JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
A Population-Based Study on the Association between Benign Prostatic Enlargement and Rheumatoid Arthritis.
.
PLoS ONE
PUBLISHED: 07-16-2015
Benign prostatic hyperplasia is one of the chronic inflammatory conditions in ageing male populations. Rheumatoid arthritis (RA) is a major autoimmune disease and is also regarded as a chronic inflammatory disorder. Although RA and benign prostatic enlargement (BPE) may share the same underlying etiologies, almost no study has ever attempted to explore the relationship between RA and BPE. The aim of this study was to explore the relationship between RA and BPE using a population-based dataset. This case-control study used data retrieved from the Taiwan Longitudinal Health Insurance Database 2005. This study comprised 18,716 patients with BPE and 18,716 age-matched patients without BPE. Conditional logistic regression analyses were performed to calculate the odds ratio (OR) for having been previously diagnosed with RA between patients with BPE and comparison patients. In total, 485 of the 37,432 sampled patients (1.3%) had received a prior RA diagnosis. There was a significant difference in the prevalence of prior RA between cases and controls (1.6% vs. 1.0%, p<0.001). After adjusting for patient's urbanization level, monthly income, geographic region, and obesity, the adjusted OR was 1.54 (95% CI = 1.28~1.85) for patients with BPE compared to comparison patients. In addition, the sensitivity analysis showed that BPE was consistently and significantly associated with a prior RA diagnosis even after excluding subjects diagnosed with RA within 1, 2, or 3 years prior to the index date (the adjusted ORs were 1.46, 1.50, and 1.42, respectively). We concluded that there was a significant association between prior RA and BPE. Further large-scale longitudinal studies are suggested to clarify the causal relationship between RA and BPE.
Authors: Adam J. Adler, Graham B. Wiley, Patrick M. Gaffney.
Published: 11-19-2013
ABSTRACT
Genotyping variants in the human genome has proven to be an efficient method to identify genetic associations with phenotypes. The distribution of variants within families or populations can facilitate identification of the genetic factors of disease. Illumina's panel of genotyping BeadChips allows investigators to genotype thousands or millions of single nucleotide polymorphisms (SNPs) or to analyze other genomic variants, such as copy number, across a large number of DNA samples. These SNPs can be spread throughout the genome or targeted in specific regions in order to maximize potential discovery. The Infinium assay has been optimized to yield high-quality, accurate results quickly. With proper setup, a single technician can process from a few hundred to over a thousand DNA samples per week, depending on the type of array. This assay guides users through every step, starting with genomic DNA and ending with the scanning of the array. Using propriety reagents, samples are amplified, fragmented, precipitated, resuspended, hybridized to the chip, extended by a single base, stained, and scanned on either an iScan or Hi Scan high-resolution optical imaging system. One overnight step is required to amplify the DNA. The DNA is denatured and isothermally amplified by whole-genome amplification; therefore, no PCR is required. Samples are hybridized to the arrays during a second overnight step. By the third day, the samples are ready to be scanned and analyzed. Amplified DNA may be stockpiled in large quantities, allowing bead arrays to be processed every day of the week, thereby maximizing throughput.
28 Related JoVE Articles!
Play Button
Isolation and Th17 Differentiation of Naïve CD4 T Lymphocytes
Authors: Simone K. Bedoya, Tenisha D. Wilson, Erin L. Collins, Kenneth Lau, Joseph Larkin III.
Institutions: The University of Florida.
Th17 cells are a distinct subset of T cells that have been found to produce interleukin 17 (IL-17), and differ in function from the other T cell subsets including Th1, Th2, and regulatory T cells. Th17 cells have emerged as a central culprit in overzealous inflammatory immune responses associated with many autoimmune disorders. In this method we purify T lymphocytes from the spleen and lymph nodes of C57BL/6 mice, and stimulate purified CD4+ T cells under control and Th17-inducing environments. The Th17-inducing environment includes stimulation in the presence of anti-CD3 and anti-CD28 antibodies, IL-6, and TGF-β. After incubation for at least 72 hours and for up to five days at 37 °C, cells are subsequently analyzed for the capability to produce IL-17 through flow cytometry, qPCR, and ELISAs. Th17 differentiated CD4+CD25- T cells can be utilized to further elucidate the role that Th17 cells play in the onset and progression of autoimmunity and host defense. Moreover, Th17 differentiation of CD4+CD25- lymphocytes from distinct murine knockout/disease models can contribute to our understanding of cell fate plasticity.
Immunology, Issue 79, Cellular Biology, Molecular Biology, Medicine, Infection, Th17 cells, IL-17, Th17 differentiation, T cells, autoimmunity, cell, isolation, culture
50765
Play Button
Establishment of a Surgically-induced Model in Mice to Investigate the Protective Role of Progranulin in Osteoarthritis
Authors: Yunpeng Zhao, Ben Liu, Chuan-ju Liu.
Institutions: NYU Hospital for Joint Diseases, New York University Medical Center.
Destabilization of medial meniscus (DMM) model is an important tool for studying the pathophysiological roles of numerous arthritis associated molecules in the pathogenesis of osteoarthritis (OA) in vivo. However, the detailed, especially the visualized protocol for establishing this complicated model in mice, is not available. Herein we took advantage of wildtype and progranulin (PGRN)-/- mice as examples to introduce a protocol for inducing DMM model in mice, and compared the onset of OA following establishment of this surgically induced model. The operations performed on mice were either sham operation, which just opened joint capsule, or DMM operation, which cut the menisco-tibial ligament and caused destabilization of medial meniscus. Osteoarthritis severity was evaluated using histological assay (e.g. Safranin O staining), expressions of OA-associated genes, degradation of cartilage extracellular matrix molecules, and osteophyte formation. DMM operation successfully induced OA initiation and progression in both wildtype and PGRN-/- mice, and loss of PGNR growth factor led to a more severe OA phenotype in this surgically induced model.
Bioengineering, Issue 84, Mouse, Cartilage, Surgery, Osteoarthritis, degenerative arthritis, progranulin, destabilization of medial meniscus (DMM)
50924
Play Button
Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis
Authors: Parvathi Menon, Steve Vucic.
Institutions: Westmead Hospital, University of Sydney, Australia.
The split hand phenomenon refers to predominant wasting of thenar muscles and is an early and specific feature of amyotrophic lateral sclerosis (ALS). A novel split hand index (SI) was developed to quantify the split hand phenomenon, and its diagnostic utility was assessed in ALS patients. The split hand index was derived by dividing the product of the compound muscle action potential (CMAP) amplitude recorded over the abductor pollicis brevis and first dorsal interosseous muscles by the CMAP amplitude recorded over the abductor digiti minimi muscle. In order to assess the diagnostic utility of the split hand index, ALS patients were prospectively assessed and their results were compared to neuromuscular disorder patients. The split hand index was significantly reduced in ALS when compared to neuromuscular disorder patients (P<0.0001). Limb-onset ALS patients exhibited the greatest reduction in the split hand index, and a value of 5.2 or less reliably differentiated ALS from other neuromuscular disorders. Consequently, the split hand index appears to be a novel diagnostic biomarker for ALS, perhaps facilitating an earlier diagnosis.
Medicine, Issue 85, Amyotrophic Lateral Sclerosis (ALS), dissociated muscle atrophy, hypothenar muscles, motor neuron disease, split-hand index, thenar muscles
51056
Play Button
Implantation of Total Artificial Heart in Congenital Heart Disease
Authors: Iki Adachi, David S. L. Morales.
Institutions: Texas Children's Hospital, Baylor College of Medicine, The University of Cincinnati College of Medicine.
In patients with end-stage heart failure (HF), a total artificial heart (TAH) may be implanted as a bridge to cardiac transplant. However, in congenital heart disease (CHD), the malformed heart presents a challenge to TAH implantation. In the case presented here, a 17 year-old patient with congenital transposition of the great arteries (CCTGA) experienced progressively worsening HF due to his congenital condition. He was hospitalized multiple times and received an implantable cardioverter defibrillator (ICD). However, his condition soon deteriorated to end-stage HF with multisystem organ failure. Due to the patient's grave clinical condition and the presence of complex cardiac lesions, the decision was made to proceed with a TAH. The abnormal arrangement of the patient's ventricles and great arteries required modifications to the TAH during implantation. With the TAH in place, the patient was able to return home and regain strength and physical well-being while awaiting a donor heart. He was successfully bridged to heart transplantation 5 months after receiving the device. This report highlights the TAH is feasible even in patients with structurally abnormal hearts, with technical modification.
Medicine, Issue 89, total artificial heart, transposition of the great arteries, congenital heart disease, aortic insufficiency, ventricular outflow tract obstruction, conduit obstruction, heart failure
51569
Play Button
Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization
Authors: Christina N. Cheng, Yue Li, Amanda N. Marra, Valerie Verdun, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Developmental Biology, Issue 89, animals, vertebrates, fishes, zebrafish, growth and development, morphogenesis, embryonic and fetal development, organogenesis, natural science disciplines, embryo, whole mount in situ hybridization, flat mount, deyolking, imaging
51604
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Design and Implementation of an fMRI Study Examining Thought Suppression in Young Women with, and At-risk, for Depression
Authors: Caitlin L. Carew, Erica L. Tatham, Andrea M. Milne, Glenda M. MacQueen, Geoffrey B.C. Hall.
Institutions: McMaster University, McMaster University, University of Calgary, McMaster University.
Ruminative brooding is associated with increased vulnerability to major depression. Individuals who regularly ruminate will often try to reduce the frequency of their negative thoughts by actively suppressing them. We aim to identify the neural correlates underlying thought suppression in at-risk and depressed individuals. Three groups of women were studied; a major depressive disorder group, an at-risk group (having a first degree relative with depression) and controls. Participants performed a mixed block-event fMRI paradigm involving thought suppression, free thought and motor control periods. Participants identified the re-emergence of “to-be-suppressed” thoughts (“popping” back into conscious awareness) with a button press. During thought suppression the control group showed the greatest activation of the dorsolateral prefrontal cortex, followed by the at-risk, then depressed group. During the re-emergence of intrusive thoughts compared to successful re-suppression of those thoughts, the control group showed the greatest activation of the anterior cingulate cortices, followed by the at-risk, then depressed group. At-risk participants displayed anomalies in the neural regulation of thought suppression resembling the dysregulation found in depressed individuals. The predictive value of these changes in the onset of depression remains to be determined.
Behavior, Issue 99, Major Depressive Disorder, Risk, Thought Suppression, fMRI, Women, Rumination, Thought Intrusion
52061
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
52070
Play Button
Fluorescence-based Monitoring of PAD4 Activity via a Pro-fluorescence Substrate Analog
Authors: Mary J. Sabulski, Jonathan M. Fura, Marcos M. Pires.
Institutions: Lehigh University.
Post-translational modifications may lead to altered protein functional states by increasing the covalent variations on the side chains of many protein substrates. The histone tails represent one of the most heavily modified stretches within all human proteins. Peptidyl-arginine deiminase 4 (PAD4) has been shown to convert arginine residues into the non-genetically encoded citrulline residue. Few assays described to date have been operationally facile with satisfactory sensitivity. Thus, the lack of adequate assays has likely contributed to the absence of potent non-covalent PAD4 inhibitors. Herein a novel fluorescence-based assay that allows for the monitoring of PAD4 activity is described. A pro-fluorescent substrate analog was designed to link PAD4 enzymatic activity to fluorescence liberation upon the addition of the protease trypsin. It was shown that the assay is compatible with high-throughput screening conditions and has a strong signal-to-noise ratio. Furthermore, the assay can also be performed with crude cell lysates containing over-expressed PAD4.
Chemistry, Issue 93, PAD4, PADI4, citrullination, arginine, post-translational modification, HTS, assay, fluorescence, citrulline
52114
Play Button
Purifying the Impure: Sequencing Metagenomes and Metatranscriptomes from Complex Animal-associated Samples
Authors: Yan Wei Lim, Matthew Haynes, Mike Furlan, Charles E. Robertson, J. Kirk Harris, Forest Rohwer.
Institutions: San Diego State University, DOE Joint Genome Institute, University of Colorado, University of Colorado.
The accessibility of high-throughput sequencing has revolutionized many fields of biology. In order to better understand host-associated viral and microbial communities, a comprehensive workflow for DNA and RNA extraction was developed. The workflow concurrently generates viral and microbial metagenomes, as well as metatranscriptomes, from a single sample for next-generation sequencing. The coupling of these approaches provides an overview of both the taxonomical characteristics and the community encoded functions. The presented methods use Cystic Fibrosis (CF) sputum, a problematic sample type, because it is exceptionally viscous and contains high amount of mucins, free neutrophil DNA, and other unknown contaminants. The protocols described here target these problems and successfully recover viral and microbial DNA with minimal human DNA contamination. To complement the metagenomics studies, a metatranscriptomics protocol was optimized to recover both microbial and host mRNA that contains relatively few ribosomal RNA (rRNA) sequences. An overview of the data characteristics is presented to serve as a reference for assessing the success of the methods. Additional CF sputum samples were also collected to (i) evaluate the consistency of the microbiome profiles across seven consecutive days within a single patient, and (ii) compare the consistency of metagenomic approach to a 16S ribosomal RNA gene-based sequencing. The results showed that daily fluctuation of microbial profiles without antibiotic perturbation was minimal and the taxonomy profiles of the common CF-associated bacteria were highly similar between the 16S rDNA libraries and metagenomes generated from the hypotonic lysis (HL)-derived DNA. However, the differences between 16S rDNA taxonomical profiles generated from total DNA and HL-derived DNA suggest that hypotonic lysis and the washing steps benefit in not only removing the human-derived DNA, but also microbial-derived extracellular DNA that may misrepresent the actual microbial profiles.
Molecular Biology, Issue 94, virome, microbiome, metagenomics, metatranscriptomics, cystic fibrosis, mucosal-surface
52117
Play Button
A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
Authors: Aamer Sandoo, George D. Kitas.
Institutions: Bangor University, Russells Hall Hospital, University of Manchester.
The endothelium is the innermost lining of the vasculature and is involved in the maintenance of vascular homeostasis. Damage to the endothelium may predispose the vessel to atherosclerosis and increase the risk for cardiovascular disease. Assessments of peripheral endothelial function are good indicators of early abnormalities in the vascular wall and correlate well with assessments of coronary endothelial function. The present manuscript details the important methodological steps necessary for the assessment of microvascular endothelial function using laser Doppler imaging with iontophoresis, large vessel endothelial function using flow-mediated dilatation, and carotid atherosclerosis using carotid artery ultrasound. A discussion on the methodological considerations for each of the techniques is also presented, and recommendations are made for future research.
Medicine, Issue 96, Endothelium, Cardiovascular, Flow-mediated dilatation, Carotid intima-media thickness, Atherosclerosis, Nitric oxide, Microvasculature, Laser Doppler Imaging
52339
Play Button
A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique
Authors: Lorissa Lamoureux, Jeejabai Radhakrishnan, Raúl J. Gazmuri.
Institutions: Rosalind Franklin University of Medicine and Science.
A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation.
Medicine, Issue 98, Cardiopulmonary resuscitation, Hemodynamics, Myocardial ischemia, Rats, Reperfusion, Ventilation, Ventricular fibrillation, Ventricular function, Translational medical research
52413
Play Button
Renal Capsule Xenografting and Subcutaneous Pellet Implantation for the Evaluation of Prostate Carcinogenesis and Benign Prostatic Hyperplasia
Authors: Tristan M. Nicholson, Kristen S. Uchtmann, Conrad D. Valdez, Ashleigh B. Theberge, Tihomir Miralem, William A. Ricke.
Institutions: University of Wisconsin-Madison, University of Rochester School of Medicine & Dentistry, University of Wisconsin-Madison.
New therapies for two common prostate diseases, prostate cancer (PrCa) and benign prostatic hyperplasia (BPH), depend critically on experiments evaluating their hormonal regulation. Sex steroid hormones (notably androgens and estrogens) are important in PrCa and BPH; we probe their respective roles in inducing prostate growth and carcinogenesis in mice with experiments using compressed hormone pellets. Hormone and/or drug pellets are easily manufactured with a pellet press, and surgically implanted into the subcutaneous tissue of the male mouse host. We also describe a protocol for the evaluation of hormonal carcinogenesis by combining subcutaneous hormone pellet implantation with xenografting of prostate cell recombinants under the renal capsule of immunocompromised mice. Moreover, subcutaneous hormone pellet implantation, in combination with renal capsule xenografting of BPH tissue, is useful to better understand hormonal regulation of benign prostate growth, and to test new therapies targeting sex steroid hormone pathways.
Medicine, Issue 78, Cancer Biology, Prostatic Hyperplasia, Prostatic Neoplasms, Neoplastic Processes, Estradiol, Testosterone, Transplantation, Heterologous, Growth, Xenotransplantation, Heterologous Transplantation, Hormones, Prostate, Testosterone, 17beta-Estradiol, Benign prostatic hyperplasia, Prostate Cancer, animal model
50574
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
50537
Play Button
Primary Human Bronchial Epithelial Cells Grown from Explants
Authors: Asma Yaghi, Aisha Zaman, Myrna Dolovich.
Institutions: McMaster University.
Human bronchial epithelial cells are needed for cell models of disease and to investigate the effect of excipients and pharmacologic agents on the function and structure of human epithelial cells. Here we describe in detail the method of growing bronchial epithelial cells from bronchial airway tissue that is harvested by the surgeon at the times of lung surgery (e.g. lung cancer or lung volume reduction surgery). With ethics approval and informed consent, the surgeon takes what is needed for pathology and provides us with a bronchial portion that is remote from the diseased areas. The tissue is then used as a source of explants that can be used for growing primary bronchial epithelial cells in culture. Bronchial segments about 0.5-1cm long and ≤1cm in diameter are rinsed with cold EBSS and excess parenchymal tissue is removed. Segments are cut open and minced into 2-3mm3 pieces of tissue. The pieces are used as a source of primary cells. After coating 100mm culture plates for 1-2 hr with a combination of collagen (30 μg/ml), fibronectin (10 μg/ml), and BSA (10 μg/ml), the plates are scratched in 4-5 areas and tissue pieces are placed in the scratched areas, then culture medium (DMEM/Ham F-12 with additives) suitable for epithelial cell growth is added and plates are placed in an incubator at 37°C in 5% CO2 humidified air. The culture medium is changed every 3-4 days. The epithelial cells grow from the pieces forming about 1.5 cm diameter rings in 3-4 weeks. Explants can be re-used up to 6 times by moving them into new pre-coated plates. Cells are lifted using trypsin/EDTA, pooled, counted, and re-plated in T75 Cell Bind flasks to increase their numbers. T75 flasks seeded with 2-3 million cells grow to 80% confluence in 4 weeks. Expanded primary human epithelial cells can be cultured and allowed to differentiate on air-liquid interface. Methods described here provide an abundant source of human bronchial epithelial cells from freshly isolated tissues and allow for studying these cells as models of disease and for pharmacology and toxicology screening.
Medicine, Issue 37, Human bronchus, epithelium, primary culture, permeable support, cilia
1789
Play Button
Differentiation of Embryonic Stem Cells into Oligodendrocyte Precursors
Authors: Peng Jiang, Vimal Selvaraj, Wenbin Deng.
Institutions: School of Medicine, University of California, Davis.
Oligodendrocytes are the myelinating cells of the central nervous system. For regenerative cell therapy in demyelinating diseases, there is significant interest in deriving a pure population of lineage-committed oligodendrocyte precursor cells (OPCs) for transplantation. OPCs are characterized by the activity of the transcription factor Olig2 and surface expression of a proteoglycan NG2. Using the GFP-Olig2 (G-Olig2) mouse embryonic stem cell (mESC) reporter line, we optimized conditions for the differentiation of mESCs into GFP+Olig2+NG2+ OPCs. In our protocol, we first describe the generation of embryoid bodies (EBs) from mESCs. Second, we describe treatment of mESC-derived EBs with small molecules: (1) retinoic acid (RA) and (2) a sonic hedgehog (Shh) agonist purmorphamine (Pur) under defined culture conditions to direct EB differentiation into the oligodendroglial lineage. By this approach, OPCs can be obtained with high efficiency (>80%) in a time period of 30 days. Cells derived from mESCs in this protocol are phenotypically similar to OPCs derived from primary tissue culture. The mESC-derived OPCs do not show the spiking property described for a subpopulation of brain OPCs in situ. To study this electrophysiological property, we describe the generation of spiking mESC-derived OPCs by ectopically expressing NaV1.2 subunit. The spiking and nonspiking cells obtained from this protocol will help advance functional studies on the two subpopulations of OPCs.
Neurobiology, Issue 39, pluripotent stem cell, oligodendrocyte precursor cells, differentiation, myelin, neuroscience, brain
1960
Play Button
Analysis of Schwann-astrocyte Interactions Using In Vitro Assays
Authors: Fardad T. Afshari, Jessica C. Kwok, James W. Fawcett.
Institutions: University of Cambridge.
Schwann cells are one of the commonly used cells in repair strategies following spinal cord injuries. Schwann cells are capable of supporting axonal regeneration and sprouting by secreting growth factors 1,2 and providing growth promoting adhesion molecules 3 and extracellular matrix molecules 4. In addition they myelinate the demyelinated axons at the site of injury 5. However following transplantation, Schwann cells do not migrate from the site of implant and do not intermingle with the host astrocytes 6,7. This results in formation of a sharp boundary between the Schwann cells and astrocytes, creating an obstacle for growing axons trying to exit the graft back into the host tissue proximally and distally. Astrocytes in contact with Schwann cells also undergo hypertrophy and up-regulate the inhibitory molecules 8-13. In vitro assays have been used to model Schwann cell-astrocyte interactions and have been important in understanding the mechanism underlying the cellular behaviour. These in vitro assays include boundary assay, where a co-culture is made using two different cells with each cell type occupying different territories with only a small gap separating the two cell fronts. As the cells divide and migrate, the two cellular fronts get closer to each other and finally collide. This allows the behaviour of the two cellular populations to be analyzed at the boundary. Another variation of the same technique is to mix the two cellular populations in culture and over time the two cell types segregate with Schwann cells clumped together as islands in between astrocytes together creating multiple Schwann-astrocyte boundaries. The second assay used in studying the interaction of two cell types is the migration assay where cellular movement can be tracked on the surface of the other cell type monolayer 14,15. This assay is commonly known as inverted coverslip assay. Schwann cells are cultured on small glass fragments and they are inverted face down onto the surface of astrocyte monolayers and migration is assessed from the edge of coverslip. Both assays have been instrumental in studying the underlying mechanisms involved in the cellular exclusion and boundary formation. Some of the molecules identified using these techniques include N-Cadherins 15, Chondroitin Sulphate proteoglycans(CSPGs) 16,17, FGF/Heparin 18, Eph/Ephrins19. This article intends to describe boundary assay and migration assay in stepwise fashion and elucidate the possible technical problems that might occur.
Cellular Biology, Issue 47, Schwann cell, astrocyte, boundary, migration, repulsion
2214
Play Button
Competitive Homing Assays to Study Gut-tropic T Cell Migration
Authors: Eduardo J. Villablanca, J. Rodrigo Mora.
Institutions: Massachusetts General Hospital, Harvard Medical School.
In order to exert their function lymphocytes need to leave the blood and migrate into different tissues in the body. Lymphocyte adhesion to endothelial cells and tissue extravasation is a multistep process controlled by different adhesion molecules (homing receptors) expressed on lymphocytes and their respective ligands (addressins) displayed on endothelial cells 1 2. Even though the function of these adhesion receptors can be partially studied ex vivo, the ultimate test for their physiological relevance is to assess their role during in vivo lymphocyte adhesion and migration. Two complementary strategies have been used for this purpose: intravital microscopy (IVM) and homing experiments. Although IVM has been essential to define the precise contribution of specific adhesion receptors during the adhesion cascade in real time and in different tissues, IVM is time consuming and labor intensive, it often requires the development of sophisticated surgical techniques, it needs prior isolation of homogeneous cell populations and it permits the analysis of only one tissue/organ at any given time. By contrast, competitive homing experiments allow the direct and simultaneous comparison in the migration of two (or even more) cell subsets in the same mouse and they also permit the analysis of many tissues and of a high number of cells in the same experiment. Here we describe the classical competitive homing protocol used to determine the advantage/disadvantage of a given cell type to home to specific tissues as compared to a control cell population. We chose to illustrate the migratory properties of gut-tropic versus non gut-tropic T cells, because the intestinal mucosa is the largest body surface in contact with the external environment and it is also the extra-lymphoid tissue with the best-defined migratory requirements. Moreover, recent work has determined that the vitamin A metabolite all-trans retinoic acid (RA) is the main molecular mechanism responsible for inducing gut-specific adhesion receptors (integrin a4b7and chemokine receptor CCR9) on lymphocytes. Thus, we can readily generate large numbers of gut-tropic and non gut-tropic lymphocytes ex vivoby activating T cells in the presence or absence of RA, respectively, which can be finally used in the competitive homing experiments described here.
Immunology, Issue 49, Homing, competitive, gut-tropism, chemokine, in vivo
2619
Play Button
Quantifying Agonist Activity at G Protein-coupled Receptors
Authors: Frederick J. Ehlert, Hinako Suga, Michael T. Griffin.
Institutions: University of California, Irvine, University of California, Chapman University.
When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (Kb) is much greater than that for the inactive state (Ka). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (Kobs), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the Kobs and relative efficacy of an agonist 1,2. In this report, we show how to modify this analysis to estimate the agonist Kb value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate Kb in absolute units of M-1. Our method of analyzing agonist concentration-response curves 3,4 consists of global nonlinear regression using the operational model 5. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of Kobs and a parameter proportional to efficacy (τ). The estimate of τKobs of one agonist, divided by that of another, is a relative measure of Kb (RAi) 6. For any receptor exhibiting constitutive activity, it is possible to estimate a parameter proportional to the efficacy of the free receptor complex (τsys). In this case, the Kb value of an agonist is equivalent to τKobssys 3. Our method is useful for determining the selectivity of an agonist for receptor subtypes and for quantifying agonist-receptor signaling through different G proteins.
Molecular Biology, Issue 58, agonist activity, active state, ligand bias, constitutive activity, G protein-coupled receptor
3179
Play Button
A 3D System for Culturing Human Articular Chondrocytes in Synovial Fluid
Authors: Joshua A. Brand, Timothy E. McAlindon, Li Zeng.
Institutions: Tufts University School of Medicine, Tufts Medical Center.
Cartilage destruction is a central pathological feature of osteoarthritis, a leading cause of disability in the US. Cartilage in the adult does not regenerate very efficiently in vivo; and as a result, osteoarthritis leads to irreversible cartilage loss and is accompanied by chronic pain and immobility 1,2. Cartilage tissue engineering offers promising potential to regenerate and restore tissue function. This technology typically involves seeding chondrocytes into natural or synthetic scaffolds and culturing the resulting 3D construct in a balanced medium over a period of time with a goal of engineering a biochemically and biomechanically mature tissue that can be transplanted into a defect site in vivo 3-6. Achieving an optimal condition for chondrocyte growth and matrix deposition is essential for the success of cartilage tissue engineering. In the native joint cavity, cartilage at the articular surface of the bone is bathed in synovial fluid. This clear and viscous fluid provides nutrients to the avascular articular cartilage and contains growth factors, cytokines and enzymes that are important for chondrocyte metabolism 7,8. Furthermore, synovial fluid facilitates low-friction movement between cartilaginous surfaces mainly through secreting two key components, hyaluronan and lubricin 9 10. In contrast, tissue engineered cartilage is most often cultured in artificial media. While these media are likely able to provide more defined conditions for studying chondrocyte metabolism, synovial fluid most accurately reflects the natural environment of which articular chondrocytes reside in. Indeed, synovial fluid has the advantage of being easy to obtain and store, and can often be regularly replenished by the body. Several groups have supplemented the culture medium with synovial fluid in growing human, bovine, rabbit and dog chondrocytes, but mostly used only low levels of synovial fluid (below 20%) 11-25. While chicken, horse and human chondrocytes have been cultured in the medium with higher percentage of synovial fluid, these culture systems were two-dimensional 26-28. Here we present our method of culturing human articular chondrocytes in a 3D system with a high percentage of synovial fluid (up to 100%) over a period of 21 days. In doing so, we overcame a major hurdle presented by the high viscosity of the synovial fluid. This system provides the possibility of studying human chondrocytes in synovial fluid in a 3D setting, which can be further combined with two other important factors (oxygen tension and mechanical loading) 29,30 that constitute the natural environment for cartilage to mimic the natural milieu for cartilage growth. Furthermore, This system may also be used for assaying synovial fluid activity on chondrocytes and provide a platform for developing cartilage regeneration technologies and therapeutic options for arthritis.
Cellular Biology, Issue 59, Chondrocytes, articular, human, synovial fluid, alginate bead, 3D culture
3587
Play Button
Antibody Transfection into Neurons as a Tool to Study Disease Pathogenesis
Authors: Joshua N. Douglas, Lidia A. Gardner, Sangmin Lee, Yoojin Shin, Chassidy J. Groover, Michael C. Levin.
Institutions: Veterans Administration Medical Center, Memphis, TN, University of Tennessee Health Science Center, Memphis, TN, University of Tennessee Health Science Center, Memphis, TN.
Antibodies provide the ability to gain novel insight into various events taking place in living systems. The ability to produce highly specific antibodies to target proteins has allowed for very precise biological questions to be addressed. Importantly, antibodies have been implicated in the pathogenesis of a number of human diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), paraneoplastic syndromes, multiple sclerosis (MS) and human T-lymphotropic virus type 1 (HTLV-1) associated myelopathy/tropical spastic paraparesis (HAM/TSP) 1-9. How antibodies cause disease is an area of ongoing investigation, and data suggests that interactions between antibodies and various intracellular molecules results in inflammation, altered cellular messaging, and apoptosis 10. It has been shown that patients with MS and HAM/TSP produce autoantibodies to the intracellular RNA binding protein heterogeneous ribonuclear protein A1 (hnRNP A1) 3, 5-7, 9, 11. Recent data indicate that antibodies to both intra-neuronal and surface antigens are pathogenic 3, 5-9, 11. Thus, a procedure that allows for the study of intracellular antibody:protein interactions would lend great insight into disease pathogenesis. Genes are commonly transfected into primary cells and cell lines in culture, however transfection of antibodies into cells has been hindered by alteration of antibody structure or poor transfection efficiency 12. Other methods of transfection include antibody transfection based on cationic liposomes (consisting of DOTAP/DOPE) and polyethylenimines (PEI); both of which resulted in a ten-fold decrease in antibody transfection compared to controls 12. The method performed in our study is similar to cationic lipid-mediated methods and uses a lipid-based mechanism to form non-covalent complexes with the antibodies through electrostatic and hydrophobic interactions 13. We utilized Ab-DeliverIN reagent, which is a lipid formulation capable of capturing antibodies through non-covalent electrostatic and hydrophobic interactions and delivering them inside cells. Thus chemical and genetic couplings are not necessary for delivery of functional antibodies into living cells. This method has enabled us to perform various antibody tracing and protein localization experiments, as well as the analyses of the molecular consequences of intracellular antibody:protein interactions 9. In this protocol, we will show how to transfect antibodies into neurons rapidly, reproducibly and with a high degree of transfection efficiency. As an example, we will use anti-hnRNP A1 and anti-IgG antibodies. For easy quantification of transfection efficiency we used anti-hnRNP A1 antibodies labelled with Atto-550-NHS and FITC-labeled IgG. Atto550 NHS is a new label with high molecular absorbtion and quantum yield. Excitation source and fluorescent filters for Atto550 are similar to Cy3 (Ex. 556 Em. 578). In addition, Atto550 has high photostability. FITC-labeled IgG were used as a control to show that this method is versatile and not dye dependent. This approach and the data that is generated will assist in understanding of the role that antibodies to intracellular target antigens might play in the pathogenesis of human diseases.
Neuroscience, Issue 67, Medicine, Molecular Biology, Immunology, Transfection, antibodies, neuron, immunocytochemistry, fluorescent microscopy, autoimmunity
4154
Play Button
Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury
Authors: Sevda C. Aslan, Manpreet K. Chopra, William B. McKay, Rodney J. Folz, Alexander V. Ovechkin.
Institutions: University of Louisville, Shepherd Center, University of Louisville.
During breathing, activation of respiratory muscles is coordinated by integrated input from the brain, brainstem, and spinal cord. When this coordination is disrupted by spinal cord injury (SCI), control of respiratory muscles innervated below the injury level is compromised1,2 leading to respiratory muscle dysfunction and pulmonary complications. These conditions are among the leading causes of death in patients with SCI3. Standard pulmonary function tests that assess respiratory motor function include spirometrical and maximum airway pressure outcomes: Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Maximal Inspiratory Pressure (PImax) and Maximal Expiratory Pressure (PEmax)4,5. These values provide indirect measurements of respiratory muscle performance6. In clinical practice and research, a surface electromyography (sEMG) recorded from respiratory muscles can be used to assess respiratory motor function and help to diagnose neuromuscular pathology. However, variability in the sEMG amplitude inhibits efforts to develop objective and direct measures of respiratory motor function6. Based on a multi-muscle sEMG approach to characterize motor control of limb muscles7, known as the voluntary response index (VRI)8, we developed an analytical tool to characterize respiratory motor control directly from sEMG data recorded from multiple respiratory muscles during the voluntary respiratory tasks. We have termed this the Respiratory Motor Control Assessment (RMCA)9. This vector analysis method quantifies the amount and distribution of activity across muscles and presents it in the form of an index that relates the degree to which sEMG output within a test-subject resembles that from a group of healthy (non-injured) controls. The resulting index value has been shown to have high face validity, sensitivity and specificity9-11. We showed previously9 that the RMCA outcomes significantly correlate with levels of SCI and pulmonary function measures. We are presenting here the method to quantitatively compare post-spinal cord injury respiratory multi-muscle activation patterns to those of healthy individuals.
Medicine, Issue 77, Anatomy, Physiology, Behavior, Neurobiology, Neuroscience, Spinal Cord Injuries, Pulmonary Disease, Chronic Obstructive, Motor Activity, Analytical, Diagnostic and Therapeutic Techniques and Equipment, Respiratory Muscles, Motor Control, Electromyography, Pulmonary Function Test, Spinal Cord Injury, SCI, clinical techniques
50178
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
50319
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
50338
Play Button
Recombineering Homologous Recombination Constructs in Drosophila
Authors: Arnaldo Carreira-Rosario, Shane Scoggin, Nevine A. Shalaby, Nathan David Williams, P. Robin Hiesinger, Michael Buszczak.
Institutions: University of Texas Southwestern Medical Center at Dallas, University of Texas Southwestern Medical Center at Dallas, University of Texas Southwestern Medical Center at Dallas.
The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner.
Genetics, Issue 77, Bioengineering, Molecular Biology, Biomedical Engineering, Physiology, Drosophila melanogaster, genetics (animal and plant), Recombineering, Drosophila, Homologous Recombination, Knock-out, recombination, genetic engineering, gene targeting, gene, genes, DNA, PCR, Primers, sequencing, animal model
50346
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
Analyzing the Effects of Stromal Cells on the Recruitment of Leukocytes from Flow
Authors: Hafsa Munir, G. Ed Rainger, Gerard B. Nash, Helen McGettrick.
Institutions: University of Birmingham, University of Birmingham, University of Birmingham.
Stromal cells regulate the recruitment of circulating leukocytes during inflammation through cross-talk with neighboring endothelial cells. Here we describe two in vitro “vascular” models for studying the recruitment of circulating neutrophils from flow by inflamed endothelial cells. A major advantage of these models is the ability to analyze each step in the leukocyte adhesion cascade in order, as would occur in vivo. We also describe how both models can be adapted to study the role of stromal cells, in this case mesenchymal stem cells (MSC), in regulating leukocyte recruitment. Primary endothelial cells were cultured alone or together with human MSC in direct contact on Ibidi microslides or on opposite sides of a Transwell filter for 24 hr. Cultures were stimulated with tumor necrosis factor alpha (TNFα) for 4 hr and incorporated into a flow-based adhesion assay. A bolus of neutrophils was perfused over the endothelium for 4 min. The capture of flowing neutrophils and their interactions with the endothelium was visualized by phase-contrast microscopy. In both models, cytokine-stimulation increased endothelial recruitment of flowing neutrophils in a dose-dependent manner. Analysis of the behavior of recruited neutrophils showed a dose-dependent decrease in rolling and a dose-dependent increase in transmigration through the endothelium. In co-culture, MSC suppressed neutrophil adhesion to TNFα-stimulated endothelium. Our flow based-adhesion models mimic the initial phases of leukocyte recruitment from the circulation. In addition to leukocytes, they can be used to examine the recruitment of other cell types, such as therapeutically administered MSC or circulating tumor cells. Our multi-layered co-culture models have shown that MSC communicate with endothelium to modify their response to pro-inflammatory cytokines, altering the recruitment of neutrophils. Further research using such models is required to fully understand how stromal cells from different tissues and conditions (inflammatory disorders or cancer) influence the recruitment of leukocytes during inflammation.
Immunology, Issue 95, Endothelial cells, leukocytes, mesenchymal stromal cells, mesenchymal stem cells, co-culture, adhesion, inflammation, recruitment, flow based adhesion assay, Ibidi microslide, neutrophil
52480
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.