JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The Prognostic Role of Para-Aortic Lymph Nodes in Patients with Colorectal Cancer: Is It Regional or Distant Disease?
PUBLISHED: 06-27-2015
Visible para-aortic lymph nodes of ?2 mm in size are common metastatic patterns of colorectal cancer (CRC) seen on imaging. Their prognostic value, however, remains inconclusive. We aimed to assess the prognostic role of visible para-aortic lymph nodes (PALNs).
Authors: Elyse L. Walk, Sarah L. McLaughlin, Scott A. Weed.
Published: 07-25-2015
High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease.
20 Related JoVE Articles!
Play Button
Intralymphatic Immunotherapy and Vaccination in Mice
Authors: Pål Johansen, Thomas M. Kündig.
Institutions: University Hospital Zurich.
Vaccines are typically injected subcutaneously or intramuscularly for stimulation of immune responses. The success of this requires efficient drainage of vaccine to lymph nodes where antigen presenting cells can interact with lymphocytes for generation of the wanted immune responses. The strength and the type of immune responses induced also depend on the density or frequency of interactions as well as the microenvironment, especially the content of cytokines. As only a minute fraction of peripherally injected vaccines reaches the lymph nodes, vaccinations of mice and humans were performed by direct injection of vaccine into inguinal lymph nodes, i.e. intralymphatic injection. In man, the procedure is guided by ultrasound. In mice, a small (5-10 mm) incision is made in the inguinal region of anesthetized animals, the lymph node is localized and immobilized with forceps, and a volume of 10-20 μl of the vaccine is injected under visual control. The incision is closed with a single stitch using surgical sutures. Mice were vaccinated with plasmid DNA, RNA, peptide, protein, particles, and bacteria as well as adjuvants, and strong improvement of immune responses against all type of vaccines was observed. The intralymphatic method of vaccination is especially appropriate in situations where conventional vaccination produces insufficient immunity or where the amount of available vaccine is limited.
Immunology, Issue 84, Vaccination, Immunization, intralymphatic immunotherapy, Lymph node injection, vaccines, adjuvants, surgery, anesthesia
Play Button
Aortic Ring Assay
Authors: Keren Bellacen, Eli C. Lewis.
Institutions: Ben-Gurion University.
Angiogenesis, the sprouting of blood vessels from preexisting vasculature is associated with both natural and pathological processes. Various angiogenesis assays involve the study of individual endothelial cells in culture conditions (1). The aortic ring assay is an angiogenesis model that is based on organ culture. In this assay, angiogenic vessels grow from a segment of the aorta (modified from (2)). Briefly, mouse thoracic aorta is excised, the fat layer and adventitia are removed, and rings approximately 1 mm in length are prepared. Individual rings are then embedded in a small solid dome of basement matrix extract (BME), cast inside individual wells of a 48-well plate. Angiogenic factors and inhibitors of angiogenesis can be directly added to the rings, and a mixed co-culture of aortic rings and other cell types can be employed for the study of paracrine angiogenic effects. Sprouting is observed by inspection under a stereomicroscope over a period of 6-12 days. Due to the large variation caused by the irregularities in the aortic segments, experimentation in 6-plicates is strongly advised. Neovessel outgrowth is monitored throughout the experiment and imaged using phase microscopy, and supernatants are collected for measurement of relevant angiogenic and anti-angiogenic factors, cell death markers and nitrite.
Medicine, Issue 33, aortic rings, angiogenesis, blood vessels, aorta, mouse, vessel outgrowth
Play Button
Isolation of Human Lymphatic Endothelial Cells by Multi-parameter Fluorescence-activated Cell Sorting
Authors: Zerina Lokmic, Elizabeth S. Ng, Matthew Burton, Edouard G. Stanley, Anthony J. Penington, Andrew G. Elefanty.
Institutions: The Royal Children’s Hospital, The University of Melbourne, Monash University, Clayton.
Lymphatic system disorders such as primary lymphedema, lymphatic malformations and lymphatic tumors are rare conditions that cause significant morbidity but little is known about their biology. Isolating highly pure human lymphatic endothelial cells (LECs) from diseased and healthy tissue would facilitate studies of the lymphatic endothelium at genetic, molecular and cellular levels. It is anticipated that these investigations may reveal targets for new therapies that may change the clinical management of these conditions. A protocol describing the isolation of human foreskin LECs and lymphatic malformation lymphatic endothelial cells (LM LECs) is presented. To obtain a single cell suspension tissue was minced and enzymatically treated using dispase II and collagenase II. The resulting single cell suspension was then labelled with antibodies to cluster of differentiation (CD) markers CD34, CD31, Vascular Endothelial Growth Factor-3 (VEGFR-3) and PODOPLANIN. Stained viable cells were sorted on a fluorescently activated cell sorter (FACS) to separate the CD34LowCD31PosVEGFR-3PosPODOPLANINPos LM LEC population from other endothelial and non-endothelial cells. The sorted LM LECs were cultured and expanded on fibronectin-coated flasks for further experimental use.
Medicine, Issue 99, lymphatic endothelial cell,lymphatic malformation, flow cytometric sorting,cell culture, cell surface markers
Play Button
Ultrasound Based Assessment of Coronary Artery Flow and Coronary Flow Reserve Using the Pressure Overload Model in Mice
Authors: Wei-Ting Chang, Sudeshna Fisch, Michael Chen, Yiling Qiu, Susan Cheng, Ronglih Liao.
Institutions: Brigham and Women's Hospital, Harvard Medical School, Chi-Mei Medical Center, Tainan.
Transthoracic Doppler echocardiography (TTDE) is a clinically useful, noninvasive tool for studying coronary artery flow velocity and coronary flow reserve (CFR) in humans. Reduced CFR is accompanied by marked intramyocardial and pericoronary fibrosis and is used as an indication of the severity of dysfunction. This study explores, step-by-step, the real-time changes measured in the coronary flow velocity, CFR and systolic to diastolic peak velocity (S/D) ratio in the setting of an aortic banding model in mice. By using a Doppler transthoracic imaging technique that yields reproducible and reliable data, the method assesses changes in flow in the septal coronary artery (SCA), for a period of over two weeks in mice, that previously either underwent aortic banding or thoracotomy. During imaging, hyperemia in all mice was induced by isoflurane, an anesthetic that increased coronary flow velocity when compared with resting flow. All images were acquired by a single imager. Two ratios, (1) CFR, the ratio between hyperemic and baseline flow velocities, and (2) systolic (S) to diastolic (D) flow were determined, using a proprietary software and by two independent observers. Importantly, the observed changes in coronary flow preceded LV dysfunction as evidenced by normal LV mass and fractional shortening (FS). The method was benchmarked against the current gold standard of coronary assessment, histopathology. The latter technique showed clear pathologic changes in the coronary artery in the form of peri-coronary fibrosis that correlated to the flow changes as assessed by echocardiography. The study underscores the value of using a non-invasive technique to monitor coronary circulation in mouse hearts. The method minimizes redundant use of research animals and demonstrates that advanced ultrasound-based indices, such as CFR and S/D ratios, can serve as viable diagnostic tools in a variety of investigational protocols including drug studies and the study of genetically modified strains.
Medicine, Issue 98, Coronary flow reserve, Doppler echocardiography, non-invasive methodology, use of animals in research, pressure overload, aortic banding
Play Button
The Mesenteric Lymph Duct Cannulated Rat Model: Application to the Assessment of Intestinal Lymphatic Drug Transport
Authors: Natalie L. Trevaskis, Luojuan Hu, Suzanne M. Caliph, Sifei Han, Christopher J.H. Porter.
Institutions: Monash University (Parkville Campus).
The intestinal lymphatic system plays key roles in fluid transport, lipid absorption and immune function. Lymph flows directly from the small intestine via a series of lymphatic vessels and nodes that converge at the superior mesenteric lymph duct. Cannulation of the mesenteric lymph duct thus enables the collection of mesenteric lymph flowing from the intestine. Mesenteric lymph consists of a cellular fraction of immune cells (99% lymphocytes), aqueous fraction (fluid, peptides and proteins such as cytokines and gut hormones) and lipoprotein fraction (lipids, lipophilic molecules and apo-proteins). The mesenteric lymph duct cannulation model can therefore be used to measure the concentration and rate of transport of a range of factors from the intestine via the lymphatic system. Changes to these factors in response to different challenges (e.g., diets, antigens, drugs) and in disease (e.g., inflammatory bowel disease, HIV, diabetes) can also be determined. An area of expanding interest is the role of lymphatic transport in the absorption of orally administered lipophilic drugs and prodrugs that associate with intestinal lipid absorption pathways. Here we describe, in detail, a mesenteric lymph duct cannulated rat model which enables evaluation of the rate and extent of lipid and drug transport via the lymphatic system for several hours following intestinal delivery. The method is easily adaptable to the measurement of other parameters in lymph. We provide detailed descriptions of the difficulties that may be encountered when establishing this complex surgical method, as well as representative data from failed and successful experiments to provide instruction on how to confirm experimental success and interpret the data obtained.
Immunology, Issue 97, Intestine, Mesenteric, Lymphatic, Lymph, Carotid artery, Cannulation, Cannula, Rat, Drug, Lipid, Absorption, Surgery
Play Button
A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies
Authors: Inti Zlobec, Guido Suter, Aurel Perren, Alessandro Lugli.
Institutions: University of Bern.
Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a ‘donor’ block into a ‘recipient’ block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 ‘recipient’ blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research.
Medicine, Issue 91, tissue microarray, biomarkers, prognostic, predictive, digital pathology, slide scanning
Play Button
Substernal Thyroid Biopsy Using Endobronchial Ultrasound-guided Transbronchial Needle Aspiration
Authors: Abhishek Kumar, Arjun Mohan, Samjot S. Dhillon, Kassem Harris.
Institutions: State University of New York, Buffalo, Roswell Park Cancer Institute, State University of New York, Buffalo.
Substernal thyroid goiter (STG) represents about 5.8% of all mediastinal lesions1. There is a wide variation in the published incidence rates due to the lack of a standardized definition for STG. Biopsy is often required to differentiate benign from malignant lesions. Unlike cervical thyroid, the overlying sternum precludes ultrasound-guided percutaneous fine needle aspiration of STG. Consequently, surgical mediastinoscopy is performed in the majority of cases, causing significant procedure related morbidity and cost to healthcare. Endobronchial Ultrasound-guided Transbronchial Needle Aspiration (EBUS-TBNA) is a frequently used procedure for diagnosis and staging of non-small cell lung cancer (NSCLC). Minimally invasive needle biopsy for lesions adjacent to the airways can be performed under real-time ultrasound guidance using EBUS. Its safety and efficacy is well established with over 90% sensitivity and specificity. The ability to perform EBUS as an outpatient procedure with same-day discharges offers distinct morbidity and financial advantages over surgery. As physicians performing EBUS gained procedural expertise, they have attempted to diversify its role in the diagnosis of non-lymph node thoracic pathologies. We propose here a role for EBUS-TBNA in the diagnosis of substernal thyroid lesions, along with a step-by-step protocol for the procedure.
Medicine, Issue 93, substernal thyroid, retrosternal thyroid, intra-thoracic thyroid, goiter, endobronchial ultrasound, EBUS, transbronchial needle aspiration, TBNA, biopsy, needle biopsy
Play Button
Isolation of Murine Lymph Node Stromal Cells
Authors: Maria A. S. Broggi, Mathias Schmaler, Nadège Lagarde, Simona W. Rossi.
Institutions: University of Basel and University Hospital Basel.
Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host. Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed.
Immunology, Issue 90, lymph node, lymph node stromal cells, digestion, isolation, enzymes, fibroblastic reticular cell, lymphatic endothelial cell, blood endothelial cell
Play Button
A Mouse Tumor Model of Surgical Stress to Explore the Mechanisms of Postoperative Immunosuppression and Evaluate Novel Perioperative Immunotherapies
Authors: Lee-Hwa Tai, Christiano Tanese de Souza, Shalini Sahi, Jiqing Zhang, Almohanad A Alkayyal, Abhirami Anu Ananth, Rebecca A.C. Auer.
Institutions: Ottawa Hospital Research Institute, University of Ottawa, University of Ottawa, The Second Hospital of Shandong University, University of Tabuk, Ottawa General Hospital.
Surgical resection is an essential treatment for most cancer patients, but surgery induces dysfunction in the immune system and this has been linked to the development of metastatic disease in animal models and in cancer patients. Preclinical work from our group and others has demonstrated a profound suppression of innate immune function, specifically NK cells in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Relatively few animal studies and clinical trials have focused on characterizing and reversing the detrimental effects of cancer surgery. Using a rigorous animal model of spontaneously metastasizing tumors and surgical stress, the enhancement of cancer surgery on the development of lung metastases was demonstrated. In this model, 4T1 breast cancer cells are implanted in the mouse mammary fat pad. At day 14 post tumor implantation, a complete resection of the primary mammary tumor is performed in all animals. A subset of animals receives additional surgical stress in the form of an abdominal nephrectomy. At day 28, lung tumor nodules are quantified. When immunotherapy was given immediately preoperatively, a profound activation of immune cells which prevented the development of metastases following surgery was detected. While the 4T1 breast tumor surgery model allows for the simulation of the effects of abdominal surgical stress on tumor metastases, its applicability to other tumor types needs to be tested. The current challenge is to identify safe and promising immunotherapies in preclinical mouse models and to translate them into viable perioperative therapies to be given to cancer surgery patients to prevent the recurrence of metastatic disease.
Medicine, Issue 85, mouse, tumor model, surgical stress, immunosuppression, perioperative immunotherapy, metastases
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
Play Button
Initiation of Metastatic Breast Carcinoma by Targeting of the Ductal Epithelium with Adenovirus-Cre: A Novel Transgenic Mouse Model of Breast Cancer
Authors: Melanie R. Rutkowski, Michael J. Allegrezza, Nikolaos Svoronos, Amelia J. Tesone, Tom L. Stephen, Alfredo Perales-Puchalt, Jenny Nguyen, Paul J. Zhang, Steven N. Fiering, Julia Tchou, Jose R. Conejo-Garcia.
Institutions: Wistar Institute, University of Pennsylvania, Geisel School of Medicine at Dartmouth, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Breast cancer is a heterogeneous disease involving complex cellular interactions between the developing tumor and immune system, eventually resulting in exponential tumor growth and metastasis to distal tissues and the collapse of anti-tumor immunity. Many useful animal models exist to study breast cancer, but none completely recapitulate the disease progression that occurs in humans. In order to gain a better understanding of the cellular interactions that result in the formation of latent metastasis and decreased survival, we have generated an inducible transgenic mouse model of YFP-expressing ductal carcinoma that develops after sexual maturity in immune-competent mice and is driven by consistent, endocrine-independent oncogene expression. Activation of YFP, ablation of p53, and expression of an oncogenic form of K-ras was achieved by the delivery of an adenovirus expressing Cre-recombinase into the mammary duct of sexually mature, virgin female mice. Tumors begin to appear 6 weeks after the initiation of oncogenic events. After tumors become apparent, they progress slowly for approximately two weeks before they begin to grow exponentially. After 7-8 weeks post-adenovirus injection, vasculature is observed connecting the tumor mass to distal lymph nodes, with eventual lymphovascular invasion of YFP+ tumor cells to the distal axillary lymph nodes. Infiltrating leukocyte populations are similar to those found in human breast carcinomas, including the presence of αβ and γδ T cells, macrophages and MDSCs. This unique model will facilitate the study of cellular and immunological mechanisms involved in latent metastasis and dormancy in addition to being useful for designing novel immunotherapeutic interventions to treat invasive breast cancer.
Medicine, Issue 85, Transgenic mice, breast cancer, metastasis, intraductal injection, latent mutations, adenovirus-Cre
Play Button
Isolation of CD4+ T cells from Mouse Lymph Nodes Using Miltenyi MACS Purification
Authors: Melanie P. Matheu, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
Isolation of cells from the primary source is a necessary step in many more complex protocols. Miltenyi offers kits to isolate cells from several organisms including humans, non-human primates, rat and, as we describe here, mice. Magnetic bead-based cell separation allows for either positive selection (or cell depletion) as well as negative selection. Here, we demonstrate negative selection of untouched or na ve CD4+ helper T cells. Using this standard protocol we typically purify cells that are ≥ 96% pure CD4+/CD3+. This protocol is used in conjunction with the protocol Dissection and 2-Photon Imaging of Peripheral Lymph Nodes in Mice published in issue 7 of JoVE, for purification of T cells and other cell types to adoptively transfer for imaging purposes. Although we did not demonstrate FACS analysis in this protocol video, it is highly recommended to check the overall purity of isolated cells using the appropriate antibodies via FACS. In addition, we demonstrate the non-sterile method of T cell isolation. If sterile cells are needed for your particular end-user application, be sure to do all of the demonstrated procedures in the tissue culture hood under standard sterile conditions. Thank you for watching and good luck with your own experiments!
Immunology, Issue 9, Cell isolation, Cell separation, T cells, Purification, Mouse, Lymphocyte, Purification, Miltenyi, MACS kit,
Play Button
Intra-lymph Node Injection of Biodegradable Polymer Particles
Authors: James I. Andorko, Lisa H. Tostanoski, Eduardo Solano, Maryam Mukhamedova, Christopher M. Jewell.
Institutions: University of Maryland, College Park.
Generation of adaptive immune response relies on efficient drainage or trafficking of antigen to lymph nodes for processing and presentation of these foreign molecules to T and B lymphocytes. Lymph nodes have thus become critical targets for new vaccines and immunotherapies. A recent strategy for targeting these tissues is direct lymph node injection of soluble vaccine components, and clinical trials involving this technique have been promising. Several biomaterial strategies have also been investigated to improve lymph node targeting, for example, tuning particle size for optimal drainage of biomaterial vaccine particles. In this paper we present a new method that combines direct lymph node injection with biodegradable polymer particles that can be laden with antigen, adjuvant, or other vaccine components. In this method polymeric microparticles or nanoparticles are synthesized by a modified double emulsion protocol incorporating lipid stabilizers. Particle properties (e.g. size, cargo loading) are confirmed by laser diffraction and fluorescent microscopy, respectively. Mouse lymph nodes are then identified by peripheral injection of a nontoxic tracer dye that allows visualization of the target injection site and subsequent deposition of polymer particles in lymph nodes. This technique allows direct control over the doses and combinations of biomaterials and vaccine components delivered to lymph nodes and could be harnessed in the development of new biomaterial-based vaccines.
Bioengineering, Issue 83, biomaterial, immunology, microparticle, nanoparticle, vaccine, adjuvant, lymph node, targeting, polymer
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
Play Button
Analysis of Pulmonary Dendritic Cell Maturation and Migration during Allergic Airway Inflammation
Authors: Rahul Kushwah, Jim Hu.
Institutions: McMaster University, Hamilton, University of Toronto.
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen1,2. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response3. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment4. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens5. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma6,7. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Immunology, Issue 65, Medicine, Physiology, Dendritic Cells, allergic airway inflammation, ovalbumin, lymph nodes, lungs, dendritic cell maturation, dendritic cell migration, mediastinal lymph nodes
Play Button
Murine Superficial Lymph Node Surgery
Authors: Mélissa Mathieu, Nathalie Labrecque.
Institutions: Maisonneuve-Rosemont Hospital Research Center, University of Montreal, University of Montreal.
In the field of immunology, to understand the progression of an immune response against a vaccine, an infection or a tumour, the response is often followed over time. Similarly, the study of lymphocyte homeostasis requires time course experiments. Performing these studies within the same mouse is ideal to reduce the experimental variability as well as the number of mice used. Blood withdrawal allows performance of time course experiments, but it only gives information about circulating lymphocytes and provides a limited number of cells1-4. Since lymphocytes circulating through the body and residing in the lymph nodes have different properties, it is important to examine both locations. The sequential removal of lymph nodes by surgery provides a unique opportunity to follow an immune response or immune cell expansion in the same mouse over time. Furthermore, this technique yields between 1-2x106 cells per lymph node which is sufficient to perform phenotypic characterization and/or functional assays. Sequential lymph node surgery or lymphadenectomy has been successfully used by us and others5-11. Here, we describe how the brachial and inguinal lymph nodes can be removed by making a small incision in the skin of an anesthetised mouse. Since the surgery is superficial and done rapidly, the mouse recovers very quickly, heals well and does not experience excessive pain. Every second day, it is possible to harvest one or two lymph nodes allowing for time course experiments. This technique is thus suitable to study the characteristics of lymph node-residing lymphocytes over time. This approach is suitable to various experimental designs and we believe that many laboratories would benefit from performing sequential lymph node surgeries.
Physiology, Issue 63, Immunology, mouse, lymph node, surgery, immune response, lymphocytes
Play Button
Ex vivo Imaging of T Cells in Murine Lymph Node Slices with Widefield and Confocal Microscopes
Authors: Hélène Salmon, Ana Rivas-Caicedo, François Asperti-Boursin, Camille Lebugle, Pierre Bourdoncle, Emmanuel Donnadieu.
Institutions: Université Paris Descartes, CNRS (UMR 8104), U1016, Paris, France.
Naïve T cells continuously traffic to secondary lymphoid organs, including peripheral lymph nodes, to detect rare expressed antigens. The migration of T cells into lymph nodes is a complex process which involves both cellular and chemical factors including chemokines. Recently, the use of two-photon microscopy has permitted to track T cells in intact lymph nodes and to derive some quantitative information on their behavior and their interactions with other cells. While there are obvious advantages to an in vivo system, this approach requires a complex and expensive instrumentation and provides limited access to the tissue. To analyze the behavior of T cells within murine lymph nodes, we have developed a slice assay 1, originally set up by neurobiologists and transposed recently to murine thymus 2. In this technique, fluorescently labeled T cells are plated on top of an acutely prepared lymph node slice. In this video-article, the localization and migration of T cells into the tissue are analyzed in real-time with a widefield and a confocal microscope. The technique which complements in vivo two-photon microscopy offers an effective approach to image T cells in their natural environment and to elucidate mechanisms underlying T cell migration.
Immunology, Issue 53, mouse, lymph node, organotypic slices, T cell, migration, fluorescence, microscopy, confocal
Play Button
Non-surgical Intratracheal Instillation of Mice with Analysis of Lungs and Lung Draining Lymph Nodes by Flow Cytometry
Authors: Manira Rayamajhi, Elizabeth F. Redente, Tracy V. Condon, Mercedes Gonzalez-Juarrero, David W.H. Riches, Laurel L. Lenz.
Institutions: University of Colorado School of Medicine, National Jewish Health , Colorado State University, National Jewish Health .
Phagocytic cells such as alveolar macrophages and lung dendritic cells (LDCs) continuously sample antigens from the alveolar spaces in the lungs. LDCs, in particular, are known to migrate to the lung draining lymph nodes (LDLNs) where they present inhaled antigens to T cells initiating an appropriate immune response to a variety of immunogens1,2. To model interactions between the lungs and airborne antigens in mice, antigens can be administered intranasally1,3,4, intratracheally5 or as aerosols6. Delivery by each route involves distinct technical skills and limitations that need to be considered before designing an experiment. For example, intranasal and aerosolized exposure delivers antigens to both the lungs and the upper respiratory tract. Hence antigens can access the nasal associated lymphoid tissue (NALT)7, potentially complicating interpretation of the results. In addition, swallowing, sneezing and the breathing rate of the mouse may also lead to inconsistencies in the doses delivered. Although the involvement of the upper respiratory tract may be preferred for some studies, it can complicate experiments focusing on events specifically initiated in the lungs. In this setting, the intratracheal (i.t) route is preferable as it delivers test materials directly into the lungs and bypasses the NALT. Many i.t injection protocols involve either blind intubation of the trachea through the oral cavity or surgical exposure of the trachea to access the lungs. Herein, we describe a simple, consistent, non-surgical method for i.t instillation. The opening of the trachea is visualized using a laryngoscope and a bent gavage needle is then inserted directly into the trachea to deliver the innoculum. We also describe procedures for harvesting and processing of LDLNs and lungs for analysis of antigen trafficking by flow cytometry.
Immunology, Issue 51, Intratracheal, mouse, lungs, lung draining lymph nodes, flow cytometry
Play Button
Multispectral Real-time Fluorescence Imaging for Intraoperative Detection of the Sentinel Lymph Node in Gynecologic Oncology
Authors: Lucia M.A. Crane, George Themelis, K. Tim Buddingh, Niels J. Harlaar, Rick G. Pleijhuis, Athanasios Sarantopoulos, Ate G.J. van der Zee, Vasilis Ntziachristos, Gooitzen M. van Dam.
Institutions: University Medical Center Groningen, Technical University Munich, University Medical Center Groningen.
The prognosis in virtually all solid tumors depends on the presence or absence of lymph node metastases.1-3 Surgical treatment most often combines radical excision of the tumor with a full lymphadenectomy in the drainage area of the tumor. However, removal of lymph nodes is associated with increased morbidity due to infection, wound breakdown and lymphedema.4,5 As an alternative, the sentinel lymph node procedure (SLN) was developed several decades ago to detect the first draining lymph node from the tumor.6 In case of lymphogenic dissemination, the SLN is the first lymph node that is affected (Figure 1). Hence, if the SLN does not contain metastases, downstream lymph nodes will also be free from tumor metastases and need not to be removed. The SLN procedure is part of the treatment for many tumor types, like breast cancer and melanoma, but also for cancer of the vulva and cervix.7 The current standard methodology for SLN-detection is by peritumoral injection of radiocolloid one day prior to surgery, and a colored dye intraoperatively. Disadvantages of the procedure in cervical and vulvar cancer are multiple injections in the genital area, leading to increased psychological distress for the patient, and the use of radioactive colloid. Multispectral fluorescence imaging is an emerging imaging modality that can be applied intraoperatively without the need for injection of radiocolloid. For intraoperative fluorescence imaging, two components are needed: a fluorescent agent and a quantitative optical system for intraoperative imaging. As a fluorophore we have used indocyanine green (ICG). ICG has been used for many decades to assess cardiac function, cerebral perfusion and liver perfusion.8 It is an inert drug with a safe pharmaco-biological profile. When excited at around 750 nm, it emits light in the near-infrared spectrum around 800 nm. A custom-made multispectral fluorescence imaging camera system was used.9. The aim of this video article is to demonstrate the detection of the SLN using intraoperative fluorescence imaging in patients with cervical and vulvar cancer. Fluorescence imaging is used in conjunction with the standard procedure, consisting of radiocolloid and a blue dye. In the future, intraoperative fluorescence imaging might replace the current method and is also easily transferable to other indications like breast cancer and melanoma.
Medicine, Issue 44, Image-guided surgery, multispectral fluorescence, sentinel lymph node, gynecologic oncology
Play Button
Dissection and 2-Photon Imaging of Peripheral Lymph Nodes in Mice
Authors: Melanie P. Matheu, Ian Parker, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI), University of California, Irvine (UCI).
Two-photon imaging has revealed an elegant choreography of motility and cellular interactions within the lymph node under basal conditions and at the initiation of an immune response 1. Here, we present methods for adoptive transfer of labeled T cells, isolation of lymph nodes, and imaging motility of CD4+ T cells in the explanted lymph node as first described in 2002 2. Two-photon imaging of immune cells requires that the cells are fluorescently labeled, either by staining with a cell tracker dye or by expressing a fluorescent protein. We demonstrate the adoptive transfer procedure of injecting cells derived from donor mice into the tail vein of a recipient animal, where they home to lymphoid organs within approximately 15-30 min. We illustrate the isolation of a lymph node and describe methods to ensure proper mounting of the excised lymph node. Other considerations such as proper oxygenation of perfused media, temperature, and laser power are discussed. Finally, we present 3D video images of naive CD4+ T cells exhibiting steady state motility at 37°C.
Issue 7, Immunology, T Lymphocytes, Lymph Node, 2-photon Imaging, Tail Vein Injections
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.