of this abnormal motor reflexes associated with SCI will produce functional benefits to the patient. For example, physicians and therapists will provide specific pharmacological or physical interventions directed towards reducing spasticity or spasms, although there continues to be little empirical data suggesting that these strategies improve walking ability. In the past few decades, accumulating data has suggested that specific neuromodulatory agents, including agents which mimic or facilitate the actions of the monoamines, including serotonin (5HT) and norepinephrine (NE), can initiate or augment walking behaviors in animal models of SCI. Interestingly, many of these agents, particularly 5HTergic agonists, can markedly increase spinal excitability, which in turn also increases reflex activity in these animals. Counterintuitive to traditional theories of recovery following human SCI, the empirical evidence from basic science experiments suggest that this reflex hyper excitability and generation of locomotor behaviors are driven in parallel by neuromodulatory inputs (5HT) and may be necessary for functional recovery following SCI. The application of this novel concept derived from basic scientific studies to promote recovery following human SCI would appear to be seamless, although the direct translation of the findings can be extremely challenging. Specifically, in the animal models, an implanted catheter facilitates delivery of very specific 5HT agonist compounds directly onto the spinal circuitry. The translation of this technique to humans is hindered by the lack of specific surgical techniques or available pharmacological agents directed towards 5HT receptor subtypes that are safe and effective for human clinical trials. However, oral administration of commonly available 5HTergic agents, such as selective serotonin reuptake inhibitors (SSRIs), may be a viable option to increase central 5HT concentrations in order to facilitate walking recovery in humans. Systematic quantification of how these SSRIs modulate human motor behaviors following SCI, with a specific focus on strength, reflexes, and the recovery of walking ability, are missing. This video demonstration is a progressive attempt to systematically and quantitatively assess the modulation of reflex activity, volitional strength and ambulation following the acute oral administration of an SSRI in human SCI. Agents are applied on single days to assess the immediate effects on motor function in this patient population, with long-term studies involving repeated drug administration combined with intensive physical interventions.
Medicine, Issue 50, spinal cord injury, spasticity, locomotion, strength, vector coding, biomechanics, reflex, serotonin, human, electromyography
2148
Play Button
Quantifying Learning in Young Infants: Tracking Leg Actions During a Discovery-learning Task
Authors: Barbara Sargent, Hendrik Reimann, Masayoshi Kubo, Linda Fetters.
Institutions: University of Southern California, Temple University, Niigata University of Health and Welfare.
Task-specific actions emerge from spontaneous movement during infancy. It has been proposed that task-specific actions emerge through a discovery-learning process. Here a method is described in which 3-4 month old infants learn a task by discovery and their leg movements are captured to quantify the learning process. This discovery-learning task uses an infant activated mobile that rotates and plays music based on specified leg action of infants. Supine infants activate the mobile by moving their feet vertically across a virtual threshold. This paradigm is unique in that as infants independently discover that their leg actions activate the mobile, the infants’ leg movements are tracked using a motion capture system allowing for the quantification of the learning process. Specifically, learning is quantified in terms of the duration of mobile activation, the position variance of the end effectors (feet) that activate the mobile, changes in hip-knee coordination patterns, and changes in hip and knee muscle torque. This information describes infant exploration and exploitation at the interplay of person and environmental constraints that support task-specific action. Subsequent research using this method can investigate how specific impairments of different populations of infants at risk for movement disorders influence the discovery-learning process for task-specific action.
Behavior, Issue 100, infant, discovery-learning, motor learning, motor control, kinematics, kinetics
52841
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.