JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Daily Temperature Fluctuations Alter Interactions between Closely Related Species of Marine Nematodes.
.
PLoS ONE
PUBLISHED: 07-07-2015
In addition to an increase in mean temperature, climate change models predict decreasing amplitudes of daily temperature fluctuations. In temperate regions, where daily and seasonal fluctuations are prominent, such decreases in daily temperature fluctuations can have a pronounced effect on the fitness of species and on the outcome of species interactions. In this study, the effect of a temperature regime with daily fluctuations versus a constant temperature on the fitness and interspecific interactions of three cryptic species of the marine nematode species complex of Litoditis marina (Pm I, Pm III and Pm IV) were investigated. In a lab experiment, different combinations of species (monospecific treatment: Pm I and Pm IV and Pm III alone; two-species treatment: Pm I + Pm IV; three-species treatment: Pm I + Pm IV + Pm III) were subjected to two different temperature regimes: one constant and one fluctuating temperature. Our results showed that fluctuating temperature had minor or no effects on the population fitness of the three species in monocultures. In contrast, interspecific interactions clearly influenced the fitness of all three species, both positively and negatively. Temperature regime did have a substantial effect on the interactions between the species. In the two-species treatment, temperature regime altered the interaction from a sort of mutualism to commensalism. In addition, the strength of the interspecific interactions changed depending on the temperature regime in the three-species treatment. This experiment confirms that interactions between the species can change depending on the abiotic environment; these results show that it is important to incorporate the effect of fluctuations on interspecific interactions to predict the effect of climate change on biodiversity.
ABSTRACT
Jared Leadbetter takes us for a nature walk through the diversity of life resident in the termite hindgut - a microenvironment containing 250 different species found nowhere else on Earth. Jared reveals that the symbiosis exhibited by this system is multi-layered and involves not only a relationship between the termite and its gut inhabitants, but also involves a complex web of symbiosis among the gut microbes themselves.
28 Related JoVE Articles!
Play Button
Single Wavelength Shadow Imaging of Caenorhabditis elegans Locomotion Including Force Estimates
Authors: Alicia Jago, Tewa Kpulun, Kathleen M. Raley-Susman, Jenny Magnes.
Institutions: Vassar College, Vassar College.
This study demonstrates an inexpensive and straightforward technique that allows the measurement of physical properties such as position, velocity, acceleration and forces involved in the locomotory behavior of nematodes suspended in a column of water in response to single wavelengths of light. We demonstrate how to evaluate the locomotion of a microscopic organism using Single Wavelength Shadow Imaging (SWSI) using two different examples. The first example is a systematic and statistically viable study of the average descent of C. elegans in a column of water. For this study, we used living and dead wildtype C. elegans. When we compared the velocity and direction of nematode active movement with the passive descent of dead worms within the gravitational field, this study showed no difference in descent-times. The average descent was 1.5 mm/sec ± 0.1 mm/sec for both the live and dead worms using 633 nm coherent light. The second example is a case study of select individual C. elegans changing direction during the descent in a vertical water column. Acceleration and force are analyzed in this example. This case study demonstrates the scope of other physical properties that can be evaluated using SWSI while evaluating the behavior using single wavelengths in an environment that is not accessible with traditional microscopes. Using this analysis we estimated an individual nematode is capable of thrusting with a force in excess of 28 nN. Our findings indicate that living nematodes exert 28 nN when turning, or moving against the gravitational field. The findings further suggest that nematodes passively descend in a column of water, but can actively resist the force of gravity primarily by turning direction.
Physics, Issue 86, C. elegans, nematode, shadow imaging, locomotion, video analysis, swimming behavior, force
51424
Play Button
Magnetic Tweezers for the Measurement of Twist and Torque
Authors: Jan Lipfert, Mina Lee, Orkide Ordu, Jacob W. J. Kerssemakers, Nynke H. Dekker.
Institutions: Delft University of Technology.
Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a “conventional” magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the “conventional” magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.
Bioengineering, Issue 87, magnetic tweezers, magnetic torque tweezers, freely-orbiting magnetic tweezers, twist, torque, DNA, single-molecule techniques
51503
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
51580
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
51807
Play Button
Soil Sampling and Isolation of Entomopathogenic Nematodes (Steinernematidae, Heterorhabditidae)
Authors: Rousel A. Orozco, Ming-Min Lee, S. Patricia Stock.
Institutions: University of Arizona.
Entomopathogenic nematodes (a.k.a. EPN) represent a group of soil-inhabiting nematodes that parasitize a wide range of insects. These nematodes belong to two families: Steinernematidae and Heterorhabditidae. Until now, more than 70 species have been described in the Steinernematidae and there are about 20 species in the Heterorhabditidae. The nematodes have a mutualistic partnership with Enterobacteriaceae bacteria and together they act as a potent insecticidal complex that kills a wide range of insect species. Herein, we focus on the most common techniques considered for collecting EPN from soil. The second part of this presentation focuses on the insect-baiting technique, a widely used approach for the isolation of EPN from soil samples, and the modified White trap technique which is used for the recovery of these nematodes from infected insects. These methods and techniques are key steps for the successful establishment of EPN cultures in the laboratory and also form the basis for other bioassays that consider these nematodes as model organisms for research in other biological disciplines. The techniques shown in this presentation correspond to those performed and/or designed by members of S. P. Stock laboratory as well as those described by various authors.
Environmental Sciences, Issue 89, Entomology, Nematology, Steinernema, Heterorhabditis, nematodes, soil sampling, insect-bait, modified White-trap
52083
Play Button
In vivo and In vitro Rearing of Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae)
Authors: John G. McMullen II, S. Patricia Stock.
Institutions: University of Arizona, University of Arizona.
Entomopathogenic nematodes (EPN) (Steinernematidae and Heterorhabditidae) have a mutualistic partnership with Gram-negative Gamma-Proteobacteria in the family Enterobacteriaceae. Xenorhabdus bacteria are associated with steinernematids nematodes while Photorhabdus are symbionts of heterorhabditids. Together nematodes and bacteria form a potent insecticidal complex that kills a wide range of insect species in an intimate and specific partnership. Herein, we demonstrate in vivo and in vitro techniques commonly used in the rearing of these nematodes under laboratory conditions. Furthermore, these techniques represent key steps for the successful establishment of EPN cultures and also form the basis for other bioassays that utilize these organisms for research. The production of aposymbiotic (symbiont–free) nematodes is often critical for an in-depth and multifaceted approach to the study of symbiosis. This protocol does not require the addition of antibiotics and can be accomplished in a short amount of time with standard laboratory equipment. Nematodes produced in this manner are relatively robust, although their survivorship in storage may vary depending on the species used. The techniques detailed in this presentation correspond to those described by various authors and refined by P. Stock’s Laboratory, University of Arizona (Tucson, AZ, USA). These techniques are distinct from the body of techniques that are used in the mass production of these organisms for pest management purposes.
Bioengineering, Issue 91, entomology, nematology, microbiology, entomopathogenic, nematodes, bacteria, rearing, in vivo, in vitro
52096
Play Button
Purifying the Impure: Sequencing Metagenomes and Metatranscriptomes from Complex Animal-associated Samples
Authors: Yan Wei Lim, Matthew Haynes, Mike Furlan, Charles E. Robertson, J. Kirk Harris, Forest Rohwer.
Institutions: San Diego State University, DOE Joint Genome Institute, University of Colorado, University of Colorado.
The accessibility of high-throughput sequencing has revolutionized many fields of biology. In order to better understand host-associated viral and microbial communities, a comprehensive workflow for DNA and RNA extraction was developed. The workflow concurrently generates viral and microbial metagenomes, as well as metatranscriptomes, from a single sample for next-generation sequencing. The coupling of these approaches provides an overview of both the taxonomical characteristics and the community encoded functions. The presented methods use Cystic Fibrosis (CF) sputum, a problematic sample type, because it is exceptionally viscous and contains high amount of mucins, free neutrophil DNA, and other unknown contaminants. The protocols described here target these problems and successfully recover viral and microbial DNA with minimal human DNA contamination. To complement the metagenomics studies, a metatranscriptomics protocol was optimized to recover both microbial and host mRNA that contains relatively few ribosomal RNA (rRNA) sequences. An overview of the data characteristics is presented to serve as a reference for assessing the success of the methods. Additional CF sputum samples were also collected to (i) evaluate the consistency of the microbiome profiles across seven consecutive days within a single patient, and (ii) compare the consistency of metagenomic approach to a 16S ribosomal RNA gene-based sequencing. The results showed that daily fluctuation of microbial profiles without antibiotic perturbation was minimal and the taxonomy profiles of the common CF-associated bacteria were highly similar between the 16S rDNA libraries and metagenomes generated from the hypotonic lysis (HL)-derived DNA. However, the differences between 16S rDNA taxonomical profiles generated from total DNA and HL-derived DNA suggest that hypotonic lysis and the washing steps benefit in not only removing the human-derived DNA, but also microbial-derived extracellular DNA that may misrepresent the actual microbial profiles.
Molecular Biology, Issue 94, virome, microbiome, metagenomics, metatranscriptomics, cystic fibrosis, mucosal-surface
52117
Play Button
Functional Evaluation of Biological Neurotoxins in Networked Cultures of Stem Cell-derived Central Nervous System Neurons
Authors: Kyle Hubbard, Phillip Beske, Megan Lyman, Patrick McNutt.
Institutions: United States Army Medical Research Institute of Chemical Defense.
Therapeutic and mechanistic studies of the presynaptically targeted clostridial neurotoxins (CNTs) have been limited by the need for a scalable, cell-based model that produces functioning synapses and undergoes physiological responses to intoxication. Here we describe a simple and robust method to efficiently differentiate murine embryonic stem cells (ESCs) into defined lineages of synaptically active, networked neurons. Following an 8 day differentiation protocol, mouse embryonic stem cell-derived neurons (ESNs) rapidly express and compartmentalize neurotypic proteins, form neuronal morphologies and develop intrinsic electrical responses. By 18 days after differentiation (DIV 18), ESNs exhibit active glutamatergic and γ-aminobutyric acid (GABA)ergic synapses and emergent network behaviors characterized by an excitatory:inhibitory balance. To determine whether intoxication with CNTs functionally antagonizes synaptic neurotransmission, thereby replicating the in vivo pathophysiology that is responsible for clinical manifestations of botulism or tetanus, whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitatory post-synaptic currents (mEPSCs) in ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes /A-/G. In all cases, ESNs exhibited near-complete loss of synaptic activity within 20 hr. Intoxicated neurons remained viable, as demonstrated by unchanged resting membrane potentials and intrinsic electrical responses. To further characterize the sensitivity of this approach, dose-dependent effects of intoxication on synaptic activity were measured 20 hr after addition of BoNT/A. Intoxication with 0.005 pM BoNT/A resulted in a significant decrement in mEPSCs, with a median inhibitory concentration (IC50) of 0.013 pM. Comparisons of median doses indicate that functional measurements of synaptic inhibition are faster, more specific and more sensitive than SNARE cleavage assays or the mouse lethality assay. These data validate the use of synaptically coupled, stem cell-derived neurons for the highly specific and sensitive detection of CNTs.
Neuroscience, Issue 96, embryonic stem cells, stem cell-derived neurons, botulinum neurotoxin detection, electrophysiology, synapse, neuronal networks, glutamatergic synapse, GABAergic synapse
52361
Play Button
A Fish-feeding Laboratory Bioassay to Assess the Antipredatory Activity of Secondary Metabolites from the Tissues of Marine Organisms
Authors: Micah J. Marty, Joseph R. Pawlik.
Institutions: University of North Carolina Wilmington.
Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.
Environmental Sciences, Issue 95, Marine chemical ecology, predation, chemical defense, bioassay, secondary metabolites, fish, invertebrates
52429
Play Button
Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae
Authors: Xin Zhang, Keshava Mysore, Ellen Flannery, Kristin Michel, David W. Severson, Kun Yan Zhu, Molly Duman-Scheel.
Institutions: Kansas State University, Indiana University School of Medicine, University of Notre Dame, University of Notre Dame, Kansas State University.
Vector mosquitoes inflict more human suffering than any other organismand kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field.
Molecular Biology, Issue 97, vector biology, RNA interference, Anopheles gambiae, Aedes aegypti, dsRNA, siRNA, knockdown, ingestion, mosquito, larvae, development, disease
52523
Play Button
Dyeing Insects for Behavioral Assays: the Mating Behavior of Anesthetized Drosophila
Authors: Rudi L. Verspoor, Chloe Heys, Thomas A. R. Price.
Institutions: University of Liverpool.
Mating experiments using Drosophila have contributed greatly to the understanding of sexual selection and behavior. Experiments often require simple, easy and cheap methods to distinguish between individuals in a trial. A standard technique for this is CO2 anaesthesia and then labelling or wing clipping each fly. However, this is invasive and has been shown to affect behavior. Other techniques have used coloration to identify flies. This article presents a simple and non-invasive method for labelling Drosophila that allows them to be individually identified within experiments, using food coloring. This method is used in trials where two males compete to mate with a female. Dyeing allowed quick and easy identification. There was, however, some difference in the strength of the coloration across the three species tested. Data is presented showing the dye has a lower impact on mating behavior than CO2 in Drosophila melanogaster. The impact of CO2 anaesthesia is shown to depend on the species of Drosophila, with D. pseudoobscura and D. subobscura showing no impact, whereas D. melanogaster males had reduced mating success. The dye method presented is applicable to a wide range of experimental designs.
Neuroscience, Issue 98, Anesthesia, courtship, fruit fly, individual marking, individual tagging, male-male competition, mate choice, mate competition, mating latency, wing clipping
52645
Play Button
Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability
Authors: Jodi R. Schilz, K. J. Reddy, Sreejayan Nair, Thomas E. Johnson, Ronald B. Tjalkens, Kem P. Krueger, Suzanne Clark.
Institutions: University of New Mexico, University of Wyoming, University of Wyoming, Colorado State University, Colorado State University, California Northstate University.
In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters.
Environmental Sciences, Issue 100, Energy production, uranium in situ recovery, water decontamination, nanoparticles, toxicity, cytotoxicity, in vitro cell culture
52715
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Monitoring Intraspecies Competition in a Bacterial Cell Population by Cocultivation of Fluorescently Labelled Strains
Authors: Lorena Stannek, Richard Egelkamp, Katrin Gunka, Fabian M. Commichau.
Institutions: Georg-August University.
Many microorganisms such as bacteria proliferate extremely fast and the populations may reach high cell densities. Small fractions of cells in a population always have accumulated mutations that are either detrimental or beneficial for the cell. If the fitness effect of a mutation provides the subpopulation with a strong selective growth advantage, the individuals of this subpopulation may rapidly outcompete and even completely eliminate their immediate fellows. Thus, small genetic changes and selection-driven accumulation of cells that have acquired beneficial mutations may lead to a complete shift of the genotype of a cell population. Here we present a procedure to monitor the rapid clonal expansion and elimination of beneficial and detrimental mutations, respectively, in a bacterial cell population over time by cocultivation of fluorescently labeled individuals of the Gram-positive model bacterium Bacillus subtilis. The method is easy to perform and very illustrative to display intraspecies competition among the individuals in a bacterial cell population.
Cellular Biology, Issue 83, Bacillus subtilis, evolution, adaptation, selective pressure, beneficial mutation, intraspecies competition, fluorophore-labelling, Fluorescence Microscopy
51196
Play Button
Design and Analysis of Temperature Preference Behavior and its Circadian Rhythm in Drosophila
Authors: Tadahiro Goda, Jennifer R. Leslie, Fumika N. Hamada.
Institutions: Cincinnati Childrens Hospital Medical Center, JST.
The circadian clock regulates many aspects of life, including sleep, locomotor activity, and body temperature (BTR) rhythms1,2. We recently identified a novel Drosophila circadian output, called the temperature preference rhythm (TPR), in which the preferred temperature in flies rises during the day and falls during the night 3. Surprisingly, the TPR and locomotor activity are controlled through distinct circadian neurons3. Drosophila locomotor activity is a well known circadian behavioral output and has provided strong contributions to the discovery of many conserved mammalian circadian clock genes and mechanisms4. Therefore, understanding TPR will lead to the identification of hitherto unknown molecular and cellular circadian mechanisms. Here, we describe how to perform and analyze the TPR assay. This technique not only allows for dissecting the molecular and neural mechanisms of TPR, but also provides new insights into the fundamental mechanisms of the brain functions that integrate different environmental signals and regulate animal behaviors. Furthermore, our recently published data suggest that the fly TPR shares features with the mammalian BTR3. Drosophila are ectotherms, in which the body temperature is typically behaviorally regulated. Therefore, TPR is a strategy used to generate a rhythmic body temperature in these flies5-8. We believe that further exploration of Drosophila TPR will facilitate the characterization of the mechanisms underlying body temperature control in animals.
Basic Protocol, Issue 83, Drosophila, circadian clock, temperature, temperature preference rhythm, locomotor activity, body temperature rhythms
51097
Play Button
Electroporation of Mycobacteria
Authors: Renan Goude, Tanya Parish.
Institutions: Barts and the London School of Medicine and Dentistry, Barts and the London School of Medicine and Dentistry.
High efficiency transformation is a major limitation in the study of mycobacteria. The genus Mycobacterium can be difficult to transform; this is mainly caused by the thick and waxy cell wall, but is compounded by the fact that most molecular techniques have been developed for distantly-related species such as Escherichia coli and Bacillus subtilis. In spite of these obstacles, mycobacterial plasmids have been identified and DNA transformation of many mycobacterial species have now been described. The most successful method for introducing DNA into mycobacteria is electroporation. Many parameters contribute to successful transformation; these include the species/strain, the nature of the transforming DNA, the selectable marker used, the growth medium, and the conditions for the electroporation pulse. Optimized methods for the transformation of both slow- and fast-grower are detailed here. Transformation efficiencies for different mycobacterial species and with various selectable markers are reported.
Microbiology, Issue 15, Springer Protocols, Mycobacteria, Electroporation, Bacterial Transformation, Transformation Efficiency, Bacteria, Tuberculosis, M. Smegmatis, Springer Protocols
761
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
Preparation of Rat Brain Aggregate Cultures for Neuron and Glia Development Studies
Authors: Hisami Koito, Jianrong Li.
Institutions: Texas A&M University (TAMU).
An in vitro system that recapitulates the development and differentiation of progenitors into mature neurons and glia in the central nervous system (CNS) would provide a powerful platform for neuroscientists to investigate axo-glial interactions, properties and differentiation of multipotent progenitors, and progression of oligodendroglial lineage cells at the cellular and molecular level. We describe here a CNS aggregate culture system from embryonic rat forebrains, which can be maintained in a serum-free medium up to 3-4 weeks and is used in our laboratory as a model to study neuron-glia interaction and CNS myelination. This video clip will demonstrate how to isolate and grow these CNS aggregate cultures from E16 rat brain. Furthermore, from the same brain dissection, highly enriched regular dissociated neuronal cultures can be readily obtained and used for various studies on CNS neurons or used for co-cultures with other cells.
Developmental Biology, Issue 31, brain, rat, aggregates, progenitors, differentiation, glia, neurons, oligodendrocytes, myelination
1304
Play Button
Analysis of Gene Expression in Emerald Ash Borer (Agrilus planipennis) Using Quantitative Real Time-PCR
Authors: Binny Bhandary, Swapna Priya Rajarapu, Loren Rivera-Vega, Omprakash Mittapalli.
Institutions: The Ohio State University.
Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America. EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1st-, 2nd-, 3rd-, 4th-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium.
Cellular Biology, Issue 39, quantitative real time-PCR, peritrophin, emerald ash borer, gene expression
1974
Play Button
Chromatographic Purification of Highly Active Yeast Ribosomes
Authors: Arturas Meskauskas, Jonathan A. Leshin, Jonathan D. Dinman.
Institutions: University of Maryland , Vilnius University.
Eukaryotic ribosomes are much more labile as compared to their eubacterial and archael counterparts, thus posing a significant challenge to researchers. Particularly troublesome is the fact that lysis of cells releases a large number of proteases and nucleases which can degrade ribosomes. Thus, it is important to separate ribosomes from these enzymes as quickly as possible. Unfortunately, conventional differential ultracentrifugation methods leaves ribosomes exposed to these enzymes for unacceptably long periods of time, impacting their structural integrity and functionality. To address this problem, we utilize a chromatographic method using a cysteine charged Sulfolink resin. This simple and rapid application significantly reduces co-purifying proteolytic and nucleolytic activities, producing high yields of intact, highly biochemically active yeast ribosomes. We suggest that this method should also be applicable to mammalian ribosomes. The simplicity of the method, and the enhanced purity and activity of chromatographically purified ribosome represents a significant technical advancement for the study of eukaryotic ribosomes.
Cell Biology, Issue 56, Ribosome, purification, DNA, yeast, chromatography, Saccharomyces cerevisiae
3214
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
4056
Play Button
Visualizing Bacteria in Nematodes using Fluorescent Microscopy
Authors: Kristen E. Murfin, John Chaston, Heidi Goodrich-Blair.
Institutions: University of Wisconsin-Madison.
Symbioses, the living together of two or more organisms, are widespread throughout all kingdoms of life. As two of the most ubiquitous organisms on earth, nematodes and bacteria form a wide array of symbiotic associations that range from beneficial to pathogenic 1-3. One such association is the mutually beneficial relationship between Xenorhabdus bacteria and Steinernema nematodes, which has emerged as a model system of symbiosis 4. Steinernema nematodes are entomopathogenic, using their bacterial symbiont to kill insects 5. For transmission between insect hosts, the bacteria colonize the intestine of the nematode's infective juvenile stage 6-8. Recently, several other nematode species have been shown to utilize bacteria to kill insects 9-13, and investigations have begun examining the interactions between the nematodes and bacteria in these systems 9. We describe a method for visualization of a bacterial symbiont within or on a nematode host, taking advantage of the optical transparency of nematodes when viewed by microscopy. The bacteria are engineered to express a fluorescent protein, allowing their visualization by fluorescence microscopy. Many plasmids are available that carry genes encoding proteins that fluoresce at different wavelengths (i.e. green or red), and conjugation of plasmids from a donor Escherichia coli strain into a recipient bacterial symbiont is successful for a broad range of bacteria. The methods described were developed to investigate the association between Steinernema carpocapsae and Xenorhabdus nematophila 14. Similar methods have been used to investigate other nematode-bacterium associations 9,15-18and the approach therefore is generally applicable. The method allows characterization of bacterial presence and localization within nematodes at different stages of development, providing insights into the nature of the association and the process of colonization 14,16,19. Microscopic analysis reveals both colonization frequency within a population and localization of bacteria to host tissues 14,16,19-21. This is an advantage over other methods of monitoring bacteria within nematode populations, such as sonication 22or grinding 23, which can provide average levels of colonization, but may not, for example, discriminate populations with a high frequency of low symbiont loads from populations with a low frequency of high symbiont loads. Discriminating the frequency and load of colonizing bacteria can be especially important when screening or characterizing bacterial mutants for colonization phenotypes 21,24. Indeed, fluorescence microscopy has been used in high throughput screening of bacterial mutants for defects in colonization 17,18, and is less laborious than other methods, including sonication 22,25-27and individual nematode dissection 28,29.
Microbiology, Issue 68, Molecular Biology, Bacteriology, Developmental Biology, Colonization, Xenorhabdus, Steinernema, symbiosis, nematode, bacteria, fluorescence microscopy
4298
Play Button
Development of Whispering Gallery Mode Polymeric Micro-optical Electric Field Sensors
Authors: Tindaro Ioppolo, Volkan Ötügen, Ulas Ayaz.
Institutions: Southern Methodist University.
Optical modes of dielectric micro-cavities have received significant attention in recent years for their potential in a broad range of applications. The optical modes are frequently referred to as "whispering gallery modes" (WGM) or "morphology dependent resonances" (MDR) and exhibit high optical quality factors. Some proposed applications of micro-cavity optical resonators are in spectroscopy1, micro-cavity laser technology2, optical communications3-6 as well as sensor technology. The WGM-based sensor applications include those in biology7, trace gas detection8, and impurity detection in liquids9. Mechanical sensors based on microsphere resonators have also been proposed, including those for force10,11, pressure12, acceleration13 and wall shear stress14. In the present, we demonstrate a WGM-based electric field sensor, which builds on our previous studies15,16. A candidate application of this sensor is in the detection of neuronal action potential. The electric field sensor is based on polymeric multi-layered dielectric microspheres. The external electric field induces surface and body forces on the spheres (electrostriction effect) leading to elastic deformation. This change in the morphology of the spheres, leads to shifts in the WGM. The electric field-induced WGM shifts are interrogated by exciting the optical modes of the spheres by laser light. Light from a distributed feedback (DFB) laser (nominal wavelength of ~ 1.3 μm) is side-coupled into the microspheres using a tapered section of a single mode optical fiber. The base material of the spheres is polydimethylsiloxane (PDMS). Three microsphere geometries are used: (1) PDMS sphere with a 60:1 volumetric ratio of base-to-curing agent mixture, (2) multi layer sphere with 60:1 PDMS core, in order to increase the dielectric constant of the sphere, a middle layer of 60:1 PDMS that is mixed with varying amounts (2% to 10% by volume) of barium titanate and an outer layer of 60:1 PDMS and (3) solid silica sphere coated with a thin layer of uncured PDMS base. In each type of sensor, laser light from the tapered fiber is coupled into the outermost layer that provides high optical quality factor WGM (Q ~ 106). The microspheres are poled for several hours at electric fields of ~ 1 MV/m to increase their sensitivity to electric field.
Mechanical Engineering, Issue 71, Physics, Optics, Materials Science, Chemical Engineering, electrostatics, optical fibers, optical materials, optical waveguides, optics, optoelectronics, photonics, geometrical optics, sensors, electric field, dielectric resonators, micro-spheres, whispering gallery mode, morphology dependent resonance, PDMS
50199
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
50863
Play Button
Helminth Collection and Identification from Wildlife
Authors: Maria S Sepulveda, John M Kinsella.
Institutions: Purdue University, Helm West Laboratory.
Wild animals are commonly parasitized by a wide range of helminths. The four major types of helminths are "roundworms" (nematodes), "thorny-headed worms" (acanthocephalans), "flukes" (trematodes), and "tapeworms" (cestodes). The optimum method for collecting helminths is to examine a host that has been dead less than 4-6 hr since most helminths will still be alive. A thorough necropsy should be conducted and all major organs examined. Organs are washed over a 106 μm sieve under running water and contents examined under a stereo microscope. All helminths are counted and a representative number are fixed (either in 70% ethanol, 10% buffered formalin, or alcohol-formalin-acetic acid). For species identification, helminths are either cleared in lactophenol (nematodes and small acanthocephalans) or stained (trematodes, cestodes, and large acanthocephalans) using Harris' hematoxylin or Semichon's carmine. Helminths are keyed to species by examining different structures (e.g. male spicules in nematodes or the rostellum in cestodes). The protocols outlined here can be applied to any vertebrate animal. They require some expertise on recognizing the different organs and being able to differentiate helminths from other tissue debris or gut contents. Collection, preservation, and staining are straightforward techniques that require minimal equipment and reagents. Taxonomic identification, especially to species, can be very time consuming and might require the submission of specimens to an expert or DNA analysis.
Environmental Sciences, Issue 82, Helminths, eukaryotic parasites, worms, nematodes, cestodes, trematodes, acanthocephalans, wildlife
51000
Play Button
Nest Building as an Indicator of Health and Welfare in Laboratory Mice
Authors: Brianna N. Gaskill, Alicia Z. Karas, Joseph P. Garner, Kathleen R. Pritchett-Corning.
Institutions: Charles River, Tufts University, Stanford University, Stanford University.
The minimization and alleviation of suffering has moral and scientific implications. In order to mitigate this negative experience one must be able to identify when an animal is actually in distress. Pain, illness, or distress cannot be managed if unrecognized. Evaluation of pain or illness typically involves the measurement of physiologic and behavioral indicators which are either invasive or not suitable for large scale assessment. The observation of nesting behavior shows promise as the basis of a species appropriate cage-side assessment tool for recognizing distress in mice. Here we demonstrate the utility of nest building behavior in laboratory mice as an ethologically relevant indicator of welfare. The methods presented can be successfully used to identify thermal stressors, aggressive cages, sickness, and pain. Observation of nest building behavior in mouse colonies provides a refinement to health and well-being assessment on a day to day basis.
Behavior, Issue 82, Animal Structures, Surgical Procedures, Life Sciences (General), Behavioral Sciences, Mouse, Welfare assessment, Nest building
51012
Play Button
Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins
Authors: Savannah E. Sanchez, Daniel A. Cuevas, Jason E. Rostron, Tiffany Y. Liang, Cullen G. Pivaroff, Matthew R. Haynes, Jim Nulton, Ben Felts, Barbara A. Bailey, Peter Salamon, Robert A. Edwards, Alex B. Burgin, Anca M. Segall, Forest Rohwer.
Institutions: San Diego State University, San Diego State University, San Diego State University, San Diego State University, San Diego State University, Argonne National Laboratory, Broad Institute.
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.
Immunology, Issue 100, phenomics, phage, viral metagenome, Multi-phenotype Assay Plates (MAPs), continuous culture, metabolomics
52854
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.