JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.
.
PLoS ONE
PUBLISHED: 07-07-2015
Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2.
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Published: 03-13-2014
ABSTRACT
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
14 Related JoVE Articles!
Play Button
Exploring the Effects of Atmospheric Forcings on Evaporation: Experimental Integration of the Atmospheric Boundary Layer and Shallow Subsurface
Authors: Kathleen Smits, Victoria Eagen, Andrew Trautz.
Institutions: Colorado School of Mines.
Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages.
Environmental Sciences, Issue 100, Bare-soil evaporation, Land-atmosphere interactions, Heat and mass flux, Porous media, Wind tunnel, Soil thermal properties, Multiphase flow
52704
Play Button
Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers
Authors: Sarah M. Collier, Matthew D. Ruark, Lawrence G. Oates, William E. Jokela, Curtis J. Dell.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison, USDA-ARS Dairy Forage Research Center, USDA-ARS Pasture Systems Watershed Management Research Unit.
Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies.
Environmental Sciences, Issue 90, greenhouse gas, trace gas, gas flux, static chamber, soil, field, agriculture, climate
52110
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
50961
Play Button
Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling
Authors: Jennifer L Soong, Dan Reuss, Colin Pinney, Ty Boyack, Michelle L Haddix, Catherine E Stewart, M. Francesca Cotrufo.
Institutions: Colorado State University, USDA-ARS, Colorado State University.
Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components, respectively). Challenges lie in maintaining proper temperature, humidity, CO2 concentration, and light levels in an airtight 13C-CO2 atmosphere for successful plant production. This chamber description represents a useful research tool to effectively produce uniformly or differentially multi-isotope labeled plant material for use in experiments on ecosystem biogeochemical cycling.
Environmental Sciences, Issue 83, 13C, 15N, plant, stable isotope labeling, Andropogon gerardii, metabolic compounds, structural compounds, hot water extraction
51117
Play Button
A Whole Cell Bioreporter Approach to Assess Transport and Bioavailability of Organic Contaminants in Water Unsaturated Systems
Authors: Susan Schamfuß, Thomas R. Neu, Hauke Harms, Lukas Y. Wick.
Institutions: Helmholtz Centre for Environmental Research - UFZ, Helmholtz Centre for Environmental Research - UFZ.
Bioavailability of contaminants is a prerequisite for their effective biodegradation in soil. The average bulk concentration of a contaminant, however, is not an appropriate measure for its availability; bioavailability rather depends on the dynamic interplay of potential mass transfer (flux) of a compound to a microbial cell and the capacity of the latter to degrade the compound. In water-unsaturated parts of the soil, mycelia have been shown to overcome bioavailability limitations by actively transporting and mobilizing organic compounds over the range of centimeters. Whereas the extent of mycelia-based transport can be quantified easily by chemical means, verification of the contaminant-bioavailability to bacterial cells requires a biological method. Addressing this constraint, we chose the PAH fluorene (FLU) as a model compound and developed a water unsaturated model microcosm linking a spatially separated FLU point source and the FLU degrading bioreporter bacterium Burkholderia sartisoli RP037-mChe by a mycelial network of Pythium ultimum. Since the bioreporter expresses eGFP in response of the PAH flux to the cell, bacterial FLU exposure and degradation could be monitored directly in the microcosms via confocal laser scanning microscopy (CLSM). CLSM and image analyses revealed a significant increase of the eGFP expression in the presence of P. ultimum compared to controls without mycelia or FLU thus indicating FLU bioavailability to bacteria after mycelia-mediated transport. CLSM results were supported by chemical analyses in identical microcosms. The developed microcosm proved suitable to investigate contaminant bioavailability and to concomitantly visualize the involved bacteria-mycelial interactions.
Environmental Sciences, Issue 94, PAH, bioavailability, mycelia, translocation, volatility, bioreporter, CLSM, biodegradation, fluorene
52334
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
52183
Play Button
Measuring Fluxes of Mineral Nutrients and Toxicants in Plants with Radioactive Tracers
Authors: Devrim Coskun, Dev T. Britto, Ahmed M. Hamam, Herbert J. Kronzucker.
Institutions: University of Toronto.
Unidirectional influx and efflux of nutrients and toxicants, and their resultant net fluxes, are central to the nutrition and toxicology of plants. Radioisotope tracing is a major technique used to measure such fluxes, both within plants, and between plants and their environments. Flux data obtained with radiotracer protocols can help elucidate the capacity, mechanism, regulation, and energetics of transport systems for specific mineral nutrients or toxicants, and can provide insight into compartmentation and turnover rates of subcellular mineral and metabolite pools. Here, we describe two major radioisotope protocols used in plant biology: direct influx (DI) and compartmental analysis by tracer efflux (CATE). We focus on flux measurement of potassium (K+) as a nutrient, and ammonia/ammonium (NH3/NH4+) as a toxicant, in intact seedlings of the model species barley (Hordeum vulgare L.). These protocols can be readily adapted to other experimental systems (e.g., different species, excised plant material, and other nutrients/toxicants). Advantages and limitations of these protocols are discussed.
Environmental Sciences, Issue 90, influx, efflux, net flux, compartmental analysis, radiotracers, potassium, ammonia, ammonium
51877
Play Button
Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production
Authors: M. Toufiq Reza, Maja Werner, Marcel Pohl, Jan Mumme.
Institutions: Leibniz Institute for Agricultural Engineering.
Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.
Environmental Sciences, Issue 88, Biomethane, Hydrothermal Carbonization (HTC), Calorific Value, Lignocellulosic Biomass, UASS, Anaerobic Digestion
51734
Play Button
Studying Membrane Biogenesis with a Luciferase-Based Reporter Gene Assay
Authors: Shaochong Zhang, Axel Nohturfft.
Institutions: Harvard, St. George's University of London.
To study the coordination of different lipid synthesis pathways during membrane biogenesis it is useful to work with an experimental system where membrane biogenesis occurs rapidly and in an inducible manner. We have found that phagocytosis of latex beads is practical for these purposes as cells rapidly synthesize membrane lipids to replenish membrane pools lost as wrapping material during particle engulfment. Here, we describe procedures for studying changes in phagocytosis-induced gene expression with a luciferase-based reporter gene approach using the Dual-Glo Luciferase Assay System from Promega.
Cellular Biology, Issue 19, Annual Review, Membrane Biogenesis, Phagocytosis, Latex Beads, Dual-Glo Luciferase Assay, Firefly Luciferace, Renilla Luciferase
920
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
50863
Play Button
Surface Renewal: An Advanced Micrometeorological Method for Measuring and Processing Field-Scale Energy Flux Density Data
Authors: Andrew J. McElrone, Thomas M. Shapland, Arturo Calderon, Li Fitzmaurice, Kyaw Tha Paw U, Richard L. Snyder.
Institutions: United States Department of Agriculture-Agricultural Research Service, University of California, Davis, University of Chile, University of California, Davis, URS Corporation Australia Pty. Ltd..
Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn.
Environmental Sciences, Issue 82, Conservation of Natural Resources, Engineering, Agriculture, plants, energy balance, irrigated agriculture, flux data, evapotranspiration, agrometeorology
50666
Play Button
Linking Predation Risk, Herbivore Physiological Stress and Microbial Decomposition of Plant Litter
Authors: Oswald J. Schmitz, Mark A. Bradford, Michael S. Strickland, Dror Hawlena.
Institutions: Yale University, Virginia Tech, The Hebrew University of Jerusalem.
The quantity and quality of detritus entering the soil determines the rate of decomposition by microbial communities as well as recycle rates of nitrogen (N) and carbon (C) sequestration1,2. Plant litter comprises the majority of detritus3, and so it is assumed that decomposition is only marginally influenced by biomass inputs from animals such as herbivores and carnivores4,5. However, carnivores may influence microbial decomposition of plant litter via a chain of interactions in which predation risk alters the physiology of their herbivore prey that in turn alters soil microbial functioning when the herbivore carcasses are decomposed6. A physiological stress response by herbivores to the risk of predation can change the C:N elemental composition of herbivore biomass7,8,9 because stress from predation risk increases herbivore basal energy demands that in nutrient-limited systems forces herbivores to shift their consumption from N-rich resources to support growth and reproduction to C-rich carbohydrate resources to support heightened metabolism6. Herbivores have limited ability to store excess nutrients, so stressed herbivores excrete N as they increase carbohydrate-C consumption7. Ultimately, prey stressed by predation risk increase their body C:N ratio7,10, making them poorer quality resources for the soil microbial pool likely due to lower availability of labile N for microbial enzyme production6. Thus, decomposition of carcasses of stressed herbivores has a priming effect on the functioning of microbial communities that decreases subsequent ability to of microbes to decompose plant litter6,10,11. We present the methodology to evaluate linkages between predation risk and litter decomposition by soil microbes. We describe how to: induce stress in herbivores from predation risk; measure those stress responses, and measure the consequences on microbial decomposition. We use insights from a model grassland ecosystem comprising the hunting spider predator (Pisuarina mira), a dominant grasshopper herbivore (Melanoplus femurrubrum),and a variety of grass and forb plants9.
Environmental Sciences, Issue 73, Microbiology, Plant Biology, Entomology, Organisms, Investigative Techniques, Biological Phenomena, Chemical Phenomena, Metabolic Phenomena, Microbiological Phenomena, Earth Resources and Remote Sensing, Life Sciences (General), Litter Decomposition, Ecological Stoichiometry, Physiological Stress and Ecosystem Function, Predation Risk, Soil Respiration, Carbon Sequestration, Soil Science, respiration, spider, grasshoper, model system
50061
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
3064
Play Button
An Optimized Enrichment Technique for the Isolation of Arthrobacter Bacteriophage Species from Soil Sample Isolates
Authors: Trevor Cross, Courtney Schoff, Dylan Chudoff, LIbby Graves, Haley Broomell, Katrina Terry, Jennifer Farina, Alexandra Correa, David Shade, David Dunbar.
Institutions: University of the Sciences, Arcadia University, Immaculata University, Neumann University, Cabrini College.
Bacteriophage isolation from environmental samples has been performed for decades using principles set forth by pioneers in microbiology. The isolation of phages infecting Arthrobacter hosts has been limited, perhaps due to the low success rate of many previous isolation techniques, resulting in an underrepresented group of Arthrobacter phages available for study. The enrichment technique described here, unlike many others, uses a filtered extract free of contaminating bacteria as the base for indicator bacteria growth, Arthrobactersp. KY3901, specifically. By first removing soil bacteria the target phages are not hindered by competition with native soil bacteria present in initial soil samples. This enrichment method has resulted in dozens of unique phages from several different soil types and even produced different types of phages from the same enriched soil sample isolate. The use of this procedure can be expanded to most nutrient rich aerobic media for the isolation of phages in a vast diversity of interesting host bacteria.
Environmental Sciences, Issue 98, Phage enrichment, Arthrobacter phages, phage purification, plaque isolation, soil phages, Acintobacteriaceae,
52781
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.