JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas.
.
PLoS ONE
PUBLISHED: 07-16-2015
Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR) T cells targeting the type I insulin-like growth factor receptor (IGF1R) or tyrosine kinase-like orphan receptor 1 (ROR1) molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15) and ROR1 (11/15) were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB) transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-?, TNF-? and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-? in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients.
Authors: M. Helen Huls, Matthew J. Figliola, Margaret J. Dawson, Simon Olivares, Partow Kebriaei, Elizabeth J. Shpall, Richard E. Champlin, Harjeet Singh, Laurence J.N. Cooper.
Published: 02-01-2013
ABSTRACT
The potency of clinical-grade T cells can be improved by combining gene therapy with immunotherapy to engineer a biologic product with the potential for superior (i) recognition of tumor-associated antigens (TAAs), (ii) persistence after infusion, (iii) potential for migration to tumor sites, and (iv) ability to recycle effector functions within the tumor microenvironment. Most approaches to genetic manipulation of T cells engineered for human application have used retrovirus and lentivirus for the stable expression of CAR1-3. This approach, although compliant with current good manufacturing practice (GMP), can be expensive as it relies on the manufacture and release of clinical-grade recombinant virus from a limited number of production facilities. The electro-transfer of nonviral plasmids is an appealing alternative to transduction since DNA species can be produced to clinical grade at approximately 1/10th the cost of recombinant GMP-grade virus. To improve the efficiency of integration we adapted Sleeping Beauty (SB) transposon and transposase for human application4-8. Our SB system uses two DNA plasmids that consist of a transposon coding for a gene of interest (e.g. 2nd generation CD19-specific CAR transgene, designated CD19RCD28) and a transposase (e.g. SB11) which inserts the transgene into TA dinucleotide repeats9-11. To generate clinically-sufficient numbers of genetically modified T cells we use K562-derived artificial antigen presenting cells (aAPC) (clone #4) modified to express a TAA (e.g. CD19) as well as the T cell costimulatory molecules CD86, CD137L, a membrane-bound version of interleukin (IL)-15 (peptide fused to modified IgG4 Fc region) and CD64 (Fc-γ receptor 1) for the loading of monoclonal antibodies (mAb)12. In this report, we demonstrate the procedures that can be undertaken in compliance with cGMP to generate CD19-specific CAR+ T cells suitable for human application. This was achieved by the synchronous electro-transfer of two DNA plasmids, a SB transposon (CD19RCD28) and a SB transposase (SB11) followed by retrieval of stable integrants by the every-7-day additions (stimulation cycle) of γ-irradiated aAPC (clone #4) in the presence of soluble recombinant human IL-2 and IL-2113. Typically 4 cycles (28 days of continuous culture) are undertaken to generate clinically-appealing numbers of T cells that stably express the CAR. This methodology to manufacturing clinical-grade CD19-specific T cells can be applied to T cells derived from peripheral blood (PB) or umbilical cord blood (UCB). Furthermore, this approach can be harnessed to generate T cells to diverse tumor types by pairing the specificity of the introduced CAR with expression of the TAA, recognized by the CAR, on the aAPC.
20 Related JoVE Articles!
Play Button
Generation of CAR T Cells for Adoptive Therapy in the Context of Glioblastoma Standard of Care
Authors: Katherine Riccione, Carter M. Suryadevara, David Snyder, Xiuyu Cui, John H. Sampson, Luis Sanchez-Perez.
Institutions: Duke University, Duke University, Duke University.
Adoptive T cell immunotherapy offers a promising strategy for specifically targeting and eliminating malignant gliomas. T cells can be engineered ex vivo to express chimeric antigen receptors specific for glioma antigens (CAR T cells). The expansion and function of adoptively transferred CAR T cells can be potentiated by the lymphodepletive and tumoricidal effects of standard of care chemotherapy and radiotherapy. We describe a method for generating CAR T cells targeting EGFRvIII, a glioma-specific antigen, and evaluating their efficacy when combined with a murine model of glioblastoma standard of care. T cells are engineered by transduction with a retroviral vector containing the anti-EGFRvIII CAR gene. Tumor-bearing animals are subjected to host conditioning by a course of temozolomide and whole brain irradiation at dose regimens designed to model clinical standard of care. CAR T cells are then delivered intravenously to primed hosts. This method can be used to evaluate the antitumor efficacy of CAR T cells in the context of standard of care.
Immunology, Issue 96, Tumor immunotherapy, glioblastoma, chimeric antigen receptor, adoptive transfer, temozolomide, radiotherapy
52397
Play Button
The In ovo CAM-assay as a Xenograft Model for Sarcoma
Authors: Gwen M.L. Sys, Lore Lapeire, Nikita Stevens, Herman Favoreel, Ramses Forsyth, Marc Bracke, Olivier De Wever.
Institutions: Ghent University Hospital, Ghent University, Ghent University, Pathlicon.
Sarcoma is a very rare disease that is heterogeneous in nature, all hampering the development of new therapies. Sarcoma patients are ideal candidates for personalized medicine after stratification, explaining the current interest in developing a reproducible and low-cost xenotransplant model for this disease. The chick chorioallantoic membrane is a natural immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition, it is easily accessed, manipulated and imaged using optical and fluorescence stereomicroscopy. Histology further allows detailed analysis of heterotypic cellular interactions. This protocol describes in detail the in ovo grafting of the chorioallantoic membrane with fresh sarcoma-derived tumor tissues, their single cell suspensions, and permanent and transient fluorescently labeled established sarcoma cell lines (Saos-2 and SW1353). The chick survival rates are up to 75%. The model is used to study graft- (viability, Ki67 proliferation index, necrosis, infiltration) and host (fibroblast infiltration, vascular ingrowth) behavior. For localized grafting of single cell suspensions, ECM gel provides significant advantages over inert containment materials. The Ki67 proliferation index is related to the distance of the cells from the surface of the CAM and the duration of application on the CAM, the latter determining a time frame for the addition of therapeutic products.
Cancer Biology, Issue 77, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Bioengineering, Developmental Biology, Anatomy, Physiology, Oncology, Surgery, Adipose Tissue, Connective Tissue, Neoplasm, Muscle Tissue, Sarcoma, Animal Experimentation, Cell Culture Techniques, Neoplasms, Experimental, Neoplasm Transplantation, Biological Assay, Sarcomas, CAM-assay, CAM, assay, xenograft, proliferation, invasion, cancer, tumor, in ovo, animal model
50522
Play Button
Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers
Authors: Ilia Fishbein, Scott P. Forbes, Richard F. Adamo, Michael Chorny, Robert J. Levy, Ivan S. Alferiev.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.
Medicine, Issue 90, gene therapy, bioconjugation, adenoviral vectors, stents, local gene delivery, smooth muscle cells, endothelial cells, bioluminescence imaging
51653
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
In Vitro Reconstitution of Light-harvesting Complexes of Plants and Green Algae
Authors: Alberto Natali, Laura M. Roy, Roberta Croce.
Institutions: VU University Amsterdam.
In plants and green algae, light is captured by the light-harvesting complexes (LHCs), a family of integral membrane proteins that coordinate chlorophylls and carotenoids. In vivo, these proteins are folded with pigments to form complexes which are inserted in the thylakoid membrane of the chloroplast. The high similarity in the chemical and physical properties of the members of the family, together with the fact that they can easily lose pigments during isolation, makes their purification in a native state challenging. An alternative approach to obtain homogeneous preparations of LHCs was developed by Plumley and Schmidt in 19871, who showed that it was possible to reconstitute these complexes in vitro starting from purified pigments and unfolded apoproteins, resulting in complexes with properties very similar to that of native complexes. This opened the way to the use of bacterial expressed recombinant proteins for in vitro reconstitution. The reconstitution method is powerful for various reasons: (1) pure preparations of individual complexes can be obtained, (2) pigment composition can be controlled to assess their contribution to structure and function, (3) recombinant proteins can be mutated to study the functional role of the individual residues (e.g., pigment binding sites) or protein domain (e.g., protein-protein interaction, folding). This method has been optimized in several laboratories and applied to most of the light-harvesting complexes. The protocol described here details the method of reconstituting light-harvesting complexes in vitro currently used in our laboratory, and examples describing applications of the method are provided.
Biochemistry, Issue 92, Reconstitution, Photosynthesis, Chlorophyll, Carotenoids, Light Harvesting Protein, Chlamydomonas reinhardtii, Arabidopsis thaliana
51852
Play Button
Electrochemotherapy of Tumours
Authors: Gregor Sersa, Damijan Miklavcic.
Institutions: Institute of Oncology Ljubljana, University of Ljubljana.
Electrochemotherapy is a combined use of certain chemotherapeutic drugs and electric pulses applied to the treated tumour nodule. Local application of electric pulses to the tumour increases drug delivery into cells, specifically at the site of electric pulse application. Drug uptake by delivery of electric pulses is increased for only those chemotherapeutic drugs whose transport through the plasma membrane is impeded. Among many drugs that have been tested so far, bleomycin and cisplatin found their way from preclinical testing to clinical use. Clinical data collected within a number of clinical studies indicate that approximately 80% of the treated cutaneous and subcutaneous tumour nodules of different malignancies are in an objective response, from these, approximately 70% in complete response after a single application of electrochemotherapy. Usually only one treatment is needed, however, electrochemotherapy can be repeated several times every few weeks with equal effectiveness each time. The treatment results in an effective eradication of the treated nodules, with a good cosmetic effect without tissue scarring.
Medicine, Issue 22, electrochemotherapy, electroporation, cisplatin, bleomycin, malignant tumours, cutaneous lesions
1038
Play Button
Design and Implementation of an fMRI Study Examining Thought Suppression in Young Women with, and At-risk, for Depression
Authors: Caitlin L. Carew, Erica L. Tatham, Andrea M. Milne, Glenda M. MacQueen, Geoffrey B.C. Hall.
Institutions: McMaster University, McMaster University, University of Calgary, McMaster University.
Ruminative brooding is associated with increased vulnerability to major depression. Individuals who regularly ruminate will often try to reduce the frequency of their negative thoughts by actively suppressing them. We aim to identify the neural correlates underlying thought suppression in at-risk and depressed individuals. Three groups of women were studied; a major depressive disorder group, an at-risk group (having a first degree relative with depression) and controls. Participants performed a mixed block-event fMRI paradigm involving thought suppression, free thought and motor control periods. Participants identified the re-emergence of “to-be-suppressed” thoughts (“popping” back into conscious awareness) with a button press. During thought suppression the control group showed the greatest activation of the dorsolateral prefrontal cortex, followed by the at-risk, then depressed group. During the re-emergence of intrusive thoughts compared to successful re-suppression of those thoughts, the control group showed the greatest activation of the anterior cingulate cortices, followed by the at-risk, then depressed group. At-risk participants displayed anomalies in the neural regulation of thought suppression resembling the dysregulation found in depressed individuals. The predictive value of these changes in the onset of depression remains to be determined.
Behavior, Issue 99, Major Depressive Disorder, Risk, Thought Suppression, fMRI, Women, Rumination, Thought Intrusion
52061
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
52066
Play Button
Transposon Mediated Integration of Plasmid DNA into the Subventricular Zone of Neonatal Mice to Generate Novel Models of Glioblastoma
Authors: Anda-Alexandra Calinescu, Felipe Javier Núñez, Carl Koschmann, Bradley L. Kolb, Pedro R. Lowenstein, Maria G. Castro.
Institutions: University of Michigan School of Medicine, University of Michigan School of Medicine, University of Michigan.
An urgent need exists to test the contribution of new genes to the pathogenesis and progression of human glioblastomas (GBM), the most common primary brain tumor in adults with dismal prognosis. New potential therapies are rapidly emerging from the bench and require systematic testing in experimental models which closely reproduce the salient features of the human disease. Herein we describe in detail a method to induce new models of GBM with transposon-mediated integration of plasmid DNA into cells of the subventricular zone of neonatal mice. We present a simple way to clone new transposons amenable for genomic integration using the Sleeping Beauty transposon system and illustrate how to monitor plasmid uptake and disease progression using bioluminescence, histology and immuno-histochemistry. We also describe a method to create new primary GBM cell lines. Ideally, this report will allow further dissemination of the Sleeping Beauty transposon system among brain tumor researchers, leading to an in depth understanding of GBM pathogenesis and progression and to the timely design and testing of effective therapies for patients.
Medicine, Issue 96, Glioblastoma models, Sleeping Beauty transposase, subventricular zone, neonatal mice, cloning of novel transposons, genomic integration, GBM histology, GBM neurospheres.
52443
Play Button
Tissue Engineering of Tumor Stromal Microenvironment with Application to Cancer Cell Invasion
Authors: Yi-Zhen Ng, Andrew P. South.
Institutions: University of Dundee, A*Star, Singapore.
3D organotypic cultures of epithelial cells on a matrix embedded with mesenchymal cells are widely used to study epithelial cell differentiation and invasion. Rat tail type I collagen and/or matrix derived from Engelbreth-Holm-Swarm mouse sarcoma cells have been traditionally employed as the substrates to model the matrix or stromal microenvironment into which mesenchymal cells (usually fibroblasts) are populated. Although experiments using such matrices are very informative, it can be argued that due to an overriding presence of a single protein (such as in type I Collagen) or a high content of basement membrane components and growth factors (such as in matrix derived from mouse sarcoma cells), these substrates do not best reflect the contribution to matrix composition made by the stromal cells themselves. To study native matrices produced by primary dermal fibroblasts isolated from patients with a tumor prone, genetic blistering disorder (recessive dystrophic epidermolysis bullosa), we have adapted an existing native matrix protocol to study tumor cell invasion. Fibroblasts are induced to produce their own matrix over a prolonged period in culture. This native matrix is then detached from the culture dish and epithelial cells are seeded onto it before the entire coculture is raised to the air-liquid interface. Cellular differentiation and/or invasion can then be assessed over time. This technique provides the ability to assess epithelial-mesenchymal cell interactions in a 3D setting without the need for a synthetic or foreign matrix with the only disadvantage being the prolonged period of time required to produce the native matrix. Here we describe the application of this technique to assess the ability of a single molecule expressed by fibroblasts, type VII collagen, to inhibit tumor cell invasion.
Biomedical Engineering, Issue 85, tumor microenvironment, stromal fibroblasts, extracellular matrix, tissue engineering, dermal equivalent, collagen, native matrix
51321
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Cytotoxic Efficacy of Photodynamic Therapy in Osteosarcoma Cells In Vitro
Authors: Daniela Meier, Carmen Campanile, Sander M. Botter, Walter Born, Bruno Fuchs.
Institutions: Balgrist University Hospital, Zurich, Switzerland.
In recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment. Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response1. Despite its approval almost twenty years ago by the FDA, PDT is nowadays only used to treat a limited number of cancer types (skin, bladder) and nononcological diseases (psoriasis, actinic keratosis)2. The major advantage of the use of PDT is the ability to perform a local treatment, which prevents systemic side effects. Moreover, it allows the treatment of tumors at delicate sites (e.g. around nerves or blood vessels). Here, an intraoperative application of PDT is considered in osteosarcoma (OS), a tumor of the bone, to target primary tumor satellites left behind in tumor surrounding tissue after surgical tumor resection. The treatment aims at decreasing the number of recurrences and at reducing the risk for (postoperative) metastasis. In the present study, we present in vitro PDT procedures to establish the optimal PDT settings for effective treatment of widely used OS cell lines that are used to reproduce the human disease in well established intratibial OS mouse models. The uptake of the PS mTHPC was examined with a spectrophotometer and phototoxicity was provoked with laser light excitation of mTHPC at 652 nm to induce cell death assessed with a WST-1 assay and by the counting of surviving cells. The established techniques enable us to define the optimal PDT settings for future studies in animal models. They are an easy and quick tool for the evaluation of the efficacy of PDT in vitro before an application in vivo.
Medicine, Issue 85, Photodynamic Therapy (PDT), 5,10,15,20-tetrakis(meta-hydroxyphenyl)chlorin (mTHPC), phototoxicity, dark-toxicity, osteosarcoma (OS), photosensitizer
51213
Play Button
Pre-clinical Evaluation of Tyrosine Kinase Inhibitors for Treatment of Acute Leukemia
Authors: Sandra Christoph, Alisa B. Lee-Sherick, Susan Sather, Deborah DeRyckere, Douglas K. Graham.
Institutions: University of Colorado Anschutz Medical Campus, University Hospital of Essen.
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds.
Medicine, Issue 79, Leukemia, Receptor Protein-Tyrosine Kinases, Molecular Targeted Therapy, Therapeutics, novel small molecule inhibitor, receptor tyrosine kinase, leukemia
50720
Play Button
The Goeckerman Regimen for the Treatment of Moderate to Severe Psoriasis
Authors: Rishu Gupta, Maya Debbaneh, Daniel Butler, Monica Huynh, Ethan Levin, Argentina Leon, John Koo, Wilson Liao.
Institutions: University of Southern California, University of California, San Francisco , University of California Irvine School of Medicine, University of Arizona College of Medicine, Chicago College of Osteopathic Medicine.
Psoriasis is a chronic, immune-mediated inflammatory skin disease affecting approximately 2-3% of the population. The Goeckerman regimen consists of exposure to ultraviolet B (UVB) light and application of crude coal tar (CCT). Goeckerman therapy is extremely effective and relatively safe for the treatment of psoriasis and for improving a patient's quality of life. In the following article, we present our protocol for the Goeckerman therapy that is utilized specifically at the University of California, San Francisco. This protocol details the preparation of supplies, administration of phototherapy and application of topical tar. This protocol also describes how to assess the patient daily, monitor for adverse effects (including pruritus and burning), and adjust the treatment based on the patient's response. Though it is one of the oldest therapies available for psoriasis, there is an absence of any published videos demonstrating the process in detail. The video is beneficial for healthcare providers who want to administer the therapy, for trainees who want to learn more about the process, and for prospective patients who want to undergo treatment for their cutaneous disease.
Medicine, Issue 77, Infection, Biomedical Engineering, Anatomy, Physiology, Immunology, Dermatology, Skin, Dermis, Epidermis, Skin Diseases, Skin Diseases, Eczematous, Goeckerman, Crude Coal Tar, phototherapy, psoriasis, Eczema, Goeckerman regimen, clinical techniques
50509
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
50455
Play Button
Quantitative High-throughput Single-cell Cytotoxicity Assay For T Cells
Authors: Ivan Liadi, Jason Roszik, Gabrielle Romain, Laurence J.N. Cooper, Navin Varadarajan.
Institutions: University of Houston , University of Texas MD Anderson Cancer Center .
Cancer immunotherapy can harness the specificity of immune response to target and eliminate tumors. Adoptive cell therapy (ACT) based on the adoptive transfer of T cells genetically modified to express a chimeric antigen receptor (CAR) has shown considerable promise in clinical trials1-4. There are several advantages to using CAR+ T cells for the treatment of cancers including the ability to target non-MHC restricted antigens and to functionalize the T cells for optimal survival, homing and persistence within the host; and finally to induce apoptosis of CAR+ T cells in the event of host toxicity5. Delineating the optimal functions of CAR+ T cells associated with clinical benefit is essential for designing the next generation of clinical trials. Recent advances in live animal imaging like multiphoton microscopy have revolutionized the study of immune cell function in vivo6,7. While these studies have advanced our understanding of T-cell functions in vivo, T-cell based ACT in clinical trials requires the need to link molecular and functional features of T-cell preparations pre-infusion with clinical efficacy post-infusion, by utilizing in vitro assays monitoring T-cell functions like, cytotoxicity and cytokine secretion. Standard flow-cytometry based assays have been developed that determine the overall functioning of populations of T cells at the single-cell level but these are not suitable for monitoring conjugate formation and lifetimes or the ability of the same cell to kill multiple targets8. Microfabricated arrays designed in biocompatible polymers like polydimethylsiloxane (PDMS) are a particularly attractive method to spatially confine effectors and targets in small volumes9. In combination with automated time-lapse fluorescence microscopy, thousands of effector-target interactions can be monitored simultaneously by imaging individual wells of a nanowell array. We present here a high-throughput methodology for monitoring T-cell mediated cytotoxicity at the single-cell level that can be broadly applied to studying the cytolytic functionality of T cells.
Cancer Biology, Issue 72, Immunology, Cellular Biology, Molecular Biology, Medicine, Chemical Engineering, Biomolecular Engineering, Bioengineering, Immunotherapy, Adoptive, Microfluidics, Nanowell arrays, PDMS, BioStation, T Cells, tumor target cells, labeling, cytotoxicity, microscopy, assay
50058
Play Button
Mesenteric Artery Contraction and Relaxation Studies Using Automated Wire Myography
Authors: Lakeesha E. Bridges, Cicely L. Williams, Mildred A. Pointer, Emmanuel M. Awumey.
Institutions: North Carolina Central University, Durham, North Carolina Central University, Durham, Wake Forest University School of Medicine.
Proximal resistance vessels, such as the mesenteric arteries, contribute substantially to the peripheral resistance. These small vessels of between 100-400 μm in diameter function primarily in directing blood flow to various organs according to the overall requirements of the body. The rat mesenteric artery has a diameter greater than 100 μm. The myography technique, first described by Mulvay and Halpern1, was based on the method proposed by Bevan and Osher2. The technique provides information about small vessels under isometric conditions, where substantial shortening of the muscle preparation is prevented. Since force production and sensitivity of vessels to different agonists is dependent on the extent of stretch, according to active tension-length relation, it is essential to conduct contraction studies under isometric conditions to prevent compliance of the mounting wires. Stainless steel wires are preferred to tungsten wires because of oxidation of the latter, which affects recorded responses3.The technique allows for the comparison of agonist-induced contractions of mounted vessels to obtain evidence for normal function of vascular smooth muscle cell receptors. We have shown in several studies that isolated mesenteric arteries that are contracted with phenylyephrine relax upon addition of cumulative concentrations of extracellular calcium (Ca2+e). The findings led us to conclude that perivascular sensory nerves, which express the G protein-coupled Ca2+-sensing receptor (CaR), mediate this vasorelaxation response. Using an automated wire myography method, we show here that mesenteric arteries from Wistar, Dahl salt-sensitive(DS) and Dahl salt-resistant (DR) rats respond differently to Ca2+e. Tissues from Wistar rats showed higher Ca2+-sensitivity compared to those from DR and DS. Reduced CaR expression in mesenteric arteries from DS rats correlates with reduced Ca2+e-induced relaxation of isolated, pre-contracted arteries. The data suggest that the CaR is required for relaxation of mesenteric arteries under increased adrenergic tone, as occurs in hypertension, and indicate an inherent defect in the CaR signaling pathway in Dahl animals, which is much more severe in DS. The method is useful in determining vascular reactivity ex vivo in mesenteric resistance arteries and similar small blood vessels and comparisons between different agonists and/or antagonists can be easily and consistently assessed side-by-side6,7,8.
Medicine, Issue 55, cardiovascular, resistant arteries, contraction, relaxation, myography
3119
Play Button
Identifying Dysregulated Genes Induced by Kaposi's Sarcoma-associated Herpesvirus (KSHV)
Authors: Donald Alcendor, Susan Knobel.
Institutions: Meharry Medical College.
Currently KS is the most predominant HIV/AIDS related malignancy in Southern Africa and hence the world.1,2 It is characterized as an angioproliferative tumor of vascular endothelial cells and produces rare B cell lymphoproliferative diseases in the form of pleural effusion lymphomas (PEL) and some forms of multicentric Castleman's disease.3-5 Only 1-5% of cells in KS lesions actively support lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent associated with KS, and it is clear that cellular factors must interact with viral factors in the process of oncogenesis and tumor progression.6,7 Identifying novel host-factor determinants which contribute to KS pathology is essential for developing prognostic markers for tumor progression and metastasis as well as for developing novel therapeutics for the treatment of KS.8 The accompanying video details the methods we use to identify host cell gene expression programs altered in dermal microvascular endothelial cells (DMVEC) after KSHV infection and in KS tumor tissue.9 Once dysregulated genes are identified by microarray analysis, changes in protein expression are confirmed by immunoblot and dual labeled immunofluorescence. Changes in transcriptional expression of dysregulated genes are confirmed in vitro by quantitative real-time polymerase chain reaction (qRT-PCR). Validation of in vitro findings using archival KS tumor tissue is also performed by dual labeled immunochemistry and tissue microarrays.8,10 Our approach to identifying dysregulated genes in the KS tumor tissue microenvironment will allow the development of in vitro and subsequently in vivo model systems for discovery and evaluation of potential novel therapeutic for the treatment of KS.
Immunology, Issue 43, virology, Kaposi's sarcoma, microarrays, infection, microscopy
2078
Play Button
Experimental Metastasis and CTL Adoptive Transfer Immunotherapy Mouse Model
Authors: Mary Zimmerman, Xiaolin Hu, Kebin Liu.
Institutions: Medical College of Georgia.
Experimental metastasis mouse model is a simple and yet physiologically relevant metastasis model. The tumor cells are injected intravenously (i.v) into mouse tail veins and colonize in the lungs, thereby, resembling the last steps of tumor cell spontaneous metastasis: survival in the circulation, extravasation and colonization in the distal organs. From a therapeutic point of view, the experimental metastasis model is the simplest and ideal model since the target of therapies is often the end point of metastasis: established metastatic tumor in the distal organ. In this model, tumor cells are injected i.v into mouse tail veins and allowed to colonize and grow in the lungs. Tumor-specific CTLs are then injected i.v into the metastases-bearing mouse. The number and size of the lung metastases can be controlled by the number of tumor cells to be injected and the time of tumor growth. Therefore, various stages of metastasis, from minimal metastasis to extensive metastasis, can be modeled. Lung metastases are analyzed by inflation with ink, thus allowing easier visual observation and quantification.
Immunology, Issue 45, Metastasis, CTL adoptive transfer, Lung, Tumor Immunology
2077
Play Button
Mosaic Zebrafish Transgenesis for Functional Genomic Analysis of Candidate Cooperative Genes in Tumor Pathogenesis
Authors: Choong Yong Ung, Feng Guo, Xiaoling Zhang, Zhihui Zhu, Shizhen Zhu.
Institutions: Mayo Clinic College of Medicine, Center for Individualized Medicine, Tufts University School of Medicine, Mayo Clinic.
Comprehensive genomic analysis has uncovered surprisingly large numbers of genetic alterations in various types of cancers. To robustly and efficiently identify oncogenic “drivers” among these tumors and define their complex relationships with concurrent genetic alterations during tumor pathogenesis remains a daunting task. Recently, zebrafish have emerged as an important animal model for studying human diseases, largely because of their ease of maintenance, high fecundity, obvious advantages for in vivo imaging, high conservation of oncogenes and their molecular pathways, susceptibility to tumorigenesis and, most importantly, the availability of transgenic techniques suitable for use in the fish. Transgenic zebrafish models of cancer have been widely used to dissect oncogenic pathways in diverse tumor types. However, developing a stable transgenic fish model is both tedious and time-consuming, and it is even more difficult and more time-consuming to dissect the cooperation of multiple genes in disease pathogenesis using this approach, which requires the generation of multiple transgenic lines with overexpression of the individual genes of interest followed by complicated breeding of these stable transgenic lines. Hence, use of a mosaic transient transgenic approach in zebrafish offers unique advantages for functional genomic analysis in vivo. Briefly, candidate transgenes can be coinjected into one-cell-stage wild-type or transgenic zebrafish embryos and allowed to integrate together into each somatic cell in a mosaic pattern that leads to mixed genotypes in the same primarily injected animal. This permits one to investigate in a faster and less expensive manner whether and how the candidate genes can collaborate with each other to drive tumorigenesis. By transient overexpression of activated ALK in the transgenic fish overexpressing MYCN, we demonstrate here the cooperation of these two oncogenes in the pathogenesis of a pediatric cancer, neuroblastoma that has resisted most forms of contemporary treatment.
Developmental Biology, Issue 97, zebrafish, animal model, mosaic transgenesis, coinjection, functional genomics, tumor initiation
52567
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.