JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT.
.
PLoS ONE
PUBLISHED: 07-07-2015
To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity.
Authors: Maggie Roy, Scott Nugent, Sébastien Tremblay, Maxime Descoteaux, Jean-François Beaudoin, Luc Tremblay, Roger Lecomte, Stephen C Cunnane.
Published: 12-28-2013
ABSTRACT
We present a method for comparing the uptake of the brain's two key energy substrates: glucose and ketones (acetoacetate [AcAc] in this case) in the rat. The developed method is a small-animal positron emission tomography (PET) protocol, in which 11C-AcAc and 18F-fluorodeoxyglucose (18F-FDG) are injected sequentially in each animal. This dual tracer PET acquisition is possible because of the short half-life of 11C (20.4 min). The rats also undergo a magnetic resonance imaging (MRI) acquisition seven days before the PET protocol. Prior to image analysis, PET and MRI images are coregistered to allow the measurement of regional cerebral uptake (cortex, hippocampus, striatum, and cerebellum). A quantitative measure of 11C-AcAc and 18F-FDG brain uptake (cerebral metabolic rate; μmol/100 g/min) is determined by kinetic modeling using the image-derived input function (IDIF) method. Our new dual tracer PET protocol is robust and flexible; the two tracers used can be replaced by different radiotracers to evaluate other processes in the brain. Moreover, our protocol is applicable to the study of brain fuel supply in multiple conditions such as normal aging and neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases.
18 Related JoVE Articles!
Play Button
Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images
Authors: Aliya Gifford, Theodore F. Towse, Ronald C. Walker, Malcolm J. Avison, E. Brian Welch.
Institutions: Vanderbilt University, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University.
Reliably differentiating brown adipose tissue (BAT) from other tissues using a non-invasive imaging method is an important step toward studying BAT in humans. Detecting BAT is typically confirmed by the uptake of the injected radioactive tracer 18F-Fluorodeoxyglucose (18F-FDG) into adipose tissue depots, as measured by positron emission tomography/computed tomography (PET-CT) scans after exposing the subject to cold stimulus. Fat-water separated magnetic resonance imaging (MRI) has the ability to distinguish BAT without the use of a radioactive tracer. To date, MRI of BAT in adult humans has not been co-registered with cold-activated PET-CT. Therefore, this protocol uses 18F-FDG PET-CT scans to automatically generate a BAT mask, which is then applied to co-registered MRI scans of the same subject. This approach enables measurement of quantitative MRI properties of BAT without manual segmentation. BAT masks are created from two PET-CT scans: after exposure for 2 hr to either thermoneutral (TN) (24 °C) or cold-activated (CA) (17 °C) conditions. The TN and CA PET-CT scans are registered, and the PET standardized uptake and CT Hounsfield values are used to create a mask containing only BAT. CA and TN MRI scans are also acquired on the same subject and registered to the PET-CT scans in order to establish quantitative MRI properties within the automatically defined BAT mask. An advantage of this approach is that the segmentation is completely automated and is based on widely accepted methods for identification of activated BAT (PET-CT). The quantitative MRI properties of BAT established using this protocol can serve as the basis for an MRI-only BAT examination that avoids the radiation associated with PET-CT.
Medicine, Issue 96, magnetic resonance imaging, brown adipose tissue, cold-activation, adult human, fat water imaging, fluorodeoxyglucose, positron emission tomography, computed tomography
52415
Play Button
Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for Mapping Chromatin Interactions and Understanding Transcription Regulation
Authors: Yufen Goh, Melissa J. Fullwood, Huay Mei Poh, Su Qin Peh, Chin Thing Ong, Jingyao Zhang, Xiaoan Ruan, Yijun Ruan.
Institutions: Agency for Science, Technology and Research, Singapore, A*STAR-Duke-NUS Neuroscience Research Partnership, Singapore, National University of Singapore, Singapore.
Genomes are organized into three-dimensional structures, adopting higher-order conformations inside the micron-sized nuclear spaces 7, 2, 12. Such architectures are not random and involve interactions between gene promoters and regulatory elements 13. The binding of transcription factors to specific regulatory sequences brings about a network of transcription regulation and coordination 1, 14. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) was developed to identify these higher-order chromatin structures 5,6. Cells are fixed and interacting loci are captured by covalent DNA-protein cross-links. To minimize non-specific noise and reduce complexity, as well as to increase the specificity of the chromatin interaction analysis, chromatin immunoprecipitation (ChIP) is used against specific protein factors to enrich chromatin fragments of interest before proximity ligation. Ligation involving half-linkers subsequently forms covalent links between pairs of DNA fragments tethered together within individual chromatin complexes. The flanking MmeI restriction enzyme sites in the half-linkers allow extraction of paired end tag-linker-tag constructs (PETs) upon MmeI digestion. As the half-linkers are biotinylated, these PET constructs are purified using streptavidin-magnetic beads. The purified PETs are ligated with next-generation sequencing adaptors and a catalog of interacting fragments is generated via next-generation sequencers such as the Illumina Genome Analyzer. Mapping and bioinformatics analysis is then performed to identify ChIP-enriched binding sites and ChIP-enriched chromatin interactions 8. We have produced a video to demonstrate critical aspects of the ChIA-PET protocol, especially the preparation of ChIP as the quality of ChIP plays a major role in the outcome of a ChIA-PET library. As the protocols are very long, only the critical steps are shown in the video.
Genetics, Issue 62, ChIP, ChIA-PET, Chromatin Interactions, Genomics, Next-Generation Sequencing
3770
Play Button
Non-invasive Imaging and Analysis of Cerebral Ischemia in Living Rats Using Positron Emission Tomography with 18F-FDG
Authors: Rashna D. Balsara, Sarah E. Chapman, Ian M. Sander, Deborah L. Donahue, Lucas Liepert, Francis J. Castellino, W. Matthew Leevy.
Institutions: University of Notre Dame, University of Notre Dame, University of Notre Dame, University of Notre Dame, University of Notre Dame.
Stroke is the third leading cause of death among Americans 65 years of age or older1. The quality of life for patients who suffer from a stroke fails to return to normal in a large majority of patients2, which is mainly due to current lack of clinical treatment for acute stroke. This necessitates understanding the physiological effects of cerebral ischemia on brain tissue over time and is a major area of active research. Towards this end, experimental progress has been made using rats as a preclinical model for stroke, particularly, using non-invasive methods such as 18F-fluorodeoxyglucose (FDG) coupled with Positron Emission Tomography (PET) imaging3,10,17. Here we present a strategy for inducing cerebral ischemia in rats by middle cerebral artery occlusion (MCAO) that mimics focal cerebral ischemia in humans, and imaging its effects over 24 hr using FDG-PET coupled with X-ray computed tomography (CT) with an Albira PET-CT instrument. A VOI template atlas was subsequently fused to the cerebral rat data to enable a unbiased analysis of the brain and its sub-regions4. In addition, a method for 3D visualization of the FDG-PET-CT time course is presented. In summary, we present a detailed protocol for initiating, quantifying, and visualizing an induced ischemic stroke event in a living Sprague-Dawley rat in three dimensions using FDG-PET.
Medicine, Issue 94, PET, Positron Emission Tomography, Stroke, Cerebral Ischemia, FDG, Brain template, brain atlas, VOI analysis
51495
Play Button
Non-chromatographic Purification of Recombinant Elastin-like Polypeptides and their Fusions with Peptides and Proteins from Escherichia coli
Authors: Sarah R. MacEwan, Wafa Hassouneh, Ashutosh Chilkoti.
Institutions: Duke University, Duke University.
Elastin-like polypeptides are repetitive biopolymers that exhibit a lower critical solution temperature phase transition behavior, existing as soluble unimers below a characteristic transition temperature and aggregating into micron-scale coacervates above their transition temperature. The design of elastin-like polypeptides at the genetic level permits precise control of their sequence and length, which dictates their thermal properties. Elastin-like polypeptides are used in a variety of applications including biosensing, tissue engineering, and drug delivery, where the transition temperature and biopolymer architecture of the ELP can be tuned for the specific application of interest. Furthermore, the lower critical solution temperature phase transition behavior of elastin-like polypeptides allows their purification by their thermal response, such that their selective coacervation and resolubilization allows the removal of both soluble and insoluble contaminants following expression in Escherichia coli. This approach can be used for the purification of elastin-like polypeptides alone or as a purification tool for peptide or protein fusions where recombinant peptides or proteins genetically appended to elastin-like polypeptide tags can be purified without chromatography. This protocol describes the purification of elastin-like polypeptides and their peptide or protein fusions and discusses basic characterization techniques to assess the thermal behavior of pure elastin-like polypeptide products.
Molecular Biology, Issue 88, elastin-like polypeptides, lower critical solution temperature, phase separation, inverse transition cycling, protein purification, batch purification
51583
Play Button
Cerenkov Luminescence Imaging of Interscapular Brown Adipose Tissue
Authors: Xueli Zhang, Chaincy Kuo, Anna Moore, Chongzhao Ran.
Institutions: Massachusetts General Hospital/Harvard Medical School, China Pharmaceutical University, Perkin Elmer.
Brown adipose tissue (BAT), widely known as a “good fat” plays pivotal roles for thermogenesis in mammals. This special tissue is closely related to metabolism and energy expenditure, and its dysfunction is one important contributor for obesity and diabetes. Contrary to previous belief, recent PET/CT imaging studies indicated the BAT depots are still present in human adults. PET imaging clearly shows that BAT has considerably high uptake of 18F-FDG under certain conditions. In this video report, we demonstrate that Cerenkov luminescence imaging (CLI) with 18F-FDG can be used to optically image BAT in small animals. BAT activation is observed after intraperitoneal injection of norepinephrine (NE) and cold treatment, and depression of BAT is induced by long anesthesia. Using multiple-filter Cerenkov luminescence imaging, spectral unmixing and 3D imaging reconstruction are demonstrated. Our results suggest that CLI with 18F-FDG is a practical technique for imaging BAT in small animals, and this technique can be used as a cheap, fast, and alternative imaging tool for BAT research.
Medicine, Issue 92, Cerenkov luminescence imaging, brown adipose tissue, 18F-FDG, optical imaging, in vivo imaging, spectral unmixing
51790
Play Button
Preparation of a Blood Culture Pellet for Rapid Bacterial Identification and Antibiotic Susceptibility Testing
Authors: Antony Croxatto, Guy Prod'hom, Christian Durussel, Gilbert Greub.
Institutions: University Hospital Center and University of Lausanne.
Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.
Immunology, Issue 92, blood culture, bacteriology, identification, antibiotic susceptibility testing, MALDI-TOF MS.
51985
Play Button
Use of MALDI-TOF Mass Spectrometry and a Custom Database to Characterize Bacteria Indigenous to a Unique Cave Environment (Kartchner Caverns, AZ, USA)
Authors: Lin Zhang, Katleen Vranckx, Koen Janssens, Todd R. Sandrin.
Institutions: Arizona State University, Applied Maths NV.
MALDI-TOF mass spectrometry has been shown to be a rapid and reliable tool for identification of bacteria at the genus and species, and in some cases, strain levels. Commercially available and open source software tools have been developed to facilitate identification; however, no universal/standardized data analysis pipeline has been described in the literature. Here, we provide a comprehensive and detailed demonstration of bacterial identification procedures using a MALDI-TOF mass spectrometer. Mass spectra were collected from 15 diverse bacteria isolated from Kartchner Caverns, AZ, USA, and identified by 16S rDNA sequencing. Databases were constructed in BioNumerics 7.1. Follow-up analyses of mass spectra were performed, including cluster analyses, peak matching, and statistical analyses. Identification was performed using blind-coded samples randomly selected from these 15 bacteria. Two identification methods are presented: similarity coefficient-based and biomarker-based methods. Results show that both identification methods can identify the bacteria to the species level.
Environmental Sciences, Issue 95, Identification, environmental bacteria, MALDI-TOF mass spectrometry, BioNumerics, fingerprint, database, similarity coefficient, biomarker
52064
Play Button
The Bioconjugation and Radiosynthesis of 89Zr-DFO-labeled Antibodies
Authors: Brian M. Zeglis, Jason S. Lewis.
Institutions: Memorial Sloan Kettering Cancer Center.
The exceptional affinity, specificity, and selectivity of antibodies make them extraordinarily attractive vectors for tumor-targeted PET radiopharmaceuticals. Due to their multi-day biological half-life, antibodies must be labeled with positron-emitting radionuclides with relatively long physical decay half-lives. Traditionally, the positron-emitting isotopes 124I (t1/2 = 4.18 d), 86Y (t1/2 = 14.7 hr), and 64Cu (t1/2 = 12.7 hr) have been used to label antibodies for PET imaging. More recently, however, the field has witnessed a dramatic increase in the use of the positron-emitting radiometal 89Zr in antibody-based PET imaging agents. 89Zr is a nearly ideal radioisotope for PET imaging with immunoconjugates, as it possesses a physical half-life (t1/2 = 78.4 hr) that is compatible with the in vivo pharmacokinetics of antibodies and emits a relatively low energy positron that produces high resolution images. Furthermore, antibodies can be straightforwardly labeled with 89Zr using the siderophore-derived chelator desferrioxamine (DFO). In this protocol, the prostate-specific membrane antigen targeting antibody J591 will be used as a model system to illustrate (1) the bioconjugation of the bifunctional chelator DFO-isothiocyanate to an antibody, (2) the radiosynthesis and purification of a 89Zr-DFO-mAb radioimmunoconjugate, and (3) in vivo PET imaging with an 89Zr-DFO-mAb radioimmunoconjugate in a murine model of cancer.
Chemistry, Issue 96, Positron Emission Tomography, Antibody, Bioconjugation, Immunoconjugates, Desferrioxamine, 89Zr
52521
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
51344
Play Button
MRI and PET in Mouse Models of Myocardial Infarction
Authors: Guido Buonincontri, Carmen Methner, T. Adrian Carpenter, Robert C. Hawkes, Stephen J. Sawiak, Thomas Krieg.
Institutions: Unversity of Cambridge, University of Cambridge, University of Cambridge.
Myocardial infarction is one of the leading causes of death in the Western world. The similarity of the mouse heart to the human heart has made it an ideal model for testing novel therapeutic strategies. In vivo magnetic resonance imaging (MRI) gives excellent views of the heart noninvasively with clear anatomical detail, which can be used for accurate functional assessment. Contrast agents can provide basic measures of tissue viability but these are nonspecific. Positron emission tomography (PET) is a complementary technique that is highly specific for molecular imaging, but lacks the anatomical detail of MRI. Used together, these techniques offer a sensitive, specific and quantitative tool for the assessment of the heart in disease and recovery following treatment. In this paper we explain how these methods are carried out in mouse models of acute myocardial infarction. The procedures described here were designed for the assessment of putative protective drug treatments. We used MRI to measure systolic function and infarct size with late gadolinium enhancement, and PET with fluorodeoxyglucose (FDG) to assess metabolic function in the infarcted region. The paper focuses on practical aspects such as slice planning, accurate gating, drug delivery, segmentation of images, and multimodal coregistration. The methods presented here achieve good repeatability and accuracy maintaining a high throughput.
Medicine, Issue 82, anatomy, Late Gadolinium Enhancement (LGE), MRI, FDG PET, MRI/PET imaging, myocardial infarction, mouse model, contrast agents, coregistration
50806
Play Button
Construction of a Preclinical Multimodality Phantom Using Tissue-mimicking Materials for Quality Assurance in Tumor Size Measurement
Authors: Yongsook C. Lee, Gary D. Fullerton, Beth A. Goins.
Institutions: University of Kansas School of Medicine, University of Texas Health Science Center at San Antonio.
World Health Organization (WHO) and the Response Evaluation Criteria in Solid Tumors (RECIST) working groups advocated standardized criteria for radiologic assessment of solid tumors in response to anti-tumor drug therapy in the 1980s and 1990s, respectively. WHO criteria measure solid tumors in two-dimensions, whereas RECIST measurements use only one-dimension which is considered to be more reproducible 1, 2, 3,4,5. These criteria have been widely used as the only imaging biomarker approved by the United States Food and Drug Administration (FDA) 6. In order to measure tumor response to anti-tumor drugs on images with accuracy, therefore, a robust quality assurance (QA) procedures and corresponding QA phantom are needed. To address this need, the authors constructed a preclinical multimodality (for ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI)) phantom using tissue-mimicking (TM) materials based on the limited number of target lesions required by RECIST by revising a Gammex US commercial phantom 7. The Appendix in Lee et al. demonstrates the procedures of phantom fabrication 7. In this article, all protocols are introduced in a step-by-step fashion beginning with procedures for preparing the silicone molds for casting tumor-simulating test objects in the phantom, followed by preparation of TM materials for multimodality imaging, and finally construction of the preclinical multimodality QA phantom. The primary purpose of this paper is to provide the protocols to allow anyone interested in independently constructing a phantom for their own projects. QA procedures for tumor size measurement, and RECIST, WHO and volume measurement results of test objects made at multiple institutions using this QA phantom are shown in detail in Lee et al. 8.
Biomedical Engineering, Issue 77, Bioengineering, Medicine, Anatomy, Physiology, Cancer Biology, Molecular Biology, Genetics, Therapeutics, Chemistry and Materials (General), Composite Materials, Quality Assurance and Reliability, Physics (General), Tissue-mimicking materials, Preclinical, Multimodality, Quality assurance, Phantom, Tumor size measurement, Cancer, Imaging
50403
Play Button
Creating Dynamic Images of Short-lived Dopamine Fluctuations with lp-ntPET: Dopamine Movies of Cigarette Smoking
Authors: Evan D. Morris, Su Jin Kim, Jenna M. Sullivan, Shuo Wang, Marc D. Normandin, Cristian C. Constantinescu, Kelly P. Cosgrove.
Institutions: Yale University, Yale University, Yale University, Yale University, Massachusetts General Hospital, University of California, Irvine.
We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized. We present the details of our unique analysis. Conventional methods for PET analysis estimate time-invariant kinetic model parameters which cannot capture short-term fluctuations in neurotransmitter release. Our analysis - yielding a dopamine movie - is based on our work with kinetic models and other decomposition techniques that allow for time-varying parameters 1-7. This aspect of the analysis - temporal-variation - is key to our work. Because our model is also linear in parameters, it is practical, computationally, to apply at the voxel level. The analysis technique is comprised of five main steps: pre-processing, modeling, statistical comparison, masking and visualization. Preprocessing is applied to the PET data with a unique 'HYPR' spatial filter 8 that reduces spatial noise but preserves critical temporal information. Modeling identifies the time-varying function that best describes the dopamine effect on 11C-raclopride uptake. The statistical step compares the fit of our (lp-ntPET) model 7 to a conventional model 9. Masking restricts treatment to those voxels best described by the new model. Visualization maps the dopamine function at each voxel to a color scale and produces a dopamine movie. Interim results and sample dopamine movies of cigarette smoking are presented.
Behavior, Issue 78, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Medicine, Anatomy, Physiology, Image Processing, Computer-Assisted, Receptors, Dopamine, Dopamine, Functional Neuroimaging, Binding, Competitive, mathematical modeling (systems analysis), Neurotransmission, transient, dopamine release, PET, modeling, linear, time-invariant, smoking, F-test, ventral-striatum, clinical techniques
50358
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
50319
Play Button
Cerenkov Luminescence Imaging (CLI) for Cancer Therapy Monitoring
Authors: Yingding Xu, Hongguang Liu, Edwin Chang, Han Jiang, Zhen Cheng.
Institutions: Stanford University .
In molecular imaging, positron emission tomography (PET) and optical imaging (OI) are two of the most important and thus most widely used modalities1-3. PET is characterized by its excellent sensitivity and quantification ability while OI is notable for non-radiation, relative low cost, short scanning time, high throughput, and wide availability to basic researchers. However, both modalities have their shortcomings as well. PET suffers from poor spatial resolution and high cost, while OI is mostly limited to preclinical applications because of its limited tissue penetration along with prominent scattering optical signals through the thickness of living tissues. Recently a bridge between PET and OI has emerged with the discovery of Cerenkov Luminescence Imaging (CLI)4-6. CLI is a new imaging modality that harnesses Cerenkov Radiation (CR) to image radionuclides with OI instruments. Russian Nobel laureate Alekseyevich Cerenkov and his colleagues originally discovered CR in 1934. It is a form of electromagnetic radiation emitted when a charged particle travels at a superluminal speed in a dielectric medium7,8. The charged particle, whether positron or electron, perturbs the electromagnetic field of the medium by displacing the electrons in its atoms. After passing of the disruption photons are emitted as the displaced electrons return to the ground state. For instance, one 18F decay was estimated to produce an average of 3 photons in water5. Since its emergence, CLI has been investigated for its use in a variety of preclinical applications including in vivo tumor imaging, reporter gene imaging, radiotracer development, multimodality imaging, among others4,5,9,10,11. The most important reason why CLI has enjoyed much success so far is that this new technology takes advantage of the low cost and wide availability of OI to image radionuclides, which used to be imaged only by more expensive and less available nuclear imaging modalities such as PET. Here, we present the method of using CLI to monitor cancer drug therapy. Our group has recently investigated this new application and validated its feasibility by a proof-of-concept study12. We demonstrated that CLI and PET exhibited excellent correlations across different tumor xenografts and imaging probes. This is consistent with the overarching principle of CR that CLI essentially visualizes the same radionuclides as PET. We selected Bevacizumab (Avastin; Genentech/Roche) as our therapeutic agent because it is a well-known angiogenesis inhibitor13,14. Maturation of this technology in the near future can be envisioned to have a significant impact on preclinical drug development, screening, as well as therapy monitoring of patients receiving treatments.
Cancer Biology, Issue 69, Medicine, Molecular Biology, Cerenkov Luminescence Imaging, CLI, cancer therapy monitoring, optical imaging, PET, radionuclides, Avastin, imaging
4341
Play Button
Functional Imaging of Brown Fat in Mice with 18F-FDG micro-PET/CT
Authors: Xukui Wang, Laurie J. Minze, Zheng-Zheng Shi.
Institutions: The Methodist Hospital Research Institute, Houston, The Methodist Hospital Research Institute, Houston.
Brown adipose tissue (BAT) differs from white adipose tissue (WAT) by its discrete location and a brown-red color due to rich vascularization and high density of mitochondria. BAT plays a major role in energy expenditure and non-shivering thermogenesis in newborn mammals as well as the adults 1. BAT-mediated thermogenesis is highly regulated by the sympathetic nervous system, predominantly via β adrenergic receptor 2, 3. Recent studies have shown that BAT activities in human adults are negatively correlated with body mass index (BMI) and other diabetic parameters 4-6. BAT has thus been proposed as a potential target for anti-obesity/anti-diabetes therapy focusing on modulation of energy balance 6-8. While several cold challenge-based positron emission tomography (PET) methods are established for detecting human BAT 9-13, there is essentially no standardized protocol for imaging and quantification of BAT in small animal models such as mice. Here we describe a robust PET/CT imaging method for functional assessment of BAT in mice. Briefly, adult C57BL/6J mice were cold treated under fasting conditions for a duration of 4 hours before they received one dose of 18F-Fluorodeoxyglucose (FDG). The mice were remained in the cold for one additional hour post FDG injection, and then scanned with a small animal-dedicated micro-PET/CT system. The acquired PET images were co-registered with the CT images for anatomical references and analyzed for FDG uptake in the interscapular BAT area to present BAT activity. This standardized cold-treatment and imaging protocol has been validated through testing BAT activities during pharmacological interventions, for example, the suppressed BAT activation by the treatment of β-adrenoceptor antagonist propranolol 14, 15, or the enhanced BAT activation by β3 agonist BRL37344 16. The method described here can be applied to screen for drugs/compounds that modulate BAT activity, or to identify genes/pathways that are involved in BAT development and regulation in various preclinical and basic studies.
Molecular Biology, Issue 69, Neuroscience, Anatomy, Physiology, Medicine, Brown adipose tissue, mice, 18F-Fluorodeoxyglucose, micro-PET, PET, CT, CT scan, tomography, imaging
4060
Play Button
Stereotactic Radiosurgery for Gynecologic Cancer
Authors: Charles Kunos, James M. Brindle, Robert Debernardo.
Institutions: University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine.
Stereotactic body radiotherapy (SBRT) distinguishes itself by necessitating more rigid patient immobilization, accounting for respiratory motion, intricate treatment planning, on-board imaging, and reduced number of ablative radiation doses to cancer targets usually refractory to chemotherapy and conventional radiation. Steep SBRT radiation dose drop-off permits narrow 'pencil beam' treatment fields to be used for ablative radiation treatment condensed into 1 to 3 treatments. Treating physicians must appreciate that SBRT comes at a bigger danger of normal tissue injury and chance of geographic tumor miss. Both must be tackled by immobilization of cancer targets and by high-precision treatment delivery. Cancer target immobilization has been achieved through use of indexed customized Styrofoam casts, evacuated bean bags, or body-fix molds with patient-independent abdominal compression.1-3 Intrafraction motion of cancer targets due to breathing now can be reduced by patient-responsive breath hold techniques,4 patient mouthpiece active breathing coordination,5 respiration-correlated computed tomography,6 or image-guided tracking of fiducials implanted within and around a moving tumor.7-9 The Cyberknife system (Accuray [Sunnyvale, CA]) utilizes a radiation linear accelerator mounted on a industrial robotic arm that accurately follows patient respiratory motion by a camera-tracked set of light-emitting diodes (LED) impregnated on a vest fitted to a patient.10 Substantial reductions in radiation therapy margins can be achieved by motion tracking, ultimately rendering a smaller planning target volumes that are irradiated with submillimeter accuracy.11-13 Cancer targets treated by SBRT are irradiated by converging, tightly collimated beams. Resultant radiation dose to cancer target volume histograms have a more pronounced radiation "shoulder" indicating high percentage target coverage and a small high-dose radiation "tail." Thus, increased target conformality comes at the expense of decreased dose uniformity in the SBRT cancer target. This may have implications for both subsequent tumor control in the SBRT target and normal tissue tolerance of organs at-risk. Due to the sharp dose falloff in SBRT, the possibility of occult disease escaping ablative radiation dose occurs when cancer targets are not fully recognized and inadequate SBRT dose margins are applied. Clinical target volume (CTV) expansion by 0.5 cm, resulting in a larger planning target volume (PTV), is associated with increased target control without undue normal tissue injury.7,8 Further reduction in the probability of geographic miss may be achieved by incorporation of 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET).8 Use of 18F-FDG PET/CT in SBRT treatment planning is only the beginning of attempts to discover new imaging target molecular signatures for gynecologic cancers.
Medicine, Issue 62, radiosurgery, Cyberknife stereotactic radiosurgery, radiation, ovarian cancer, cervix cancer
3793
Play Button
Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT)
Authors: Nehal N. Mehta, Drew A. Torigian, Joel M. Gelfand, Babak Saboury, Abass Alavi.
Institutions: University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine.
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC)1 and carotid intimal medial thickness (C-IMT)2 provide information about the burden of disease. However, despite multiple validation studies of CAC3-5, and C-IMT2,6, these modalities do not accurately assess plaque characteristics7,8, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events9-13. [18F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism14,15. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity16, an important source of cellular inflammation in vessel walls. More recently, we17,18 and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries9,16,19,20. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors21,22 and is also highly associated with overall burden of atherosclerosis23. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy24 as well as longer term therapeutic lifestyle changes (16 months)25. The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability26. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.9,20,27,28
Medicine, Issue 63, FDG-PET/CT, atherosclerosis, vascular inflammation, quantitative radiology, imaging
3777
Play Button
Dynamic Lung Tumor Tracking for Stereotactic Ablative Body Radiation Therapy
Authors: Charles A. Kunos, Jeffrey M. Fabien, John P. Shanahan, Christine Collen, Thierry Gevaert, Kenneth Poels, Robbe Van den Begin, Benedikt Engels, Mark De Ridder.
Institutions: Summa Cancer Institute, Vrije Universiteit Brussel.
Physicians considering stereotactic ablative body radiation therapy (SBRT) for the treatment of extracranial cancer targets must be aware of the sizeable risks for normal tissue injury and the hazards of physical tumor miss. A first-of-its-kind SBRT platform achieves high-precision ablative radiation treatment through a combination of versatile real-time imaging solutions and sophisticated tumor tracking capabilities. It uses dual-diagnostic kV x-ray units for stereoscopic open-loop feedback of cancer target intrafraction movement occurring as a consequence of respiratory motions and heartbeat. Image-guided feedback drives a gimbaled radiation accelerator (maximum 15 x 15 cm field size) capable of real-time ±4 cm pan-and-tilt action. Robot-driven ±60° pivots of an integrated ±185° rotational gantry allow for coplanar and non-coplanar accelerator beam set-up angles, ultimately permitting unique treatment degrees of freedom. State-of-the-art software aids real-time six dimensional positioning, ensuring irradiation of cancer targets with sub-millimeter accuracy (0.4 mm at isocenter). Use of these features enables treating physicians to steer radiation dose to cancer tumor targets while simultaneously reducing radiation dose to normal tissues. By adding respiration correlated computed tomography (CT) and 2-[18F] fluoro-2-deoxy-ᴅ-glucose (18F-FDG) positron emission tomography (PET) images into the planning system for enhanced tumor target contouring, the likelihood of physical tumor miss becomes substantially less1. In this article, we describe new radiation plans for the treatment of moving lung tumors.
Medicine, Issue 100, Vero, radiosurgery, stereotactic body radiation, gimbal, dynamic tracking, lung cancer
52875
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.