JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Information Filtering via Heterogeneous Diffusion in Online Bipartite Networks.
PUBLISHED: 07-01-2015
The rapid expansion of Internet brings us overwhelming online information, which is impossible for an individual to go through all of it. Therefore, recommender systems were created to help people dig through this abundance of information. In networks composed by users and objects, recommender algorithms based on diffusion have been proven to be one of the best performing methods. Previous works considered the diffusion process from user to object, and from object to user to be equivalent. We show in this work that it is not the case and we improve the quality of the recommendation by taking into account the asymmetrical nature of this process. We apply this idea to modify the state-of-the-art recommendation methods. The simulation results show that the new methods can outperform these existing methods in both recommendation accuracy and diversity. Finally, this modification is checked to be able to improve the recommendation in a realistic case.
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Published: 08-13-2014
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
23 Related JoVE Articles!
Play Button
Knowing What Counts: Unbiased Stereology in the Non-human Primate Brain
Authors: Mark Burke, Shahin Zangenehpour, Peter R. Mouton, Maurice Ptito.
Institutions: University of Montreal, University of Montreal, Stereology Resource Center.
The non-human primate is an important translational species for understanding the normal function and disease processes of the human brain. Unbiased stereology, the method accepted as state-of-the-art for quantification of biological objects in tissue sections2, generates reliable structural data for biological features in the mammalian brain3. The key components of the approach are unbiased (systematic-random) sampling of anatomically defined structures (reference spaces), combined with quantification of cell numbers and size, fiber and capillary lengths, surface areas, regional volumes and spatial distributions of biological objects within the reference space4. Among the advantages of these stereological approaches over previous methods is the avoidance of all known sources of systematic (non-random) error arising from faulty assumptions and non-verifiable models. This study documents a biological application of computerized stereology to estimate the total neuronal population in the frontal cortex of the vervet monkey brain (Chlorocebus aethiops sabeus), with assistance from two commercially available stereology programs, BioQuant Life Sciences and Stereologer (Figure 1). In addition to contrast and comparison of results from both the BioQuant and Stereologer systems, this study provides a detailed protocol for the Stereologer system.
Neuroscience, Issue 27, Stereology, brain bank, systematic sampling, non-human primate, cryostat, antigen preserve
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
Play Button
Visualizing Protein-DNA Interactions in Live Bacterial Cells Using Photoactivated Single-molecule Tracking
Authors: Stephan Uphoff, David J. Sherratt, Achillefs N. Kapanidis.
Institutions: University of Oxford, University of Oxford.
Protein-DNA interactions are at the heart of many fundamental cellular processes. For example, DNA replication, transcription, repair, and chromosome organization are governed by DNA-binding proteins that recognize specific DNA structures or sequences. In vitro experiments have helped to generate detailed models for the function of many types of DNA-binding proteins, yet, the exact mechanisms of these processes and their organization in the complex environment of the living cell remain far less understood. We recently introduced a method for quantifying DNA-repair activities in live Escherichia coli cells using Photoactivated Localization Microscopy (PALM) combined with single-molecule tracking. Our general approach identifies individual DNA-binding events by the change in the mobility of a single protein upon association with the chromosome. The fraction of bound molecules provides a direct quantitative measure for the protein activity and abundance of substrates or binding sites at the single-cell level. Here, we describe the concept of the method and demonstrate sample preparation, data acquisition, and data analysis procedures.
Immunology, Issue 85, Super-resolution microscopy, single-particle tracking, Live-cell imaging, DNA-binding proteins, DNA repair, molecular diffusion
Play Button
Quantum State Engineering of Light with Continuous-wave Optical Parametric Oscillators
Authors: Olivier Morin, Jianli Liu, Kun Huang, Felippe Barbosa, Claude Fabre, Julien Laurat.
Institutions: Université Pierre et Marie Curie, Ecole Normale Supérieure, CNRS, East China Normal University, Universidade de São Paulo.
Engineering non-classical states of the electromagnetic field is a central quest for quantum optics1,2. Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems3. We focus here on the use of a continuous-wave optical parametric oscillator3,4. This system is based on a non-linear χ2 crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states5. Generating directly such states is a difficult task and would require strong χ3 non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode.
Physics, Issue 87, Optics, Quantum optics, Quantum state engineering, Optical parametric oscillator, Squeezed vacuum, Single photon, Coherent state superposition, Homodyne detection
Play Button
Accuracy in Dental Medicine, A New Way to Measure Trueness and Precision
Authors: Andreas Ender, Albert Mehl.
Institutions: University of Zürich.
Reference scanners are used in dental medicine to verify a lot of procedures. The main interest is to verify impression methods as they serve as a base for dental restorations. The current limitation of many reference scanners is the lack of accuracy scanning large objects like full dental arches, or the limited possibility to assess detailed tooth surfaces. A new reference scanner, based on focus variation scanning technique, was evaluated with regards to highest local and general accuracy. A specific scanning protocol was tested to scan original tooth surface from dental impressions. Also, different model materials were verified. The results showed a high scanning accuracy of the reference scanner with a mean deviation of 5.3 ± 1.1 µm for trueness and 1.6 ± 0.6 µm for precision in case of full arch scans. Current dental impression methods showed much higher deviations (trueness: 20.4 ± 2.2 µm, precision: 12.5 ± 2.5 µm) than the internal scanning accuracy of the reference scanner. Smaller objects like single tooth surface can be scanned with an even higher accuracy, enabling the system to assess erosive and abrasive tooth surface loss. The reference scanner can be used to measure differences for a lot of dental research fields. The different magnification levels combined with a high local and general accuracy can be used to assess changes of single teeth or restorations up to full arch changes.
Medicine, Issue 86, Laboratories, Dental, Calibration, Technology, Dental impression, Accuracy, Trueness, Precision, Full arch scan, Abrasion
Play Button
Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis
Authors: Benjamin N. Doblack, Tim Allis, Lilian P. Dávila.
Institutions: University of California Merced.
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.
Physics, Issue 94, Computational systems, visualization and immersive environments, interactive learning, graphical processing unit accelerated simulations, molecular dynamics simulations, nanostructures.
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging
Authors: Noam Nissan, Edna Furman-Haran, Myra Feinberg-Shapiro, Dov Grobgeld, Erez Eyal, Tania Zehavi, Hadassa Degani.
Institutions: Weizmann Institute of Science, Weizmann Institute of Science, Meir Medical Center, Meir Medical Center.
Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection.
Medicine, Issue 94, Magnetic Resonance Imaging, breast, breast cancer, diagnosis, water diffusion, diffusion tensor imaging
Play Button
Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation
Authors: Amy H. Van Hove, Brandon D. Wilson, Danielle S. W. Benoit.
Institutions: University of Rochester, University of Rochester, University of Rochester Medical Center.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Chemistry, Issue 80, Poly(ethylene glycol), peptides, polymerization, polymers, methacrylation, peptide functionalization, 1H-NMR, MALDI-ToF, hydrogels, macromer synthesis
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Genomic MRI - a Public Resource for Studying Sequence Patterns within Genomic DNA
Authors: Ashwin Prakash, Jason Bechtel, Alexei Fedorov.
Institutions: University of Toledo Health Science Campus.
Non-coding genomic regions in complex eukaryotes, including intergenic areas, introns, and untranslated segments of exons, are profoundly non-random in their nucleotide composition and consist of a complex mosaic of sequence patterns. These patterns include so-called Mid-Range Inhomogeneity (MRI) regions -- sequences 30-10000 nucleotides in length that are enriched by a particular base or combination of bases (e.g. (G+T)-rich, purine-rich, etc.). MRI regions are associated with unusual (non-B-form) DNA structures that are often involved in regulation of gene expression, recombination, and other genetic processes (Fedorova & Fedorov 2010). The existence of a strong fixation bias within MRI regions against mutations that tend to reduce their sequence inhomogeneity additionally supports the functionality and importance of these genomic sequences (Prakash et al. 2009). Here we demonstrate a freely available Internet resource -- the Genomic MRI program package -- designed for computational analysis of genomic sequences in order to find and characterize various MRI patterns within them (Bechtel et al. 2008). This package also allows generation of randomized sequences with various properties and level of correspondence to the natural input DNA sequences. The main goal of this resource is to facilitate examination of vast regions of non-coding DNA that are still scarcely investigated and await thorough exploration and recognition.
Genetics, Issue 51, bioinformatics, computational biology, genomics, non-randomness, signals, gene regulation, DNA conformation
Play Button
Using SCOPE to Identify Potential Regulatory Motifs in Coregulated Genes
Authors: Viktor Martyanov, Robert H. Gross.
Institutions: Dartmouth College.
SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference1. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data1. In this article, we utilize a web version of SCOPE2 to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs3,4 and has been used in other studies5-8. The three algorithms that comprise SCOPE are BEAM9, which finds non-degenerate motifs (ACCGGT), PRISM10, which finds degenerate motifs (ASCGWT), and SPACER11, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from a file. The output from SCOPE contains a list of all identified motifs with their scores, number of occurrences, fraction of genes containing the motif, and the algorithm used to identify the motif. For each motif, result details include a consensus representation of the motif, a sequence logo, a position weight matrix, and a list of instances for every motif occurrence (with exact positions and "strand" indicated). Results are returned in a browser window and also optionally by email. Previous papers describe the SCOPE algorithms in detail1,2,9-11.
Genetics, Issue 51, gene regulation, computational biology, algorithm, promoter sequence motif
Play Button
Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
Authors: Rajesh K. Kana, Donna L. Murdaugh, Lauren E. Libero, Mark R. Pennick, Heather M. Wadsworth, Rishi Deshpande, Christi P. Hu.
Institutions: University of Alabama at Birmingham.
Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events1. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems2,3,4,5,6. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory,2,7 provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas 3,6, has now been relatively well established, we can begin to further understand brain connectivity as a critical component of autism symptomatology. A logical next step in this direction is to examine the anatomical connections that may mediate the functional connections mentioned above. Diffusion Tensor Imaging (DTI) is a relatively novel neuroimaging technique that helps probe the diffusion of water in the brain to infer the integrity of white matter fibers. In this technique, water diffusion in the brain is examined in several directions using diffusion gradients. While functional connectivity provides information about the synchronization of brain activation across different brain areas during a task or during rest, DTI helps in understanding the underlying axonal organization which may facilitate the cross-talk among brain areas. This paper will describe these techniques as valuable tools in understanding the brain in autism and the challenges involved in this line of research.
Medicine, Issue 55, Functional magnetic resonance imaging (fMRI), MRI, Diffusion tensor imaging (DTI), Functional Connectivity, Neuroscience, Developmental disorders, Autism, Fractional Anisotropy
Play Button
Creating Objects and Object Categories for Studying Perception and Perceptual Learning
Authors: Karin Hauffen, Eugene Bart, Mark Brady, Daniel Kersten, Jay Hegdé.
Institutions: Georgia Health Sciences University, Georgia Health Sciences University, Georgia Health Sciences University, Palo Alto Research Center, Palo Alto Research Center, University of Minnesota .
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
Neuroscience, Issue 69, machine learning, brain, classification, category learning, cross-modal perception, 3-D prototyping, inference
Play Button
Dual Electrophysiological Recordings of Synaptically-evoked Astroglial and Neuronal Responses in Acute Hippocampal Slices
Authors: Ulrike Pannasch, Jérémie Sibille, Nathalie Rouach.
Institutions: Collège de France, Paris Diderot University.
Astrocytes form together with neurons tripartite synapses, where they integrate and modulate neuronal activity. Indeed, astrocytes sense neuronal inputs through activation of their ion channels and neurotransmitter receptors, and process information in part through activity-dependent release of gliotransmitters. Furthermore, astrocytes constitute the main uptake system for glutamate, contribute to potassium spatial buffering, as well as to GABA clearance. These cells therefore constantly monitor synaptic activity, and are thereby sensitive indicators for alterations in synaptically-released glutamate, GABA and extracellular potassium levels. Additionally, alterations in astroglial uptake activity or buffering capacity can have severe effects on neuronal functions, and might be overlooked when characterizing physiopathological situations or knockout mice. Dual recording of neuronal and astroglial activities is therefore an important method to study alterations in synaptic strength associated to concomitant changes in astroglial uptake and buffering capacities. Here we describe how to prepare hippocampal slices, how to identify stratum radiatum astrocytes, and how to record simultaneously neuronal and astroglial electrophysiological responses. Furthermore, we describe how to isolate pharmacologically the synaptically-evoked astroglial currents.
Neuroscience, Issue 69, Physiology, Anatomy, Medicine, hippocampus preparation, acute brain slice, electrophysiology, patch-clamp, neurons, astrocytes, astroglial, neuroglial interactions, glutamate transporter current, potassium current, paired recordings, synaptic activity, synaptically-evoked responses
Play Button
3D Printing of Preclinical X-ray Computed Tomographic Data Sets
Authors: Evan Doney, Lauren A. Krumdick, Justin M. Diener, Connor A. Wathen, Sarah E. Chapman, Brian Stamile, Jeremiah E. Scott, Matthew J. Ravosa, Tony Van Avermaete, W. Matthew Leevy.
Institutions: University of Notre Dame , University of Notre Dame, University of Notre Dame , University of Notre Dame , MakerBot Industries LLC, University of Notre Dame , University of Notre Dame .
Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.1 However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.2 These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. 3, 4 The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.
Medicine, Issue 73, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Bioengineering, Chemistry, Biochemistry, Materials Science, Engineering, Manufactured Materials, Technology, Animal Structures, Life Sciences (General), 3D printing, X-ray Computed Tomography, CT, CT scans, data extrusion, additive printing, in vivo imaging, clinical techniques, imaging
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Digital Inline Holographic Microscopy (DIHM) of Weakly-scattering Subjects
Authors: Camila B. Giuliano, Rongjing Zhang, Laurence G. Wilson.
Institutions: Harvard University, Universidade Estadual Paulista.
Weakly-scattering objects, such as small colloidal particles and most biological cells, are frequently encountered in microscopy. Indeed, a range of techniques have been developed to better visualize these phase objects; phase contrast and DIC are among the most popular methods for enhancing contrast. However, recording position and shape in the out-of-imaging-plane direction remains challenging. This report introduces a simple experimental method to accurately determine the location and geometry of objects in three dimensions, using digital inline holographic microscopy (DIHM). Broadly speaking, the accessible sample volume is defined by the camera sensor size in the lateral direction, and the illumination coherence in the axial direction. Typical sample volumes range from 200 µm x 200 µm x 200 µm using LED illumination, to 5 mm x 5 mm x 5 mm or larger using laser illumination. This illumination light is configured so that plane waves are incident on the sample. Objects in the sample volume then scatter light, which interferes with the unscattered light to form interference patterns perpendicular to the illumination direction. This image (the hologram) contains the depth information required for three-dimensional reconstruction, and can be captured on a standard imaging device such as a CMOS or CCD camera. The Rayleigh-Sommerfeld back propagation method is employed to numerically refocus microscope images, and a simple imaging heuristic based on the Gouy phase anomaly is used to identify scattering objects within the reconstructed volume. This simple but robust method results in an unambiguous, model-free measurement of the location and shape of objects in microscopic samples.
Basic Protocol, Issue 84, holography, digital inline holographic microscopy (DIHM), Microbiology, microscopy, 3D imaging, Streptococcus bacteria
Play Button
Test Samples for Optimizing STORM Super-Resolution Microscopy
Authors: Daniel J. Metcalf, Rebecca Edwards, Neelam Kumarswami, Alex E. Knight.
Institutions: National Physical Laboratory.
STORM is a recently developed super-resolution microscopy technique with up to 10 times better resolution than standard fluorescence microscopy techniques. However, as the image is acquired in a very different way than normal, by building up an image molecule-by-molecule, there are some significant challenges for users in trying to optimize their image acquisition. In order to aid this process and gain more insight into how STORM works we present the preparation of 3 test samples and the methodology of acquiring and processing STORM super-resolution images with typical resolutions of between 30-50 nm. By combining the test samples with the use of the freely available rainSTORM processing software it is possible to obtain a great deal of information about image quality and resolution. Using these metrics it is then possible to optimize the imaging procedure from the optics, to sample preparation, dye choice, buffer conditions, and image acquisition settings. We also show examples of some common problems that result in poor image quality, such as lateral drift, where the sample moves during image acquisition and density related problems resulting in the 'mislocalization' phenomenon.
Molecular Biology, Issue 79, Genetics, Bioengineering, Biomedical Engineering, Biophysics, Basic Protocols, HeLa Cells, Actin Cytoskeleton, Coated Vesicles, Receptor, Epidermal Growth Factor, Actins, Fluorescence, Endocytosis, Microscopy, STORM, super-resolution microscopy, nanoscopy, cell biology, fluorescence microscopy, test samples, resolution, actin filaments, fiducial markers, epidermal growth factor, cell, imaging
Play Button
Automated Quantification of Hematopoietic Cell – Stromal Cell Interactions in Histological Images of Undecalcified Bone
Authors: Sandra Zehentmeier, Zoltan Cseresnyes, Juan Escribano Navarro, Raluca A. Niesner, Anja E. Hauser.
Institutions: German Rheumatism Research Center, a Leibniz Institute, German Rheumatism Research Center, a Leibniz Institute, Max-Delbrück Center for Molecular Medicine, Wimasis GmbH, Charité - University of Medicine.
Confocal microscopy is the method of choice for the analysis of localization of multiple cell types within complex tissues such as the bone marrow. However, the analysis and quantification of cellular localization is difficult, as in many cases it relies on manual counting, thus bearing the risk of introducing a rater-dependent bias and reducing interrater reliability. Moreover, it is often difficult to judge whether the co-localization between two cells results from random positioning, especially when cell types differ strongly in the frequency of their occurrence. Here, a method for unbiased quantification of cellular co-localization in the bone marrow is introduced. The protocol describes the sample preparation used to obtain histological sections of whole murine long bones including the bone marrow, as well as the staining protocol and the acquisition of high-resolution images. An analysis workflow spanning from the recognition of hematopoietic and non-hematopoietic cell types in 2-dimensional (2D) bone marrow images to the quantification of the direct contacts between those cells is presented. This also includes a neighborhood analysis, to obtain information about the cellular microenvironment surrounding a certain cell type. In order to evaluate whether co-localization of two cell types is the mere result of random cell positioning or reflects preferential associations between the cells, a simulation tool which is suitable for testing this hypothesis in the case of hematopoietic as well as stromal cells, is used. This approach is not limited to the bone marrow, and can be extended to other tissues to permit reproducible, quantitative analysis of histological data.
Developmental Biology, Issue 98, Image analysis, neighborhood analysis, bone marrow, stromal cells, bone marrow niches, simulation, bone cryosectioning, bone histology
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.