JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Have You Ever Seen the Impact of Crossing Fiber in DTI?: Demonstration of the Corticospinal Tract Pathway.
.
PLoS ONE
PUBLISHED: 07-03-2015
The identification of the corticospinal tract (CST) pathway with a deterministic fiber tracking approach is limited because of crossing fibers, especially for the hand fibers of the CST due to the crossing superior longitudinal fasciculus (SLF). We examined a patient with congenital bilateral perisylvian syndrome (CBPS) who did not have the SLF, in order to visualize CST hand fibers that were not affected by crossing fibers.
Authors: Hans-Peter Müller, Jan Kassubek.
Published: 07-28-2013
ABSTRACT
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
22 Related JoVE Articles!
Play Button
DTI of the Visual Pathway - White Matter Tracts and Cerebral Lesions
Authors: Ardian Hana, Andreas Husch, Vimal Raj Nitish Gunness, Christophe Berthold, Anisa Hana, Georges Dooms, Hans Boecher Schwarz, Frank Hertel.
Institutions: Centre Hospitalier de Luxembourg, University of Applied Sciences Trier, Erasmus Universiteit Rotterdam, Centre Hospitalier de Luxembourg.
DTI is a technique that identifies white matter tracts (WMT) non-invasively in healthy and non-healthy patients using diffusion measurements. Similar to visual pathways (VP), WMT are not visible with classical MRI or intra-operatively with microscope. DTI will help neurosurgeons to prevent destruction of the VP while removing lesions adjacent to this WMT. We have performed DTI on fifty patients before and after surgery between March 2012 to January 2014. To navigate we used a 3DT1-weighted sequence. Additionally, we performed a T2-weighted and DTI-sequences. The parameters used were, FOV: 200 x 200 mm, slice thickness: 2 mm, and acquisition matrix: 96 x 96 yielding nearly isotropic voxels of 2 x 2 x 2 mm. Axial MRI was carried out using a 32 gradient direction and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2 and b-value of 800 s/mm². The scanning time was less than 9 min. The DTI-data obtained were processed using a FDA approved surgical navigation system program which uses a straightforward fiber-tracking approach known as fiber assignment by continuous tracking (FACT). This is based on the propagation of lines between regions of interest (ROI) which is defined by a physician. A maximum angle of 50, FA start value of 0.10 and ADC stop value of 0.20 mm²/s were the parameters used for tractography. There are some limitations to this technique. The limited acquisition time frame enforces trade-offs in the image quality. Another important point not to be neglected is the brain shift during surgery. As for the latter intra-operative MRI might be helpful. Furthermore the risk of false positive or false negative tracts needs to be taken into account which might compromise the final results.
Medicine, Issue 90, Neurosurgery, brain, visual pathway, white matter tracts, visual cortex, optic chiasm, glioblastoma, meningioma, metastasis
51946
Play Button
Unilateral Pyramidotomy of the Corticospinal Tract in Rats for Assessment of Neuroplasticity-inducing Therapies
Authors: Claudia Kathe, Thomas H. Hutson, Qin Chen, Harold D. Shine, Stephen B. McMahon, Lawrence D. F. Moon.
Institutions: King's College London, Baylor College of Medicine.
The corticospinal tract (CST) can be completely severed unilaterally in the medullary pyramids of the rodent brainstem. The CST is a motor tract that has great importance for distal muscle control in humans and, to a lesser extent, in rodents. A unilateral cut of one pyramid results in loss of CST innervation of the spinal cord mainly on the contralateral side of the spinal cord leading to transient motor disability in the forelimbs and sustained loss of dexterity. Ipsilateral projections of the corticospinal tract are minor. We have refined our surgical method to increase the chances of lesion completeness. We describe postsurgical care. Deficits on the Montoya staircase pellet reaching test and the horizontal ladder test shown here are detected up to 8 weeks postinjury. Deficits on the cylinder rearing test are only detected transiently. Therefore, the cylinder test may only be suitable for detection of short term recovery. We show how, electrophysiologically and anatomically, one may assess lesions and plastic changes. We also describe how to analyse fibers from the uninjured CST sprouting across the midline into the deprived areas. It is challenging to obtain >90% complete lesions consistently due to the proximity to the basilar artery in the medulla oblongata and survival rates can be low. Alternative surgical approaches and behavioural testing are described in this protocol. The pyramidotomy model is a good tool for assessing neuroplasticity-inducing treatments, which increase sprouting of intact fibers after injury.
Neuroscience, Issue 94, central nervous system lesions, pyramids, unilateral spinal cord injury, in vivo, corticospinal tract lesion, forelimb function,
51843
Play Button
Fabrication of Amperometric Electrodes
Authors: Carolyn M. Pike, Chad P. Grabner, Amy B. Harkins.
Institutions: Saint Louis University School of Medicine, Yale University School of Medicine.
Carbon fiber electrodes are crucial for the detection of catecholamine release from vesicles in single cells for amperometry measurements. Here, we describe the techniques needed to generate low noise (<0.5 pA) electrodes. The techniques have been modified from published descriptions by previous researchers (1,2). Electrodes are made by preparing carbon fibers and threading them individually into each capillary tube by using a vacuum with a filter to aspirate the fiber. Next, the capillary tube with fiber is pulled by an electrode puller, creating two halves, each with a fine-pointed tip. The electrodes are dipped in hot, liquid epoxy mixed with hardener to create an epoxy-glass seal. Lastly, the electrodes are placed in an oven to cure the epoxy. Careful handling of the electrodes is critical to ensure that they are made consistently and without damage. This protocol shows how to fabricate and cut amperometric electrodes for recording from single cells.
Cellular Biology, Issue 27, catecholamine measurements, recording, carbon-fiber, amperometry, electrodes, electrophysiology
1040
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
51274
Play Button
Histochemical Staining of Arabidopsis thaliana Secondary Cell Wall Elements
Authors: Prajakta Pradhan Mitra, Dominique Loqué.
Institutions: Joint Bioenergy Institute, Lawrence Berkeley National Laboratory.
Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40–50%), hemicellulose (25–30%), and lignin (20–30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.
Cellular Biology, Issue 87, Xylem, Fibers, Lignin, polysaccharides, Plant cell wall, Mäule staining, Phloroglucinol, Congo red, Toluidine blue O, Calcofluor white, Cell wall staining methods
51381
Play Button
Tissue Triage and Freezing for Models of Skeletal Muscle Disease
Authors: Hui Meng, Paul M.L. Janssen, Robert W. Grange, Lin Yang, Alan H. Beggs, Lindsay C. Swanson, Stacy A. Cossette, Alison Frase, Martin K. Childers, Henk Granzier, Emanuela Gussoni, Michael W. Lawlor.
Institutions: Medical College of Wisconsin, The Ohio State University, Virginia Tech, University of Kentucky, Boston Children's Hospital, Harvard Medical School, Cure Congenital Muscular Dystrophy, Joshua Frase Foundation, University of Washington, University of Arizona.
Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease.
Basic Protocol, Issue 89, Tissue, Freezing, Muscle, Isopentane, Pathology, Functional Testing, Cell Culture
51586
Play Button
Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
Authors: Noah S. Philip, S. Louisa Carpenter, Lawrence H. Sweet.
Institutions: Alpert Medical School, Brown University, University of Georgia.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD). Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions. Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.
Medicine, Issue 89, default mode network, neuroimaging, functional magnetic resonance imaging, diffusion tensor imaging, structural connectivity, functional connectivity, posttraumatic stress disorder
51651
Play Button
Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging
Authors: Noam Nissan, Edna Furman-Haran, Myra Feinberg-Shapiro, Dov Grobgeld, Erez Eyal, Tania Zehavi, Hadassa Degani.
Institutions: Weizmann Institute of Science, Weizmann Institute of Science, Meir Medical Center, Meir Medical Center.
Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection.
Medicine, Issue 94, Magnetic Resonance Imaging, breast, breast cancer, diagnosis, water diffusion, diffusion tensor imaging
52048
Play Button
An Ex Vivo Laser-induced Spinal Cord Injury Model to Assess Mechanisms of Axonal Degeneration in Real-time
Authors: Starlyn L. M. Okada, Nicole S. Stivers, Peter K. Stys, David P. Stirling.
Institutions: University of Louisville, University of Calgary.
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.
Neuroscience, Issue 93, spinal cord injury, axon, myelin, two-photon excitation microscopy, Nile Red, axonal degeneration, axonal dieback, axonal retraction
52173
Play Button
Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers
Authors: Stuart M. Roche, Jonathan P. Gumucio, Susan V. Brooks, Christopher L. Mendias, Dennis R. Claflin.
Institutions: University of Michigan Medical School, University of Michigan Medical School, University of Michigan Medical School, University of Michigan Medical School.
Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.
Bioengineering, Issue 100, Muscle physiology, skeletal muscle, single muscle fiber, permeabilized, cross-sectional area, isometric force, specific force
52695
Play Button
Corticospinal Excitability Modulation During Action Observation
Authors: Luisa Sartori, Sonia Betti, Umberto Castiello.
Institutions: Universita degli Studi di Padova.
This study used the transcranial magnetic stimulation/motor evoked potential (TMS/MEP) technique to pinpoint when the automatic tendency to mirror someone else's action becomes anticipatory simulation of a complementary act. TMS was delivered to the left primary motor cortex corresponding to the hand to induce the highest level of MEP activity from the abductor digiti minimi (ADM; the muscle serving little finger abduction) as well as the first dorsal interosseus (FDI; the muscle serving index finger flexion/extension) muscles. A neuronavigation system was used to maintain the position of the TMS coil, and electromyographic (EMG) activity was recorded from the right ADM and FDI muscles. Producing original data with regard to motor resonance, the combined TMS/MEP technique has taken research on the perception-action coupling mechanism a step further. Specifically, it has answered the questions of how and when observing another person's actions produces motor facilitation in an onlooker's corresponding muscles and in what way corticospinal excitability is modulated in social contexts.
Behavior, Issue 82, action observation, transcranial magnetic stimulation, motor evoked potentials, corticospinal excitability
51001
Play Button
Fabrication and Characterization of Disordered Polymer Optical Fibers for Transverse Anderson Localization of Light
Authors: Salman Karbasi, Ryan J. Frazier, Craig R. Mirr, Karl W. Koch, Arash Mafi.
Institutions: University of Wisconsin-Milwaukee, Corning Incorporated, Corning, New York.
We develop and characterize a disordered polymer optical fiber that uses transverse Anderson localization as a novel waveguiding mechanism. The developed polymer optical fiber is composed of 80,000 strands of poly (methyl methacrylate) (PMMA) and polystyrene (PS) that are randomly mixed and drawn into a square cross section optical fiber with a side width of 250 μm. Initially, each strand is 200 μm in diameter and 8-inches long. During the mixing process of the original fiber strands, the fibers cross over each other; however, a large draw ratio guarantees that the refractive index profile is invariant along the length of the fiber for several tens of centimeters. The large refractive index difference of 0.1 between the disordered sites results in a small localized beam radius that is comparable to the beam radius of conventional optical fibers. The input light is launched from a standard single mode optical fiber using the butt-coupling method and the near-field output beam from the disordered fiber is imaged using a 40X objective and a CCD camera. The output beam diameter agrees well with the expected results from the numerical simulations. The disordered optical fiber presented in this work is the first device-level implementation of 2D Anderson localization, and can potentially be used for image transport and short-haul optical communication systems.
Physics, Issue 77, Chemistry, Optics, Physics (General), Transverse Anderson Localization, Polymer Optical Fibers, Scattering, Random Media, Optical Fiber Materials, electromagnetism, optical fibers, optical materials, optical waveguides, photonics, wave propagation (optics), fiber optics
50679
Play Button
Determining heat and mechanical pain threshold in inflamed skin of human subjects
Authors: Martin S Angst, Martha Tingle, Nicholas G Phillips, Brendan Carvalho.
Institutions: Stanford University School of Medicine.
In a previous article in the Journal of Visualized Experiments we have demonstrated skin microdialysis techniques for the collection of tissue-specific nociceptive and inflammatory biochemicals in humans. In this article we will show pain-testing paradigms that are often used in tandem with microdialysis procedures. Combining pain tests with microdialysis provides the critical link between behavioral and biochemical data that allows identifying key biochemicals responsible for generating and propagating pain. Two models of evoking pain in inflamed skin of human study participants are shown. The first model evokes pain with aid of heat stimuli. Heat evoked pain as described here is predominantly mediated by small, non-myelinated peripheral nociceptive nerve fibers (C-fibers). The second model evokes pain via punctuated pressure stimuli. Punctuated pressure evoked pain is predominantly mediated by small, myelinated peripheral nociceptive nerve fibers (A-delta fibers). The two models are mechanistically distinct and independently examine nociceptive processing by the two major peripheral nerve fiber populations involved in pain signaling. Heat pain is evoked with aid of the TSA II, a commercially available thermo-sensory analyzer (Medoc Advanced Medical Systems, Durham, NC). Stimulus configuration and delivery is handled with aid of specific software. Thermodes vary in size and shape but in principle consist of a metal plate that can be heated or cooled at various rates and for different periods of time. Algorithms assessing heat-evoked pain are manifold. In the experiments shown here, study participants are asked to indicate at what point they start experiencing pain while the thermode in contact with skin is heated at a predetermined rate starting at a temperature that does not evoke pain. The thermode temperature at which a subject starts experiencing pain constitutes the heat pain threshold. Mechanical pain is evoked with punctuated probes. Such probes are commercially available from several manufacturers (von Frey hairs). However, the accuracy of von Frey hairs has been criticized and many investigators use custom made punctuated pressure probes. In the experiments shown here eight custom-made punctuated probes of different weights are applied in consecutive order, a procedure called up-down algorithm, to identify perceptional deflection points, i.e., a change from feeling no pain to feeling pain or vice versa. The average weight causing a perceptional deflection constitutes the mechanical pain threshold.
Medicine, Issue 23, Experimental pain, experimental inflammation, human, skin, heat stimuli, mechanical stimuli, pain threshold, psychophysics, non-myelinated nociceptive nerve fiber, small myelinated nociceptive nerve fiber
1092
Play Button
An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System
Authors: Michelle Keightley, Stephanie Green, Nick Reed, Sabrina Agnihotri, Amy Wilkinson, Nancy Lobaugh.
Institutions: University of Toronto, University of Toronto, University of Toronto, Bloorview Kids Rehab, Toronto Rehab, Sunnybrook Health Sciences Centre, University of Toronto.
One of the most commonly reported injuries in children who participate in sports is concussion or mild traumatic brain injury (mTBI)1. Children and youth involved in organized sports such as competitive hockey are nearly six times more likely to suffer a severe concussion compared to children involved in other leisure physical activities2. While the most common cognitive sequelae of mTBI appear similar for children and adults, the recovery profile and breadth of consequences in children remains largely unknown2, as does the influence of pre-injury characteristics (e.g. gender) and injury details (e.g. magnitude and direction of impact) on long-term outcomes. Competitive sports, such as hockey, allow the rare opportunity to utilize a pre-post design to obtain pre-injury data before concussion occurs on youth characteristics and functioning and to relate this to outcome following injury. Our primary goals are to refine pediatric concussion diagnosis and management based on research evidence that is specific to children and youth. To do this we use new, multi-modal and integrative approaches that will: 1.Evaluate the immediate effects of head trauma in youth 2.Monitor the resolution of post-concussion symptoms (PCS) and cognitive performance during recovery 3.Utilize new methods to verify brain injury and recovery To achieve our goals, we have implemented the Head Impact Telemetry (HIT) System. (Simbex; Lebanon, NH, USA). This system equips commercially available Easton S9 hockey helmets (Easton-Bell Sports; Van Nuys, CA, USA) with single-axis accelerometers designed to measure real-time head accelerations during contact sport participation 3 - 5. By using telemetric technology, the magnitude of acceleration and location of all head impacts during sport participation can be objectively detected and recorded. We also use functional magnetic resonance imaging (fMRI) to localize and assess changes in neural activity specifically in the medial temporal and frontal lobes during the performance of cognitive tasks, since those are the cerebral regions most sensitive to concussive head injury 6. Finally, we are acquiring structural imaging data sensitive to damage in brain white matter.
Medicine, Issue 47, Mild traumatic brain injury, concussion, fMRI, youth, Head Impact Telemetry System
2226
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
2322
Play Button
Dorsal Column Steerability with Dual Parallel Leads using Dedicated Power Sources: A Computational Model
Authors: Dongchul Lee, Ewan Gillespie, Kerry Bradley.
Institutions: Neuromodulation.
In spinal cord stimulation (SCS), concordance of stimulation-induced paresthesia over painful body regions is a necessary condition for therapeutic efficacy. Since patient pain patterns can be unique, a common stimulation configuration is the placement of two leads in parallel in the dorsal epidural space. This construct provides flexibility in steering stimulation current mediolaterally over the dorsal column to achieve better pain-paresthesia overlap. Using a mathematical model with an accurate fiber diameter distribution, we studied the ability of dual parallel leads to steer stimulation between adjacent contacts on dual parallel leads using (1) a single source system, and (2) a multi-source system, with a dedicated current source for each contact. The volume conductor model of a low-thoracic spinal cord with epidurally-positioned dual parallel (2 mm separation) percutaneous leads was first created, and the electric field was calculated using ANSYS, a finite element modeling tool. The activating function for 10 um fibers was computed as the second difference of the extracellular potential along the nodes of Ranvier on the nerve fibers in the dorsal column. The volume of activation (VOA) and the central point of the VOA were computed using a predetermined threshold of the activating function. The model compared the field steering results with single source versus dedicated power source systems on dual 8-contact stimulation leads. The model predicted that the multi-source system can target more central points of stimulation on the dorsal column than a single source system (100 vs. 3) and the mean steering step for mediolateral steering is 0.02 mm for multi-source systems vs 1 mm for single source systems, a 50-fold improvement. The ability to center stimulation regions in the dorsal column with high resolution may allow for better optimization of paresthesia-pain overlap in patients.
Medicine, Issue 48, spinal cord stimulation, dorsal columns, current steering, field steering
2443
Play Button
Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique
Authors: Rebekka A.V. Schwab, Wojciech Niedzwiedz.
Institutions: University of Oxford , University of Warsaw.
Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells1. DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique2-4. In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence microscope.
Molecular Biology, Issue 56, Genetics, DNA fiber analysis, replication speed, fork stalling, origin firing, termination
3255
Play Button
A Contusive Model of Unilateral Cervical Spinal Cord Injury Using the Infinite Horizon Impactor
Authors: Jae H.T. Lee, Femke Streijger, Seth Tigchelaar, Michael Maloon, Jie Liu, Wolfram Tetzlaff, Brian K. Kwon.
Institutions: University of British Columbia , University of British Columbia .
While the majority of human spinal cord injuries occur in the cervical spinal cord, the vast majority of laboratory research employs animal models of spinal cord injury (SCI) in which the thoracic spinal cord is injured. Additionally, because most human cord injuries occur as the result of blunt, non-penetrating trauma (e.g. motor vehicle accident, sporting injury) where the spinal cord is violently struck by displaced bone or soft tissues, the majority of SCI researchers are of the opinion that the most clinically relevant injury models are those in which the spinal cord is rapidly contused.1 Therefore, an important step in the preclinical evaluation of novel treatments on their way to human translation is an assessment of their efficacy in a model of contusion SCI within the cervical spinal cord. Here, we describe the technical aspects and resultant anatomical and behavioral outcomes of an unilateral contusive model of cervical SCI that employs the Infinite Horizon spinal cord injury impactor. Sprague Dawley rats underwent a left-sided unilateral laminectomy at C5. To optimize the reproducibility of the biomechanical, functional, and histological outcomes of the injury model, we contused the spinal cords using an impact force of 150 kdyn, an impact trajectory of 22.5° (animals rotated at 22.5°), and an impact location off of midline of 1.4 mm. Functional recovery was assessed using the cylinder rearing test, horizontal ladder test, grooming test and modified Montoya's staircase test for up to 6 weeks, after which the spinal cords were evaluated histologically for white and grey matter sparing. The injury model presented here imparts consistent and reproducible biomechanical forces to the spinal cord, an important feature of any experimental SCI model. This results in discrete histological damage to the lateral half of the spinal cord which is largely contained to the ipsilateral side of injury. The injury is well tolerated by the animals, but does result in functional deficits of the forelimb that are significant and sustained in the weeks following injury. The cervical unilateral injury model presented here may be a resource to researchers who wish to evaluate potentially promising therapies prior to human translation.
Medicine, Issue 65, Neuroscience, Physiology, Infinite Horizon Spinal Cord Injury Device, SCI, cervical, unilateral, contusion, forelimb function
3313
Play Button
Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
Authors: David A. Goss, Richard L. Hoffman, Brian C. Clark.
Institutions: Ohio University.
Transcranial magnetic stimulation (TMS) has been in use for more than 20 years 1, and has grown exponentially in popularity over the past decade. While the use of TMS has expanded to the study of many systems and processes during this time, the original application and perhaps one of the most common uses of TMS involves studying the physiology, plasticity and function of the human neuromuscular system. Single pulse TMS applied to the motor cortex excites pyramidal neurons transsynaptically 2 (Figure 1) and results in a measurable electromyographic response that can be used to study and evaluate the integrity and excitability of the corticospinal tract in humans 3. Additionally, recent advances in magnetic stimulation now allows for partitioning of cortical versus spinal excitability 4,5. For example, paired-pulse TMS can be used to assess intracortical facilitatory and inhibitory properties by combining a conditioning stimulus and a test stimulus at different interstimulus intervals 3,4,6-8. In this video article we will demonstrate the methodological and technical aspects of these techniques. Specifically, we will demonstrate single-pulse and paired-pulse TMS techniques as applied to the flexor carpi radialis (FCR) muscle as well as the erector spinae (ES) musculature. Our laboratory studies the FCR muscle as it is of interest to our research on the effects of wrist-hand cast immobilization on reduced muscle performance6,9, and we study the ES muscles due to these muscles clinical relevance as it relates to low back pain8. With this stated, we should note that TMS has been used to study many muscles of the hand, arm and legs, and should iterate that our demonstrations in the FCR and ES muscle groups are only selected examples of TMS being used to study the human neuromuscular system.
Medicine, Issue 59, neuroscience, muscle, electromyography, physiology, TMS, strength, motor control. sarcopenia, dynapenia, lumbar
3387
Play Button
Co-analysis of Brain Structure and Function using fMRI and Diffusion-weighted Imaging
Authors: Jeffrey S. Phillips, Adam S. Greenberg, John A. Pyles, Sudhir K. Pathak, Marlene Behrmann, Walter Schneider, Michael J. Tarr.
Institutions: Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University , University of Pittsburgh.
The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)1, 2 protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis, for the purpose of monitoring task-relevant brain activity in networks of interest.
Neuroscience, Issue 69, Molecular Biology, Anatomy, Physiology, tractography, connectivity, neuroanatomy, white matter, magnetic resonance imaging, MRI
4125
Play Button
Process of Making Three-dimensional Microstructures using Vaporization of a Sacrificial Component
Authors: Du T. Nguyen, Y. T. Leho, Aaron P. Esser-Kahn.
Institutions: University of California, Irvine, University of California, Irvine.
Vascular structures in natural systems are able to provide high mass transport through high surface areas and optimized structure. Few synthetic material fabrication techniques are able to mimic the complexity of these structures while maintaining scalability. The Vaporization of a Sacrificial Component (VaSC) process is able to do so. This process uses sacrificial fibers as a template to form hollow, cylindrical microchannels embedded within a matrix. Tin (II) oxalate (SnOx) is embedded within poly(lactic) acid (PLA) fibers which facilitates the use of this process. The SnOx catalyzes the depolymerization of the PLA fibers at lower temperatures. The lactic acid monomers are gaseous at these temperatures and can be removed from the embedded matrix at temperatures that do not damage the matrix. Here we show a method for aligning these fibers using micromachined plates and a tensioning device to create complex patterns of three-dimensionally arrayed microchannels. The process allows the exploration of virtually any arrangement of fiber topologies and structures.
Physics, Issue 81, Biomedical Engineering, Chemical Engineering, Silicone Elastomers, Micro-Electrical-Mechanical Systems, Biomimetic Materials, chemical processing (general), materials (general), heat exchangers (aerospace applications), mass transfer, Massive microfabrication, high surface area structures, 3-dimensional micro exchange devices, biomimetics
50459
Play Button
Morris Water Maze Test: Optimization for Mouse Strain and Testing Environment
Authors: Daniel S. Weitzner, Elizabeth B. Engler-Chiurazzi, Linda A. Kotilinek, Karen Hsiao Ashe, Miranda Nicole Reed.
Institutions: West Virginia University, West Virginia University, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, GRECC, VA Medical Center, West Virginia University.
The Morris water maze (MWM) is a commonly used task to assess hippocampal-dependent spatial learning and memory in transgenic mouse models of disease, including neurocognitive disorders such as Alzheimer’s disease. However, the background strain of the mouse model used can have a substantial effect on the observed behavioral phenotype, with some strains exhibiting superior learning ability relative to others. To ensure differences between transgene negative and transgene positive mice can be detected, identification of a training procedure sensitive to the background strain is essential. Failure to tailor the MWM protocol to the background strain of the mouse model may lead to under- or over- training, thereby masking group differences in probe trials. Here, a MWM protocol tailored for use with the F1 FVB/N x 129S6 background is described. This is a frequently used background strain to study the age-dependent effects of mutant P301L tau (rTg(TauP301L)4510 mice) on the memory deficits associated with Alzheimer’s disease. Also described is a strategy to re-optimize, as dictated by the particular testing environment utilized.
Behavior, Issue 100, Spatial learning, spatial reference memory, Morris water maze, Alzheimer’s disease, behavior, tau, hippocampal-dependent learning, rTg4510, Tg2576, strain background, transgenic mouse models
52706
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.