JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Correction: Identification of Reproduction-Specific Genes Associated with Maturation and Estrogen Exposure in a Marine Bivalve Mytilus edulis.
PUBLISHED: 07-06-2015
[This corrects the article DOI: 10.1371/journal.pone.0022326.].
Authors: Ariella Shikanov, Min Xu, Teresa K. Woodruff, Lonnie D. Shea.
Published: 03-15-2011
The ovarian follicle is the functional unit of the ovary that secretes sex hormones and supports oocyte maturation. In vitro follicle techniques provide a tool to model follicle development in order to investigate basic biology, and are further being developed as a technique to preserve fertility in the clinic1-4. Our in vitro culture system employs hydrogels in order to mimic the native ovarian environment by maintaining the 3D follicular architecture, cell-cell interactions and paracrine signaling that direct follicle development 5. Previously, follicles were successfully cultured in alginate, an inert algae-derived polysaccharide that undergoes gelation with calcium ions6-8. Alginate hydrogels formed at a concentration of 0.25% w/v were the most permissive for follicle culture, and retained the highest developmental competence 9. Alginate hydrogels are not degradable, thus an increase in the follicle diameter results in a compressive force on the follicle that can impact follicle growth10. We subsequently developed a culture system based on a fibrin-alginate interpenetrating network (FA-IPN), in which a mixture of fibrin and alginate are gelled simultaneously. This combination provides a dynamic mechanical environment because both components contribute to matrix rigidity initially; however, proteases secreted by the growing follicle degrade fibrin in the matrix leaving only alginate to provide support. With the IPN, the alginate content can be reduced below 0.25%, which is not possible with alginate alone 5. Thus, as the follicle expands, it will experience a reduced compressive force due to the reduced solids content. Herein, we describe an encapsulation method and an in vitro culture system for ovarian follicles within a FA-IPN. The dynamic mechanical environment mimics the natural ovarian environment in which small follicles reside in a rigid cortex and move to a more permissive medulla as they increase in size11. The degradable component may be particularly critical for clinical translation in order to support the greater than 106-fold increase in volume that human follicles normally undergo in vivo .
27 Related JoVE Articles!
Play Button
High Yield Purification of Plasmodium falciparum Merozoites For Use in Opsonizing Antibody Assays
Authors: Danika L. Hill, Emily M. Eriksson, Louis Schofield.
Institutions: Walter and Eliza Hall Institute of Medical Research, University of Melbourne.
Plasmodium falciparum merozoite antigens are under development as potential malaria vaccines. One aspect of immunity against malaria is the removal of free merozoites from the blood by phagocytic cells. However assessing the functional efficacy of merozoite specific opsonizing antibodies is challenging due to the short half-life of merozoites and the variability of primary phagocytic cells. Described in detail herein is a method for generating viable merozoites using the E64 protease inhibitor, and an assay of merozoite opsonin-dependent phagocytosis using the pro-monocytic cell line THP-1. E64 prevents schizont rupture while allowing the development of merozoites which are released by filtration of treated schizonts.  Ethidium bromide labelled merozoites are opsonized with human plasma samples and added to THP-1 cells. Phagocytosis is assessed by a standardized high throughput protocol. Viable merozoites are a valuable resource for assessing numerous aspects of P. falciparum biology, including assessment of immune function. Antibody levels measured by this assay are associated with clinical immunity to malaria in naturally exposed individuals. The assay may also be of use for assessing vaccine induced antibodies.  
Immunology, Issue 89, Parasitic Diseases, malaria, Plasmodium falciparum, hemozoin, antibody, Fc Receptor, opsonization, merozoite, phagocytosis, THP-1
Play Button
Next-generation Sequencing of 16S Ribosomal RNA Gene Amplicons
Authors: Sylvie Sanschagrin, Etienne Yergeau.
Institutions: National Research Council Canada.
One of the major questions in microbial ecology is “who is there?” This question can be answered using various tools, but one of the long-lasting gold standards is to sequence 16S ribosomal RNA (rRNA) gene amplicons generated by domain-level PCR reactions amplifying from genomic DNA. Traditionally, this was performed by cloning and Sanger (capillary electrophoresis) sequencing of PCR amplicons. The advent of next-generation sequencing has tremendously simplified and increased the sequencing depth for 16S rRNA gene sequencing. The introduction of benchtop sequencers now allows small labs to perform their 16S rRNA sequencing in-house in a matter of days. Here, an approach for 16S rRNA gene amplicon sequencing using a benchtop next-generation sequencer is detailed. The environmental DNA is first amplified by PCR using primers that contain sequencing adapters and barcodes. They are then coupled to spherical particles via emulsion PCR. The particles are loaded on a disposable chip and the chip is inserted in the sequencing machine after which the sequencing is performed. The sequences are retrieved in fastq format, filtered and the barcodes are used to establish the sample membership of the reads. The filtered and binned reads are then further analyzed using publically available tools. An example analysis where the reads were classified with a taxonomy-finding algorithm within the software package Mothur is given. The method outlined here is simple, inexpensive and straightforward and should help smaller labs to take advantage from the ongoing genomic revolution.
Molecular Biology, Issue 90, Metagenomics, Bacteria, 16S ribosomal RNA gene, Amplicon sequencing, Next-generation sequencing, benchtop sequencers
Play Button
Rapid Genotyping of Animals Followed by Establishing Primary Cultures of Brain Neurons
Authors: Jin-Young Koh, Sadahiro Iwabuchi, Zhengmin Huang, N. Charles Harata.
Institutions: University of Iowa Carver College of Medicine, University of Iowa Carver College of Medicine, EZ BioResearch LLC.
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Neuroscience, Issue 95, AP2, genotyping, glial feeder layer, mouse tail, neuronal culture, nucleic-acid extraction, PCR, tattoo, torsinA
Play Button
Acquisition of High-Quality Digital Video of Drosophila Larval and Adult Behaviors from a Lateral Perspective
Authors: Beatrix Zenger, Sabine Wetzel, Jason Duncan.
Institutions: Willamette University.
Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system. Gene mutations that cause dysfunction of the nervous system often produce viable larvae and adults that have locomotion defective phenotypes that are difficult to adequately describe with text or completely represent with a single photographic image. Current modes of scientific publishing, however, support the submission of digital video media as supplemental material to accompany a manuscript. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of both Drosophila larval and adult phenotypes from a lateral perspective. Video of larval and adult locomotion from a side-view is advantageous because it allows the observation and analysis of subtle distinctions and variations in aberrant locomotive behaviors. We have successfully used the technique to visualize and quantify aberrant crawling behaviors in third instar larvae, in addition to adult mutant phenotypes and behaviors including grooming.
Neuroscience, Issue 92, Drosophila, behavior, coordination, crawling, locomotion, nervous system, neurodegeneration, larva
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Purifying the Impure: Sequencing Metagenomes and Metatranscriptomes from Complex Animal-associated Samples
Authors: Yan Wei Lim, Matthew Haynes, Mike Furlan, Charles E. Robertson, J. Kirk Harris, Forest Rohwer.
Institutions: San Diego State University, DOE Joint Genome Institute, University of Colorado, University of Colorado.
The accessibility of high-throughput sequencing has revolutionized many fields of biology. In order to better understand host-associated viral and microbial communities, a comprehensive workflow for DNA and RNA extraction was developed. The workflow concurrently generates viral and microbial metagenomes, as well as metatranscriptomes, from a single sample for next-generation sequencing. The coupling of these approaches provides an overview of both the taxonomical characteristics and the community encoded functions. The presented methods use Cystic Fibrosis (CF) sputum, a problematic sample type, because it is exceptionally viscous and contains high amount of mucins, free neutrophil DNA, and other unknown contaminants. The protocols described here target these problems and successfully recover viral and microbial DNA with minimal human DNA contamination. To complement the metagenomics studies, a metatranscriptomics protocol was optimized to recover both microbial and host mRNA that contains relatively few ribosomal RNA (rRNA) sequences. An overview of the data characteristics is presented to serve as a reference for assessing the success of the methods. Additional CF sputum samples were also collected to (i) evaluate the consistency of the microbiome profiles across seven consecutive days within a single patient, and (ii) compare the consistency of metagenomic approach to a 16S ribosomal RNA gene-based sequencing. The results showed that daily fluctuation of microbial profiles without antibiotic perturbation was minimal and the taxonomy profiles of the common CF-associated bacteria were highly similar between the 16S rDNA libraries and metagenomes generated from the hypotonic lysis (HL)-derived DNA. However, the differences between 16S rDNA taxonomical profiles generated from total DNA and HL-derived DNA suggest that hypotonic lysis and the washing steps benefit in not only removing the human-derived DNA, but also microbial-derived extracellular DNA that may misrepresent the actual microbial profiles.
Molecular Biology, Issue 94, virome, microbiome, metagenomics, metatranscriptomics, cystic fibrosis, mucosal-surface
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
Play Button
A Hybrid DNA Extraction Method for the Qualitative and Quantitative Assessment of Bacterial Communities from Poultry Production Samples
Authors: Michael J. Rothrock Jr., Kelli L. Hiett, John Gamble, Andrew C. Caudill, Kellie M. Cicconi-Hogan, J. Gregory Caporaso.
Institutions: USDA-Agricultural Research Service, USDA-Agricultural Research Service, Oregon State University, University of Georgia, Northern Arizona University.
The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples.
Molecular Biology, Issue 94, DNA extraction, poultry, environmental, feces, litter, semi-automated, microbiomics, qPCR
Play Button
High Throughput Fluorometric Technique for Assessment of Macrophage Phagocytosis and Actin Polymerization
Authors: Jana Ninković, Sabita Roy.
Institutions: University of Minnesota, University of Minnesota, 3M Corporate Research Laboratory.
The goal of fluorometric analysis is to serve as an efficient, cost effective, high throughput method of analyzing phagocytosis and other cellular processes. This technique can be used on a variety of cell types, both adherent and non-adherent, to examine a variety of cellular properties. When studying phagocytosis, fluorometric technique utilizes phagocytic cell types such as macrophages, and fluorescently labeled opsonized particles whose fluorescence can be extinguished in the presence of trypan blue. Following plating of adherent macrophages in 96-well plates, fluorescent particles (green or red) are administered and cells are allowed to phagocytose for varied amounts of time. Following internalization of fluorescent particles, cells are washed with trypan blue, which facilitates extinction of fluorescent signal from bacteria which are not internalized, or are merely adhering to the cell surface. Following the trypan wash, cells are washed with PBS, fixed, and stained with DAPI (nuclear blue fluorescent label), which serves to label nuclei of cells. By a simple fluorometric quantification through plate reading of nuclear (blue) or particle (red/green) fluorescence we can examine the ratio of relative fluorescence units of green:blue and determine a phagocytic index indicative of amount of fluorescent bacteria internalized per cell. The duration of assay using a 96-well method and multichannel pipettes for washing, from end of phagocytosis to end of data acquisition, is less than 45 min. Flow cytometry could be used in a similar manner but the advantage of fluorometry is its high throughput, rapid method of assessment with minimal manipulation of samples and quick quantification of fluorescent intensity per cell. Similar strategies can be applied to non adherent cells, live labeled bacteria, actin polymerization, and essentially any process utilizing fluorescence. Therefore, fluorometry is a promising method for its low cost, high throughput capabilities in the study of cellular processes.
Immunology, Issue 93, Fluorometry, phagocytosis, high throughput assay, actin polymerization, immunology
Play Button
Protocol for Studying Extinction of Conditioned Fear in Naturally Cycling Female Rats
Authors: Lisa Y. Maeng, Kara K. Cover, Aaron J. Landau, Mohammed R. Milad, Kelimer Lebron-Milad.
Institutions: Massachusetts General Hospital, Harvard Medical School.
Extinction of conditioned fear has been extensively studied in male rodents. Recently, there have been an increasing number of studies indicating that neural mechanisms for certain behavioral tasks and response behaviors are different in females and males. Using females in research studies can represent a challenge because of the variation of gonadal hormones during their estrous cycle. This protocol describes well-established procedures that are useful in investigating the role of estrogen in fear extinction memory consolidation in female rats. Phase of the estrous cycle and exogenous estrogen administration prior to extinction training can influence extinction recall 24 hr later. The vaginal swabbing technique for estrous phase identification described here aids the examination and manipulation of naturally cycling gonadal hormones. The use of this basic rodent model may further delineate the mechanisms by which estrogen can modulate fear extinction memory in females.
Behavior, Issue 96, estrogen, fear extinction, sex differences, estradiol, proestrus, metestrus, female, PTSD, anxiety
Play Button
Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation
Authors: Vaibhav Shinde, Stefanie Klima, Perumal Srinivasan Sureshkumar, Kesavan Meganathan, Smita Jagtap, Eugen Rempel, Jörg Rahnenführer, Jan Georg Hengstler, Tanja Waldmann, Jürgen Hescheler, Marcel Leist, Agapios Sachinidis.
Institutions: University of Cologne, University of Konstanz, Technical University of Dortmund, Technical University of Dortmund.
Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.
Developmental Biology, Issue 100, Human embryonic stem cells, developmental toxicity, neurotoxicity, neuroectodermal progenitor cells, immunoprecipitation, differentiation, cytotoxicity, embryopathy, embryoid body
Play Button
Conditional Genetic Transsynaptic Tracing in the Embryonic Mouse Brain
Authors: Devesh Kumar, Ulrich Boehm.
Institutions: University of Saarland School of Medicine.
Anatomical path tracing is of pivotal importance to decipher the relationship between brain and behavior. Unraveling the formation of neural circuits during embryonic maturation of the brain however is technically challenging because most transsynaptic tracing methods developed to date depend on stereotaxic tracer injection. To overcome this problem, we developed a binary genetic strategy for conditional genetic transsynaptic tracing in the mouse brain. Towards this end we generated two complementary knock-in mouse strains to selectively express the bidirectional transsynaptic tracer barley lectin (BL) and the retrograde transsynaptic tracer Tetanus Toxin fragment C from the ROSA26 locus after Cre-mediated recombination. Cell-specific tracer production in these mice is genetically encoded and does not depend on mechanical tracer injection. Therefore our experimental approach is suitable to study neural circuit formation in the embryonic murine brain. Furthermore, because tracer transfer across synapses depends on synaptic activity, these mouse strains can be used to analyze the communication between genetically defined neuronal populations during brain development at a single cell resolution. Here we provide a detailed protocol for transsynaptic tracing in mouse embryos using the novel recombinant ROSA26 alleles. We have utilized this experimental technique in order to delineate the neural circuitry underlying maturation of the reproductive axis in the developing female mouse brain.
Neuroscience, Issue 94, developmental biology, neural circuits, transsynaptic tracing, barley lectin, Tetanus Toxin fragment C, mouse embryo, gene targeting, ROSA26 locus, kisspeptin, GnRH, reproduction
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
Germ Cell Transplantation and Testis Tissue Xenografting in Mice
Authors: Lin Tang, Jose Rafael Rodriguez-Sosa, Ina Dobrinski.
Institutions: University of Calgary .
Germ cell transplantation was developed by Dr. Ralph Brinster and colleagues at the University of Pennsylvania in 19941,2. These ground-breaking studies showed that microinjection of germ cells from fertile donor mice into the seminiferous tubules of infertile recipient mice results in donor-derived spermatogenesis and sperm production by the recipient animal2. The use of donor males carrying the bacterial β-galactosidase gene allowed identification of donor-derived spermatogenesis and transmission of the donor haplotype to the offspring by recipient animals1. Surprisingly, after transplantation into the lumen of the seminiferous tubules, transplanted germ cells were able to move from the luminal compartment to the basement membrane where spermatogonia are located3. It is generally accepted that only SSCs are able to colonize the niche and re-establish spermatogenesis in the recipient testis. Therefore, germ cell transplantation provides a functional approach to study the stem cell niche in the testis and to characterize putative spermatogonial stem cells. To date, germ cell transplantation is used to elucidate basic stem cell biology, to produce transgenic animals through genetic manipulation of germ cells prior to transplantation4,5, to study Sertoli cell-germ cell interaction6,7, SSC homing and colonization3,8, as well as SSC self-renewal and differentiation9,10. Germ cell transplantation is also feasible in large species11. In these, the main applications are preservation of fertility, dissemination of elite genetics in animal populations, and generation of transgenic animals as the study of spermatogenesis and SSC biology with this technique is logistically more difficult and expensive than in rodents. Transplantation of germ cells from large species into the seminiferous tubules of mice results in colonization of donor cells and spermatogonial expansion, but not in their full differentiation presumably due to incompatibility of the recipient somatic cell compartment with the germ cells from phylogenetically distant species12. An alternative approach is transplantation of germ cells from large species together with their surrounding somatic compartment. We first reported in 2002, that small fragments of testis tissue from immature males transplanted under the dorsal skin of immunodeficient mice are able to survive and undergo full development with the production of fertilization competent sperm13. Since then testis tissue xenografting has been shown to be successful in many species and emerged as a valuable alternative to study testis development and spermatogenesis of large animals in mice14.
Developmental Biology, Issue 60, Spermatogonial stem cells (SSCs), germ cell transplantation, spermatogenesis, testis development, testis tissue xenografting
Play Button
The ITS2 Database
Authors: Benjamin Merget, Christian Koetschan, Thomas Hackl, Frank Förster, Thomas Dandekar, Tobias Müller, Jörg Schultz, Matthias Wolf.
Institutions: University of Würzburg, University of Würzburg.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8. The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.
Genetics, Issue 61, alignment, internal transcribed spacer 2, molecular systematics, secondary structure, ribosomal RNA, phylogenetic tree, homology modeling, phylogeny
Play Button
Use of Animal Model of Sepsis to Evaluate Novel Herbal Therapies
Authors: Wei Li, Shu Zhu, Yusong Zhang, Jianhua Li, Andrew E. Sama, Ping Wang, Haichao Wang.
Institutions: North Shore – LIJ Health System.
Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. It has been routinely simulated in animals by several techniques, including infusion of exogenous bacterial toxin (endotoxemia) or bacteria (bacteremia), as well as surgical perforation of the cecum by cecal ligation and puncture (CLP)1-3. CLP allows bacteria spillage and fecal contamination of the peritoneal cavity, mimicking the human clinical disease of perforated appendicitis or diverticulitis. The severity of sepsis, as reflected by the eventual mortality rates, can be controlled surgically by varying the size of the needle used for cecal puncture2. In animals, CLP induces similar, biphasic hemodynamic cardiovascular, metabolic, and immunological responses as observed during the clinical course of human sepsis3. Thus, the CLP model is considered as one of the most clinically relevant models for experimental sepsis1-3. Various animal models have been used to elucidate the intricate mechanisms underlying the pathogenesis of experimental sepsis. The lethal consequence of sepsis is attributable partly to an excessive accumulation of early cytokines (such as TNF, IL-1 and IFN-γ)4-6 and late proinflammatory mediators (e.g., HMGB1)7. Compared with early proinflammatory cytokines, late-acting mediators have a wider therapeutic window for clinical applications. For instance, delayed administration of HMGB1-neutralizing antibodies beginning 24 hours after CLP, still rescued mice from lethality8,9, establishing HMGB1 as a late mediator of lethal sepsis. The discovery of HMGB1 as a late-acting mediator has initiated a new field of investigation for the development of sepsis therapies using Traditional Chinese Herbal Medicine. In this paper, we describe a procedure of CLP-induced sepsis, and its usage in screening herbal medicine for HMGB1-targeting therapies.
Medicine, Issue 62, Herbal therapies, innate immune cells, cytokines, HMGB1, experimental animal model of sepsis, cecal ligation and puncture
Play Button
C. elegans Tracking and Behavioral Measurement
Authors: Jirapat Likitlersuang, Greg Stephens, Konstantine Palanski, William S. Ryu.
Institutions: University of Toronto, Vrije Universiteit, Okinawa Institute of Science and Technology, University of Toronto.
We have developed instrumentation, image processing, and data analysis techniques to quantify the locomotory behavior of C. elegans as it crawls on the surface of an agar plate. For the study of the genetic, biochemical, and neuronal basis of behavior, C. elegans is an ideal organism because it is genetically tractable, amenable to microscopy, and shows a number of complex behaviors, including taxis, learning, and social interaction1,2. Behavioral analysis based on tracking the movements of worms as they crawl on agar plates have been particularly useful in the study of sensory behavior3, locomotion4, and general mutational phenotyping5. Our system works by moving the camera and illumination system as the worms crawls on a stationary agar plate, which ensures no mechanical stimulus is transmitted to the worm. Our tracking system is easy to use and includes a semi-automatic calibration feature. A challenge of all video tracking systems is that it generates an enormous amount of data that is intrinsically high dimensional. Our image processing and data analysis programs deal with this challenge by reducing the worms shape into a set of independent components, which comprehensively reconstruct the worms behavior as a function of only 3-4 dimensions6,7. As an example of the process we show that the worm enters and exits its reversal state in a phase specific manner.
Neuroscience, Issue 69, Physics, Biophysics, Anatomy, Microscopy, Ethology, Behavior, Machine Vision, C. elegans, animal model
Play Button
Depletion of Ribosomal RNA for Mosquito Gut Metagenomic RNA-seq
Authors: Phanidhar Kukutla, Matthew Steritz, Jiannong Xu.
Institutions: New Mexico State University.
The mosquito gut accommodates dynamic microbial communities across different stages of the insect's life cycle. Characterization of the genetic capacity and functionality of the gut community will provide insight into the effects of gut microbiota on mosquito life traits. Metagenomic RNA-Seq has become an important tool to analyze transcriptomes from various microbes present in a microbial community. Messenger RNA usually comprises only 1-3% of total RNA, while rRNA constitutes approximately 90%. It is challenging to enrich messenger RNA from a metagenomic microbial RNA sample because most prokaryotic mRNA species lack stable poly(A) tails. This prevents oligo d(T) mediated mRNA isolation. Here, we describe a protocol that employs sample derived rRNA capture probes to remove rRNA from a metagenomic total RNA sample. To begin, both mosquito and microbial small and large subunit rRNA fragments are amplified from a metagenomic community DNA sample. Then, the community specific biotinylated antisense ribosomal RNA probes are synthesized in vitro using T7 RNA polymerase. The biotinylated rRNA probes are hybridized to the total RNA. The hybrids are captured by streptavidin-coated beads and removed from the total RNA. This subtraction-based protocol efficiently removes both mosquito and microbial rRNA from the total RNA sample. The mRNA enriched sample is further processed for RNA amplification and RNA-Seq.
Genetics, Issue 74, Infection, Infectious Diseases, Molecular Biology, Cellular Biology, Microbiology, Genomics, biology (general), genetics (animal and plant), life sciences, Eukaryota, Bacteria, metagenomics, metatranscriptome, RNA-seq, rRNA depletion, mRNA enrichment, mosquito gut microbiome, RNA, DNA, sequencing
Play Button
Neonatal Subventricular Zone Electroporation
Authors: David M. Feliciano, Carlos A. Lafourcade, Angélique Bordey.
Institutions: Yale University School of Medicine .
Neural stem cells (NSCs) line the postnatal lateral ventricles and give rise to multiple cell types which include neurons, astrocytes, and ependymal cells1. Understanding the molecular pathways responsible for NSC self-renewal, commitment, and differentiation is critical for harnessing their unique potential to repair the brain and better understand central nervous system disorders. Previous methods for the manipulation of mammalian systems required the time consuming and expensive endeavor of genetic engineering at the whole animal level2. Thus, the vast majority of studies have explored the functions of NSC molecules in vitro or in invertebrates. Here, we demonstrate the simple and rapid technique to manipulate neonatal NPCs that is referred to as neonatal subventricular zone (SVZ) electroporation. Similar techniques were developed a decade ago to study embryonic NSCs and have aided studies on cortical development3,4 . More recently this was applied to study the postnatal rodent forebrain5-7. This technique results in robust labeling of SVZ NSCs and their progeny. Thus, postnatal SVZ electroporation provides a cost and time effective alternative for mammalian NSC genetic engineering.
Neuroscience, Issue 72, Developmental Biology, Neurobiology, Molecular Biology, Cellular Biology, Physiology, Anatomy, Biomedical Engineering, Stem Cell Biology, Genetics, Neurogenesis, Growth and Development, Surgery, Subventricular Zone, Electroporation, Neural Stem Cells, NSC, subventricular zone, brain, DNA, injection, genetic engineering, neonatal pups, animal model
Play Button
Differentiation of Newborn Mouse Skin Derived Stem Cells into Germ-like Cells In vitro
Authors: Paul William Dyce.
Institutions: The University of Western Ontario, Children's Health Research Institute.
Studying germ cell formation and differentiation has traditionally been very difficult due to low cell numbers and their location deep within developing embryos. The availability of a "closed" in vitro based system could prove invaluable for our understanding of gametogenesis. The formation of oocyte-like cells (OLCs) from somatic stem cells, isolated from newborn mouse skin, has been demonstrated and can be visualized in this video protocol. The resulting OLCs express various markers consistent with oocytes such as Oct4 , Vasa , Bmp15, and Scp3. However, they remain unable to undergo maturation or fertilization due to a failure to complete meiosis. This protocol will provide a system that is useful for studying the early stage formation and differentiation of germ cells into more mature gametes. During early differentiation the number of cells expressing Oct4 (potential germ-like cells) reaches ~5%, however currently the formation of OLCs remains relatively inefficient. The protocol is relatively straight forward though special care should be taken to ensure the starting cell population is healthy and at an early passage.
Stem Cell Biology, Issue 77, Developmental Biology, Cellular Biology, Molecular Biology, Bioengineering, Biomedical Engineering, Medicine, Physiology, Adult Stem Cells, Pluripotent Stem Cells, Germ Cells, Oocytes, Reproductive Physiological Processes, Stem cell, skin, germ cell, oocyte, cell, differentiation, cell culture, mouse, animal model
Play Button
Test Samples for Optimizing STORM Super-Resolution Microscopy
Authors: Daniel J. Metcalf, Rebecca Edwards, Neelam Kumarswami, Alex E. Knight.
Institutions: National Physical Laboratory.
STORM is a recently developed super-resolution microscopy technique with up to 10 times better resolution than standard fluorescence microscopy techniques. However, as the image is acquired in a very different way than normal, by building up an image molecule-by-molecule, there are some significant challenges for users in trying to optimize their image acquisition. In order to aid this process and gain more insight into how STORM works we present the preparation of 3 test samples and the methodology of acquiring and processing STORM super-resolution images with typical resolutions of between 30-50 nm. By combining the test samples with the use of the freely available rainSTORM processing software it is possible to obtain a great deal of information about image quality and resolution. Using these metrics it is then possible to optimize the imaging procedure from the optics, to sample preparation, dye choice, buffer conditions, and image acquisition settings. We also show examples of some common problems that result in poor image quality, such as lateral drift, where the sample moves during image acquisition and density related problems resulting in the 'mislocalization' phenomenon.
Molecular Biology, Issue 79, Genetics, Bioengineering, Biomedical Engineering, Biophysics, Basic Protocols, HeLa Cells, Actin Cytoskeleton, Coated Vesicles, Receptor, Epidermal Growth Factor, Actins, Fluorescence, Endocytosis, Microscopy, STORM, super-resolution microscopy, nanoscopy, cell biology, fluorescence microscopy, test samples, resolution, actin filaments, fiducial markers, epidermal growth factor, cell, imaging
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
Study of Phagolysosome Biogenesis in Live Macrophages
Authors: Marc Bronietzki, Bahram Kasmapour, Maximiliano Gabriel Gutierrez.
Institutions: Helmholtz Centre for Infection Research, National Institute for Medical Research.
Phagocytic cells play a major role in the innate immune system by removing and eliminating invading microorganisms in their phagosomes. Phagosome maturation is the complex and tightly regulated process during which a nascent phagosome undergoes drastic transformation through well-orchestrated interactions with various cellular organelles and compartments in the cytoplasm. This process, which is essential for the physiological function of phagocytic cells by endowing phagosomes with their lytic and bactericidal properties, culminates in fusion of phagosomes with lysosomes and biogenesis of phagolysosomes which is considered to be the last and critical stage of maturation for phagosomes. In this report, we describe a live cell imaging based method for qualitative and quantitative analysis of the dynamic process of lysosome to phagosome content delivery, which is a hallmark of phagolysosome biogenesis. This approach uses IgG-coated microbeads as a model for phagocytosis and fluorophore-conjugated dextran molecules as a luminal lysosomal cargo probe, in order to follow the dynamic delivery of lysosmal content to the phagosomes in real time in live macrophages using time-lapse imaging and confocal laser scanning microscopy. Here we describe in detail the background, the preparation steps and the step-by-step experimental setup to enable easy and precise deployment of this method in other labs. Our described method is simple, robust, and most importantly, can be easily adapted to study phagosomal interactions and maturation in different systems and under various experimental settings such as use of various phagocytic cells types, loss-of-function experiments, different probes, and phagocytic particles.
Immunology, Issue 85, Lysosome, Phagosome, phagolysosome, live-cell imaging, phagocytes, macrophages
Play Button
A cGMP-applicable Expansion Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From Pluripotent Stem Cells or Fetal Brain Tissue
Authors: Brandon C. Shelley, Geneviève Gowing, Clive N. Svendsen.
Institutions: Cedars-Sinai Medical Center.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.
Neuroscience, Issue 88, neural progenitor cell, neural precursor cell, neural stem cell, passaging, neurosphere, chopping, stem cell, neuroscience, suspension culture, good manufacturing practice, GMP
Play Button
Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins
Authors: Savannah E. Sanchez, Daniel A. Cuevas, Jason E. Rostron, Tiffany Y. Liang, Cullen G. Pivaroff, Matthew R. Haynes, Jim Nulton, Ben Felts, Barbara A. Bailey, Peter Salamon, Robert A. Edwards, Alex B. Burgin, Anca M. Segall, Forest Rohwer.
Institutions: San Diego State University, San Diego State University, San Diego State University, San Diego State University, San Diego State University, Argonne National Laboratory, Broad Institute.
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.
Immunology, Issue 100, phenomics, phage, viral metagenome, Multi-phenotype Assay Plates (MAPs), continuous culture, metabolomics
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.