JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
BCL2 Inhibitor (ABT-737): A Restorer of Prednisolone Sensitivity in Early T-Cell Precursor-Acute Lymphoblastic Leukemia with High MEF2C Expression?
.
PLoS ONE
PUBLISHED: 07-16-2015
Early T-cell precursor-acute lymphoblastic leukemia (ETP-ALL) has been identified as a high-risk subtype of pediatric T-cell acute lymphoblastic leukemia (T-ALL). Conventional chemotherapy is not fully effective for this subtype of leukemia; therefore, potential therapeutic targets need to be explored. Analysis of the gene expression patterns of the transcription factors in pediatric T-ALL revealed that MEF2C and FLT3 were expressed at higher levels in ETP-ALL than typical T-ALL. Using human T-ALL and BaF3 cell lines with high expression levels of MEF2C, the present study tested whether the BCL2 inhibitor (ABT-737) restores the sensitivity to prednisolone (PSL), because MEF2C causes PSL resistance, possibly by augmenting the anti-apoptotic activity of BCL2. Treatment with PSL and ABT-737 caused a significant reduction in the IC50 of PSL in the MEF2C-expressing LOUCY cells, in addition to the MEF2C-transduced BaF3 cells, but not in the non-MEF2C-expressing Jurkat cells. The combination treatment significantly accelerated the killing of primary leukemic blast cells of ETP-ALL with high expression levels of MEF2C, which were co-cultured with murine stromal cells. These findings suggest that BCL2 inhibitors may be a therapeutic candidate in vivo for patients with ETP-ALL with high expression levels of MEF2C.
Authors: Choong Yong Ung, Feng Guo, Xiaoling Zhang, Zhihui Zhu, Shizhen Zhu.
Published: 03-31-2015
ABSTRACT
Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic “drivers” among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has resisted most forms of contemporary treatment.
19 Related JoVE Articles!
Play Button
Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia
Authors: Sandra Christoph, Alisa B. Lee-Sherick, Susan Sather, Deborah DeRyckere, Douglas K. Graham.
Institutions: University of Colorado Anschutz Medical Campus, University Hospital of Essen.
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds.
Medicine, Issue 79, Leukemia, Receptor Protein-Tyrosine Kinases, Molecular Targeted Therapy, Therapeutics, novel small molecule inhibitor, receptor tyrosine kinase, leukemia
50720
Play Button
Derivation of Cardiac Progenitor Cells from Embryonic Stem Cells
Authors: Ieng Lam Lei, Lei Bu, Zhong Wang.
Institutions: University of Michigan, New York University School of Medicine.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.
Developmental Biology, Issue 95, embryonic stem cells, embryoid bodies, cardiac progenitor cells, cardiac differentiation, FACS-sorting, fluorescent reporter
52047
Play Button
A Method for Screening and Validation of Resistant Mutations Against Kinase Inhibitors
Authors: Meenu Kesarwani, Erika Huber, Zachary Kincaid, Mohammad Azam.
Institutions: Cincinnati Children's Hospital Medical Center.
The discovery of BCR/ABL as a driver oncogene in chronic myeloid leukemia (CML) resulted in the development of Imatinib, which, in fact, demonstrated the potential of targeting the kinase in cancers by effectively treating the CML patients. This observation revolutionized drug development to target the oncogenic kinases implicated in various other malignancies, such as, EGFR, B-RAF, KIT and PDGFRs. However, one major drawback of anti-kinase therapies is the emergence of drug resistance mutations rendering the target to have reduced or lost affinity for the drug. Understanding the mechanisms employed by resistant variants not only helps in developing the next generation inhibitors but also gives impetus to clinical management using personalized medicine. We reported a retroviral vector based screening strategy to identify the spectrum of resistance conferring mutations in BCR/ABL, which has helped in developing the next generation BCR/ABL inhibitors. Using Ruxolitinib and JAK2 as a drug target pair, here we describe in vitro screening methods that utilizes the mouse BAF3 cells expressing the random mutation library of JAK2 kinase.
Genetics, Issue 94, JAK2, BCR/ABL, TKI, random mutagenesis, drug resistance, kinase inhibitors, in-vivo resistance,
51984
Play Button
Measuring Calpain Activity in Fixed and Living Cells by Flow Cytometry
Authors: Christina Farr, Stuart Berger.
Institutions: University of Toronto, University Health Network (UHN).
Calpains are ubiquitous intracellular, calcium-sensitive, neutral cysteine proteases 1. Calpains play crucial roles in many physiological processes, including signaling, cytoskeletal remodeling, regulation of gene expression, apoptosis and cell cycle progression 1. Calpains have been implicated in many pathologies including muscular dystrophies, cancer, diabetes, Alzheimer's disease and multiple sclerosis 1. Calpain regulation is complex and incompletely understood. mRNA and protein levels correlate poorly with activity, limiting the use of gene or protein expression techniques to measure calpain activity. This video protocol details a flow cytometric assay developed in our laboratory for measuring calpain activity in fixed and living cells. This method uses the fluorescent substrate BOC-LM-CMAC, which is cleaved specifically by calpain, to measure calpain activity. 2 In this video, calpain activity in fixed and living murine 32Dkit leukemia cells, alone or as part of a splenocyte population is measured using an LSRII (BD Bioscience). 32Dkit cells are shown to have elevated activity compared to normal splenocytes.
JoVE Immunology, Issue 41, calpain, immunology, flow cytometry, acute myeloid leukemia
2050
Play Button
Enrichment for Chemoresistant Ovarian Cancer Stem Cells from Human Cell Lines
Authors: Jennifer M. Cole, Stancy Joseph, Christopher G. Sudhahar, Karen D. Cowden Dahl.
Institutions: Indiana University School of Medicine.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.
Medicine, Issue 91, cancer stem cells, stem cell markers, ovarian cancer, chemoresistance, cisplatin, cancer progression
51891
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Isolation and Functional Analysis of Mitochondria from Cultured Cells and Mouse Tissue
Authors: Thomas Lampl, Jo A. Crum, Taylor A. Davis, Carol Milligan, Victoria Del Gaizo Moore.
Institutions: Elon University, Wake Forest School of Medicine, Wake Forest School of Medicine, Wake Forest School of Medicine.
Comparison between two or more distinct groups, such as healthy vs. disease, is necessary to determine cellular status. Mitochondria are at the nexus of cell heath due to their role in both cell metabolism and energy production as well as control of apoptosis. Therefore, direct evaluation of isolated mitochondria and mitochondrial perturbation offers the ability to determine if organelle-specific (dys)function is occurring. The methods described in this protocol include isolation of intact, functional mitochondria from HEK cultured cells and mouse liver and spinal cord, but can be easily adapted for use with other cultured cells or animal tissues. Mitochondrial function assessed by TMRE and the use of common mitochondrial uncouplers and inhibitors in conjunction with a fluorescent plate reader allow this protocol not only to be versatile and accessible to most research laboratories, but also offers high throughput.
Cellular Biology, Issue 97, Mitochondria, TMRE, cytokines, ALS, HEK cells, fluorescence, mitochondrial dysfunction, mitochondrial membrane potential, cytochrome c
52076
Play Button
Probe-based Real-time PCR Approaches for Quantitative Measurement of microRNAs
Authors: Wilson Wong, Ryan Farr, Mugdha Joglekar, Andrzej Januszewski, Anandwardhan Hardikar.
Institutions: The University of Sydney, The University of Sydney.
Probe-based quantitative PCR (qPCR) is a favoured method for measuring transcript abundance, since it is one of the most sensitive detection methods that provides an accurate and reproducible analysis. Probe-based chemistry offers the least background fluorescence as compared to other (dye-based) chemistries. Presently, there are several platforms available that use probe-based chemistry to quantitate transcript abundance. qPCR in a 96 well plate is the most routinely used method, however only a maximum of 96 samples or miRNAs can be tested in a single run. This is time-consuming and tedious if a large number of samples/miRNAs are to be analyzed. High-throughput probe-based platforms such as microfluidics (e.g. TaqMan Array Card) and nanofluidics arrays (e.g. OpenArray) offer ease to reproducibly and efficiently detect the abundance of multiple microRNAs in a large number of samples in a short time. Here, we demonstrate the experimental setup and protocol for miRNA quantitation from serum or plasma-EDTA samples, using probe-based chemistry and three different platforms (96 well plate, microfluidics and nanofluidics arrays) offering increasing levels of throughput.
Molecular Biology, Issue 98, microRNA, ncRNA, probe-based assays, high-throughput PCR, Nanofluidics / Open Arrays, reverse-transcription, pre-amplification, qPCR
52586
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
High-throughput Screening for Broad-spectrum Chemical Inhibitors of RNA Viruses
Authors: Marianne Lucas-Hourani, Hélène Munier-Lehmann, Olivier Helynck, Anastassia Komarova, Philippe Desprès, Frédéric Tangy, Pierre-Olivier Vidalain.
Institutions: Institut Pasteur, CNRS UMR3569, Institut Pasteur, CNRS UMR3523, Institut Pasteur.
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.
Immunology, Issue 87, Viral infections, high-throughput screening assays, broad-spectrum antivirals, chikungunya virus, measles virus, luciferase reporter, chemical libraries
51222
Play Button
A cGMP-applicable Expansion Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From Pluripotent Stem Cells or Fetal Brain Tissue
Authors: Brandon C. Shelley, Geneviève Gowing, Clive N. Svendsen.
Institutions: Cedars-Sinai Medical Center.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.
Neuroscience, Issue 88, neural progenitor cell, neural precursor cell, neural stem cell, passaging, neurosphere, chopping, stem cell, neuroscience, suspension culture, good manufacturing practice, GMP
51219
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
Isolation of Precursor B-cell Subsets from Umbilical Cord Blood
Authors: Md Almamun, Jennifer L. Schnabel, Susan T. Gater, Jie Ning, Kristen H. Taylor.
Institutions: University of Missouri-Columbia, University of Missouri-Columbia.
Umbilical cord blood is highly enriched for hematopoietic progenitor cells at different lineage commitment stages. We have developed a protocol for isolating precursor B-cells at four different stages of differentiation. Because genes are expressed and epigenetic modifications occur in a tissue specific manner, it is vital to discriminate between tissues and cell types in order to be able to identify alterations in the genome and the epigenome that may lead to the development of disease. This method can be adapted to any type of cell present in umbilical cord blood at any stage of differentiation. This method comprises 4 main steps. First, mononuclear cells are separated by density centrifugation. Second, B-cells are enriched using biotin conjugated antibodies that recognize and remove non B-cells from the mononuclear cells. Third the B-cells are fluorescently labeled with cell surface protein antibodies specific to individual stages of B-cell development. Finally, the fluorescently labeled cells are sorted and individual populations are recovered. The recovered cells are of sufficient quantity and quality to be utilized in downstream nucleic acid assays.
Immunology, Issue 74, Cellular Biology, Molecular Biology, Genetics, Medicine, Biomedical Engineering, Anatomy, Physiology, Neoplasms, Precursor B-cells, B cells, Umbilical cord blood, Cell sorting, DNA methylation, Tissue specific expression, labeling, enrichment, isolation, blood, tissue, cells, flow cytometry
50402
Play Button
Generation of Aligned Functional Myocardial Tissue Through Microcontact Printing
Authors: Ayhan Atmanli, Ibrahim J. Domian.
Institutions: Massachusetts General Hospital and Harvard Medical School, Harvard Stem Cell Institute.
Advanced heart failure represents a major unmet clinical challenge, arising from the loss of viable and/or fully functional cardiac muscle cells. Despite optimum drug therapy, heart failure represents a leading cause of mortality and morbidity in the developed world. A major challenge in drug development is the identification of cellular assays that accurately recapitulate normal and diseased human myocardial physiology in vitro. Likewise, the major challenges in regenerative cardiac biology revolve around the identification and isolation of patient-specific cardiac progenitors in clinically relevant quantities. These cells have to then be assembled into functional tissue that resembles the native heart tissue architecture. Microcontact printing allows for the creation of precise micropatterned protein shapes that resemble structural organization of the heart, thus providing geometric cues to control cell adhesion spatially. Herein we describe our approach for the isolation of highly purified myocardial cells from pluripotent stem cells differentiating in vitro, the generation of cell growth surfaces micropatterned with extracellular matrix proteins, and the assembly of the stem cell-derived cardiac muscle cells into anisotropic myocardial tissue.
Stem Cell Biology, Issue 73, Bioengineering, Biomedical Engineering, Medicine, Molecular Biology, Cellular Biology, Anatomy, Physiology, Tissue Engineering, Cardiology, Cell Biology, Embryonic Stem Cells, ESCs, Micropatterning, Microcontact Printing, Cell Alignment, Heart Progenitors, in vitro Differentiation, Transgenic Mice, Mouse Embryonic Stem Cells, stem cells, myocardial tissue, PDMS, FACS, flow cytometry, animal model
50288
Play Button
Using Quantitative Real-time PCR to Determine Donor Cell Engraftment in a Competitive Murine Bone Marrow Transplantation Model
Authors: Ningfei An, Yubin Kang.
Institutions: Medical University of South Carolina.
Murine bone marrow transplantation models provide an important tool in measuring hematopoietic stem cell (HSC) functions and determining genes/molecules that regulate HSCs. In these transplant model systems, the function of HSCs is determined by the ability of these cells to engraft and reconstitute lethally irradiated recipient mice. Commonly, the donor cell contribution/engraftment is measured by antibodies to donor- specific cell surface proteins using flow cytometry. However, this method heavily depends on the specificity and the ability of the cell surface marker to differentiate donor-derived cells from recipient-originated cells, which may not be available for all mouse strains. Considering the various backgrounds of genetically modified mouse strains in the market, this cell surface/ flow cytometry-based method has significant limitations especially in mouse strains that lack well-defined surface markers to separate donor cells from congenic recipient cells. Here, we reported a PCR-based technique to determine donor cell engraftment/contribution in transplant recipient mice. We transplanted male donor bone marrow HSCs to lethally irradiated congenic female mice. Peripheral blood samples were collected at different time points post transplantation. Bone marrow samples were obtained at the end of the experiments. Genomic DNA was isolated and the Y chromosome specific gene, Zfy1, was amplified using quantitative Real time PCR. The engraftment of male donor-derived cells in the female recipient mice was calculated against standard curve with known percentage of male vs. female DNAs. Bcl2 was used as a reference gene to normalize the total DNA amount. Our data suggested that this approach reliably determines donor cell engraftment and provides a useful, yet simple method in measuring hematopoietic cell reconstitution in murine bone marrow transplantation models. Our method can be routinely performed in most laboratories because no costly equipment such as flow cytometry is required.
Medicine, Issue 73, Biomedical Engineering, Stem Cell Biology, Genetics, Immunology, Anatomy, Physiology, Cellular Biology, Surgery, Y Chromosome, Hematopoietic Stem Cells, HSC, stem cells, Bone Marrow Transplantation, Real-Time Polymerase Chain Reaction, rtPCR, PCR, Chimerism, Y chromosome specific gene, graft, engraftment, isolation, transplantation, cell culture, murine model, animal model
50193
Play Button
Immunostaining of Dissected Zebrafish Embryonic Heart
Authors: Jingchun Yang, Xiaolei Xu.
Institutions: Mayo Clinic College of Medicine.
Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics 1,2. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects 3. The expression of any gene can be manipulated via morpholino technology or RNA injection 4. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis 5. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue 6. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals.
Developmental Biology, Issue 59, Zebrafish, Danio rerio, Embryonic Heart, Cardiology, Dissection, Immunostaining
3510
Play Button
Quantifying the Frequency of Tumor-propagating Cells Using Limiting Dilution Cell Transplantation in Syngeneic Zebrafish
Authors: Jessica S. Blackburn, Sali Liu, David M. Langenau.
Institutions: Harvard Medical School, Harvard Stem Cell Institute.
Self-renewing cancer cells are the only cell types within a tumor that have an unlimited ability to promote tumor growth, and are thus known as tumor-propagating cells, or tumor-initiating cells. It is thought that targeting these self-renewing cells for destruction will block tumor progression and stop relapse, greatly improving patient prognosis1. The most common way to determine the frequency of self-renewing cells within a tumor is a limiting dilution cell transplantation assay, in which tumor cells are transplanted into recipient animals at increasing doses; the proportion of animals that develop tumors is used the calculate the number of self-renewing cells within the original tumor sample2, 3. Ideally, a large number of animals would be used in each limiting dilution experiment to accurately determine the frequency of tumor-propagating cells. However, large scale experiments involving mice are costly, and most limiting dilution assays use only 10-15 mice per experiment. Zebrafish have gained prominence as a cancer model, in large part due to their ease of genetic manipulation and the economy by which large scale experiments can be performed. Additionally, the cancer types modeled in zebrafish have been found to closely mimic their counterpart human disease4. While it is possible to transplant tumor cells from one fish to another by sub-lethal irradiation of recipient animals, the regeneration of the immune system after 21 days often causes tumor regression5. The recent creation of syngeneic zebrafish has greatly facilitated tumor transplantation studies 6-8. Because these animals are genetically identical, transplanted tumor cells engraft robustly into recipient fish, and tumor growth can be monitored over long periods of time. Syngeneic zebrafish are ideal for limiting dilution transplantation assays in that tumor cells do not have to adapt to growth in a foreign microenvironment, which may underestimate self-renewing cell frequency9, 10. Additionally, one-cell transplants have been successfully completed using syngeneic zebrafish8 and several hundred animals can be easily and economically transplanted at one time, both of which serve to provide a more accurate estimate of self-renewing cell frequency. Here, a method is presented for creating primary, fluorescently-labeled T-cell acute lymphoblastic leukemia (T-ALL) in syngeneic zebrafish, and transplanting these tumors at limiting dilution into adult fish to determine self-renewing cell frequency. While leukemia is provided as an example, this protocol is suitable to determine the frequency of tumor-propagating cells using any cancer model in the zebrafish.
Developmental Biology, Issue 53, cancer stem cell, T-cell acute lymphoblastic leukemia, microinjection, fluorescence, self-renewal
2790
Play Button
Normal and Malignant Muscle Cell Transplantation into Immune Compromised Adult Zebrafish
Authors: Inês M. Tenente, Qin Tang, John C. Moore, David M. Langenau.
Institutions: Massachusetts General Hospital, Harvard Stem Cell Institute, Universidade do Porto.
Zebrafish have become a powerful tool for assessing development, regeneration, and cancer. More recently, allograft cell transplantation protocols have been developed that permit engraftment of normal and malignant cells into irradiated, syngeneic, and immune compromised adult zebrafish. These models when coupled with optimized cell transplantation protocols allow for the rapid assessment of stem cell function, regeneration following injury, and cancer. Here, we present a method for cell transplantation of zebrafish adult skeletal muscle and embryonal rhabdomyosarcoma (ERMS), a pediatric sarcoma that shares features with embryonic muscle, into immune compromised adult rag2E450fs homozygous mutant zebrafish. Importantly, these animals lack T cells and have reduced B cell function, facilitating engraftment of a wide range of tissues from unrelated donor animals. Our optimized protocols show that fluorescently labeled muscle cell preparations from α-actin-RFP transgenic zebrafish engraft robustly when implanted into the dorsal musculature of rag2 homozygous mutant fish. We also demonstrate engraftment of fluorescent-transgenic ERMS where fluorescence is confined to cells based on differentiation status. Specifically, ERMS were created in AB-strain myf5-GFP; mylpfa-mCherry double transgenic animals and tumors injected into the peritoneum of adult immune compromised fish. The utility of these protocols extends to engraftment of a wide range of normal and malignant donor cells that can be implanted into dorsal musculature or peritoneum of adult zebrafish.
Immunology, Issue 94, zebrafish, immune compromised, transplantation, muscle, rhabdomyosarcoma, rag2E450fs, rag2fb101, fluorescent, transgenic
52597
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.