JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Postoperative Insulin-Like Growth Factor 1 Levels Reflect the Graft's Function and Predict Survival after Liver Transplantation.
.
PLoS ONE
PUBLISHED: 07-18-2015
The reduction of insulin-like growth factor 1 (IGF-1) plasma levels is associated with the degree of liver dysfunction and mortality in cirrhotic patients. However, little research is available on the recovery of the IGF-1 level and its prognostic role after liver transplantation (LT).
Authors: Negin Karimian, Alix P.M. Matton, Andrie C. Westerkamp, Laura C. Burlage, Sanna op den Dries, Henri G.D. Leuvenink, Ton Lisman, Korkut Uygun, James F. Markmann, Robert J. Porte.
Published: 05-26-2015
ABSTRACT
In contrast to conventional static cold preservation (0-4 °C), ex situ machine perfusion may provide better preservation of donor livers. Continuous perfusion of organs provides the opportunity to improve organ quality and allows ex situ viability assessment of donor livers prior to transplantation. This video article provides a step by step protocol for ex situ normothermic machine perfusion (37 °C) of human donor livers using a device that provides a pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous perfusion of the portal vein. The perfusion fluid is oxygenated by two hollow fiber membrane oxygenators and the temperature can be regulated between 10 °C and 37 °C. During perfusion, the metabolic activity of the liver as well as the degree of injury can be assessed by biochemical analysis of samples taken from the perfusion fluid. Machine perfusion is a very promising tool to increase the number of livers that are suitable for transplantation.
19 Related JoVE Articles!
Play Button
Technique of Subnormothermic Ex Vivo Liver Perfusion for the Storage, Assessment, and Repair of Marginal Liver Grafts
Authors: Jan M. Knaak, Vinzent N. Spetzler, Nicolas Goldaracena, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital, Toronto General Hospital, Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation. These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past. In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved. This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.
Medicine, Issue 90, ex vivo liver perfusion, marginal grafts, DCD
51419
Play Button
Laparoscopic Left Liver Sectoriectomy of Caroli's Disease Limited to Segment II and III
Authors: Luigi Boni, Gianlorenzo Dionigi, Francesca Rovera, Matteo Di Giuseppe.
Institutions: University of Insubria, University of Insubria.
Caroli's disease is defined as a abnormal dilatation of the intra-hepatica bile ducts: Its incidence is extremely low (1 in 1,000,000 population) and in most of the cases the whole liver is interested and liver transplantation is the treatment of choice. In case of dilatation limited to the left or right lobe, liver resection can be performed. For many year the standard approach for liver resection has been a formal laparotomy by means of a large incision of abdomen that is characterized by significant post-operatie morbidity. More recently, minimally invasive, laparoscopic approach has been proposed as possible surgical technique for liver resection both for benign and malignant diseases. The main benefits of the minimally invasive approach is represented by a significant reduction of the surgical trauma that allows a faster recovery a less post-operative complications. This video shows a case of Caroli s disease occured in a 58 years old male admitted at the gastroenterology department for sudden onset of abdominal pain associated with fever (>38C° ), nausea and shivering. Abdominal ultrasound demonstrated a significant dilatation of intra-hepatic left sited bile ducts with no evidences of gallbladder or common bile duct stones. Such findings were confirmed abdominal high resolution computer tomography. Laparoscopic left sectoriectomy was planned. Five trocars and 30° optic was used, exploration of the abdominal cavity showed no adhesions or evidences of other diseases. In order to control blood inflow to the liver, vascular clamp was placed on the hepatic pedicle (Pringle s manouvre), Parenchymal division is carried out with a combined use of 5 mm bipolar forceps and 5 mm ultrasonic dissector. A severely dilated left hepatic duct was isolated and divided using a 45mm endoscopic vascular stapler. Liver dissection was continued up to isolation of the main left portal branch that was then divided with a further cartridge of 45 mm vascular stapler. At his point the left liver remains attached only by the left hepatic vein: division of the triangular ligament was performed using monopolar hook and the hepatic vein isolated and the divided using vascular stapler. Haemostatis was refined by application of argon beam coagulation and no bleeding was revealed even after removal of the vascular clamp (total Pringle s time 27 minutes). Postoperative course was uneventful, minimal elevation of the liver function tests was recorded in post-operative day 1 but returned to normal at discharged on post-operative day 3.
Medicine, Issue 24, Laparoscopy, Liver resection, Caroli's disease, Left sectoriectomy
1118
Play Button
Generation of Subcutaneous and Intrahepatic Human Hepatocellular Carcinoma Xenografts in Immunodeficient Mice
Authors: Sharif U. Ahmed, Murtuza Zair, Kui Chen, Matthew Iu, Feng He, Oyedele Adeyi, Sean P. Cleary, Anand Ghanekar.
Institutions: University Health Network, University Health Network, University Health Network.
In vivo experimental models of hepatocellular carcinoma (HCC) that recapitulate the human disease provide a valuable platform for research into disease pathophysiology and for the preclinical evaluation of novel therapies. We present a variety of methods to generate subcutaneous or orthotopic human HCC xenografts in immunodeficient mice that could be utilized in a variety of research applications. With a focus on the use of primary tumor tissue from patients undergoing surgical resection as a starting point, we describe the preparation of cell suspensions or tumor fragments for xenografting. We describe specific techniques to xenograft these tissues i) subcutaneously; or ii) intrahepatically, either by direct implantation of tumor cells or fragments into the liver, or indirectly by injection of cells into the mouse spleen. We also describe the use of partial resection of the native mouse liver at the time of xenografting as a strategy to induce a state of active liver regeneration in the recipient mouse that may facilitate the intrahepatic engraftment of primary human tumor cells. The expected results of these techniques are illustrated. The protocols described have been validated using primary human HCC samples and xenografts, which typically perform less robustly than the well-established human HCC cell lines that are widely used and frequently cited in the literature. In comparison with cell lines, we discuss factors which may contribute to the relatively low chance of primary HCC engraftment in xenotransplantation models and comment on technical issues that may influence the kinetics of xenograft growth. We also suggest methods that should be applied to ensure that xenografts obtained accurately resemble parent HCC tissues.
Medicine, Issue 79, Liver Neoplasms, Hepatectomy, animal models, hepatocellular carcinoma, xenograft, cancer, liver, subcutaneous, intrahepatic, orthotopic, mouse, human, immunodeficient
50544
Play Button
Steps for the Autologous Ex vivo Perfused Porcine Liver-kidney Experiment
Authors: Wen Yuan Chung, Amar M. Eltweri, John Isherwood, Jonathan Haqq, Seok Ling Ong, Gianpiero Gravante, David M. Lloyd, Matthew S. Metcalfe, Ashley R. Dennison.
Institutions: University Hospitals of Leicester.
The use of ex vivo perfused models can mimic the physiological conditions of the liver for short periods, but to maintain normal homeostasis for an extended perfusion period is challenging. We have added the kidney to our previous ex vivo perfused liver experiment model to reproduce a more accurate physiological state for prolonged experiments without using live animals. Five intact livers and kidneys were retrieved post-mortem from sacrificed pigs on different days and perfused for a minimum of 6 hr. Hourly arterial blood gases were obtained to analyze pH, lactate, glucose and renal parameters. The primary endpoint was to investigate the effect of adding one kidney to the model on the acid base balance, glucose, and electrolyte levels. The result of this liver-kidney experiment was compared to the results of five previous liver only perfusion models. In summary, with the addition of one kidney to the ex vivo liver circuit, hyperglycemia and metabolic acidosis were improved. In addition this model reproduces the physiological and metabolic responses of the liver sufficiently accurately to obviate the need for the use of live animals. The ex vivo liver-kidney perfusion model can be used as an alternative method in organ specific studies. It provides a disconnection from numerous systemic influences and allows specific and accurate adjustments of arterial and venous pressures and flow.
Medicine, Issue 82, Ex vivo, porcine, perfusion model, acid base balance, glucose, liver function, kidney function, cytokine response
50567
Play Button
Isolation of Human Hepatocytes by a Two-step Collagenase Perfusion Procedure
Authors: Serene M.L. Lee, Celine Schelcher, Maresa Demmel, Maria Hauner, Wolfgang E. Thasler.
Institutions: Grosshadern Hospital, Munich, Grosshadern Hospital, Munich, Hepacult LLC, Regensburg, Grosshadern Hospital, Munich.
The liver, an organ with an exceptional regeneration capacity, carries out a wide range of functions, such as detoxification, metabolism and homeostasis. As such, hepatocytes are an important model for a large variety of research questions. In particular, the use of human hepatocytes is especially important in the fields of pharmacokinetics, toxicology, liver regeneration and translational research. Thus, this method presents a modified version of a two-step collagenase perfusion procedure to isolate hepatocytes as described by Seglen 1. Previously, hepatocytes have been isolated by mechanical methods. However, enzymatic methods have been shown to be superior as hepatocytes retain their structural integrity and function after isolation. This method presented here adapts the method designed previously for rat livers to human liver pieces and results in a large yield of hepatocytes with a viability of 77±10%. The main difference in this procedure is the process of cannulization of the blood vessels. Further, the method described here can also be applied to livers from other species with comparable liver or blood vessel sizes.
Medicine, Issue 79, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Surgery, Life Sciences (General), Human hepatocyte isolation, human hepatocyte, collagenase, perfusion, collagenase perfusion, hepatocyte, liver, human, cell, isolation, clinical applications, clinical techniques
50615
Play Button
Heterotopic Auxiliary Rat Liver Transplantation With Flow-regulated Portal Vein Arterialization in Acute Hepatic Failure
Authors: Karina Schleimer, Johannes Kalder, Jochen Grommes, Houman Jalaie, Samir Tawadros, Andreas Greiner, Michael Jacobs, Maria Kokozidou.
Institutions: University Hospital RWTH Aachen.
In acute hepatic failure auxiliary liver transplantation is an interesting alternative approach. The aim is to provide a temporary support until the failing native liver has regenerated.1-3 The APOLT-method, the orthotopic implantation of auxiliary segments- averts most of the technical problems. However this method necessitates extensive resections of both the native liver and the graft.4 In 1998, Erhard developed the heterotopic auxiliary liver transplantation (HALT) utilizing portal vein arterialization (PVA) (Figure 1). This technique showed promising initial clinical results.5-6 We developed a HALT-technique with flow-regulated PVA in the rat to examine the influence of flow-regulated PVA on graft morphology and function (Figure 2). A liver graft reduced to 30 % of its original size, was heterotopically implanted in the right renal region of the recipient after explantation of the right kidney.  The infra-hepatic caval vein of the graft was anastomosed with the infrahepatic caval vein of the recipient. The arterialization of the donor’s portal vein was carried out via the recipient’s right renal artery with the stent technique. The blood-flow regulation of the arterialized portal vein was achieved with the use of a stent with an internal diameter of 0.3 mm. The celiac trunk of the graft was end-to-side anastomosed with the recipient’s aorta and the bile duct was implanted into the duodenum. A subtotal resection of the native liver was performed to induce acute hepatic failure. 7 In this manner 112 transplantations were performed. The perioperative survival rate was 90% and the 6-week survival rate was 80%. Six weeks after operation, the native liver regenerated, showing an increase in weight from 2.3±0.8 g to 9.8±1 g. At this time, the graft’s weight decreased from 3.3±0.8 g to 2.3±0.8 g. We were able to obtain promising long-term results in terms of graft morphology and function. HALT with flow-regulated PVA reliably bridges acute hepatic failure until the native liver regenerates.
Medicine, Issue 91, auxiliary liver transplantation, rat, portal vein arterialization, flow-regulation, acute hepatic failure
51115
Play Button
Transient Expression of Proteins by Hydrodynamic Gene Delivery in Mice
Authors: Daniella Kovacsics, Jayne Raper.
Institutions: Hunter College, CUNY.
Efficient expression of transgenes in vivo is of critical importance in studying gene function and developing treatments for diseases. Over the past years, hydrodynamic gene delivery (HGD) has emerged as a simple, fast, safe and effective method for delivering transgenes into rodents. This technique relies on the force generated by the rapid injection of a large volume of physiological solution to increase the permeability of cell membranes of perfused organs and thus deliver DNA into cells. One of the main advantages of HGD is the ability to introduce transgenes into mammalian cells using naked plasmid DNA (pDNA). Introducing an exogenous gene using a plasmid is minimally laborious, highly efficient and, contrary to viral carriers, remarkably safe. HGD was initially used to deliver genes into mice, it is now used to deliver a wide range of substances, including oligonucleotides, artificial chromosomes, RNA, proteins and small molecules into mice, rats and, to a limited degree, other animals. This protocol describes HGD in mice and focuses on three key aspects of the method that are critical to performing the procedure successfully: correct insertion of the needle into the vein, the volume of injection and the speed of delivery. Examples are given to show the application of this method to the transient expression of two genes that encode secreted, primate-specific proteins, apolipoprotein L-I (APOL-I) and haptoglobin-related protein (HPR).
Genetics, Issue 87, hydrodynamic gene delivery, hydrodynamics-based transfection, mouse, gene therapy, plasmid DNA, transient gene expression, tail vein injection
51481
Play Button
Technique of Porcine Liver Procurement and Orthotopic Transplantation using an Active Porto-Caval Shunt
Authors: Vinzent N. Spetzler, Nicolas Goldaracena, Jan M. Knaak, Kristine S. Louis, Nazia Selzner, Markus Selzner.
Institutions: Toronto General Hospital.
The success of liver transplantation has resulted in a dramatic organ shortage. Each year, a considerable number of patients on the liver transplantation waiting list die without receiving an organ transplant or are delisted due to disease progression. Even after a successful transplantation, rejection and side effects of immunosuppression remain major concerns for graft survival and patient morbidity. Experimental animal research has been essential to the success of liver transplantation and still plays a pivotal role in the development of clinical transplantation practice. In particular, the porcine orthotopic liver transplantation model (OLTx) is optimal for clinically oriented research for its close resemblance to human size, anatomy, and physiology. Decompression of intestinal congestion during the anhepatic phase of porcine OLTx is important to guarantee reliable animal survival. The use of an active porto-caval-jugular shunt achieves excellent intestinal decompression. The system can be used for short-term as well as long-term survival experiments. The following protocol contains all technical information for a stable and reproducible liver transplantation model in pigs including post-operative animal care.
Medicine, Issue 99, Orthotopic Liver Transplantation, Hepatic, Porcine Model, Pig, Experimental, Transplantation, Graft Preservation, Ischemia Reperfusion Injury, Transplant Immunology, Bile Duct Reconstruction, Animal Handling
52055
Play Button
Manufacturing Devices and Instruments for Easier Rat Liver Transplantation
Authors: Graziano Oldani, Stephanie Lacotte, Lorenzo Orci, Philippe Morel, Gilles Mentha, Christian Toso.
Institutions: University of Geneva Hospitals, University of Pavia , University of Geneva, University of Geneva Hospitals.
Orthotopic rat liver transplantation is a popular model, which has been shown in a recent JoVE paper with the use of the "quick-linker" device. This technique allows for easier venous cuff-anatomoses after a reasonable learning curve. The device is composed of two handles, which are carved out from scalpel blades, one approximator, which is obtained by modifying Kocher's forceps, and cuffs designed from fine-bore polyethylene tubing. The whole process can be performed at a low-cost using common laboratory material. The present report provides a step-by-step protocol for the design of the required pieces and includes stencils.
Medicine, Issue 75, Biomedical Engineering, Bioengineering, Mechanical Engineering, Anatomy, Physiology, Surgery, Tissue Engineering, Liver Transplantation, Liver, transplantation, rat, quick-linker, orthotopic, graft, cuff, clinical techniques, animal model
50380
Play Button
Surgical Procedures for a Rat Model of Partial Orthotopic Liver Transplantation with Hepatic Arterial Reconstruction
Authors: Kazuyuki Nagai, Shintaro Yagi, Shinji Uemoto, Rene H. Tolba.
Institutions: RWTH-Aachen University, Kyoto University .
Orthotopic liver transplantation (OLT) in rats using a whole or partial graft is an indispensable experimental model for transplantation research, such as studies on graft preservation and ischemia-reperfusion injury 1,2, immunological responses 3,4, hemodynamics 5,6, and small-for-size syndrome 7. The rat OLT is among the most difficult animal models in experimental surgery and demands advanced microsurgical skills that take a long time to learn. Consequently, the use of this model has been limited. Since the reliability and reproducibility of results are key components of the experiments in which such complex animal models are used, it is essential for surgeons who are involved in rat OLT to be trained in well-standardized and sophisticated procedures for this model. While various techniques and modifications of OLT in rats have been reported 8 since the first model was described by Lee et al. 9 in 1973, the elimination of the hepatic arterial reconstruction 10 and the introduction of the cuff anastomosis technique by Kamada et al. 11 were a major advancement in this model, because they simplified the reconstruction procedures to a great degree. In the model by Kamada et al., the hepatic rearterialization was also eliminated. Since rats could survive without hepatic arterial flow after liver transplantation, there was considerable controversy over the value of hepatic arterialization. However, the physiological superiority of the arterialized model has been increasingly acknowledged, especially in terms of preserving the bile duct system 8,12 and the liver integrity 8,13,14. In this article, we present detailed surgical procedures for a rat model of OLT with hepatic arterial reconstruction using a 50% partial graft after ex vivo liver resection. The reconstruction procedures for each vessel and the bile duct are performed by the following methods: a 7-0 polypropylene continuous suture for the supra- and infrahepatic vena cava; a cuff technique for the portal vein; and a stent technique for the hepatic artery and the bile duct.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Immunology, Surgery, liver transplantation, liver, hepatic, partial, orthotopic, split, rat, graft, transplantation, microsurgery, procedure, clinical, technique, artery, arterialization, arterialized, anastomosis, reperfusion, rat, animal model
4376
Play Button
Right Hemihepatectomy by Suprahilar Intrahepatic Transection of the Right Hemipedicle using a Vascular Stapler
Authors: Ingmar Königsrainer, Silvio Nadalin, Alfred Königsrainer.
Institutions: Tübingen University Hospital.
Successful hepatic resection requires profound anatomical knowledge and delicate surgical technique. Hemihepatectomies are mostly performed after preparing the extrahepatic hilar structures within the hepatoduodenal ligament, even in benign tumours or liver metastasis.1-5. Regional extrahepatic lymphadenectomy is an oncological standard in hilar cholangiocarcinoma, intrahepatic cholangio-cellular carcinoma and hepatocellular carcinoma, whereas lymph node metastases in the hepatic hilus in patients with liver metastasis are rarely occult. Major disadvantages of these procedures are the complex preparation of the hilus with the risk of injuring contralateral structures and the possibility of bleeding from portal vein side-branches or impaired perfusion of bile ducts. We developed a technique of right hemihepatectomy or resection of the left lateral segments with intrahepatic transection of the pedicle that leaves the hepatoduodenal ligament completely untouched. 6 However, if intraoperative visualization or palpation of the ligament is suspicious for tumor infiltration or lymph node metastasis, the hilus should be explored and a lymphadenectomy performed.
Medicine, Issue 35, Liver resection, liver tumour, intrahepatic hilus stapling, right hemipedicle
1750
Play Button
Murine Bioluminescent Hepatic Tumour Model
Authors: Simon Rajendran, Slawomir Salwa, Xuefeng Gao, Sabin Tabirca, Deirdre O'Hanlon, Gerald C. O'Sullivan, Mark Tangney.
Institutions: University College Cork, University College Cork, South Infirmary Victoria University Hospital.
This video describes the establishment of liver metastases in a mouse model that can be subsequently analysed by bioluminescent imaging. Tumour cells are administered specifically to the liver to induce a localised liver tumour, via mobilisation of the spleen and splitting into two, leaving intact the vascular pedicle for each half of the spleen. Lewis lung carcinoma cells that constitutively express the firefly luciferase gene (luc1) are inoculated into one hemi-spleen which is then resected 10 minutes later. The other hemi-spleen is left intact and returned to the abdomen. Liver tumour growth can be monitored by bioluminescence imaging using the IVIS whole body imaging system. Quantitative imaging of tumour growth using IVIS provides precise quantitation of viable tumour cells. Tumour cell death and necrosis due to drug treatment is indicated early by a reduction in the bioluminescent signal. This mouse model allows for investigating the mechanisms underlying metastatic tumour-cell survival and growth and can be used for the evaluation of therapeutics of liver metastasis.
JoVE Medicine, Issue 41, Cancer, Therapy, Liver, Orthotopic, Metastasis
1977
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
2051
Play Button
A Method for Murine Islet Isolation and Subcapsular Kidney Transplantation
Authors: Erik J. Zmuda, Catherine A. Powell, Tsonwin Hai.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Since the early pioneering work of Ballinger and Reckard demonstrating that transplantation of islets of Langerhans into diabetic rodents could normalize their blood glucose levels, islet transplantation has been proposed to be a potential treatment for type 1 diabetes 1,2. More recently, advances in human islet transplantation have further strengthened this view 1,3. However, two major limitations prevent islet transplantation from being a widespread clinical reality: (a) the requirement for large numbers of islets per patient, which severely reduces the number of potential recipients, and (b) the need for heavy immunosuppression, which significantly affects the pediatric population of patients due to their vulnerability to long-term immunosuppression. Strategies that can overcome these limitations have the potential to enhance the therapeutic utility of islet transplantation. Islet transplantation under the mouse kidney capsule is a widely accepted model to investigate various strategies to improve islet transplantation. This experiment requires the isolation of high quality islets and implantation of islets to the diabetic recipients. Both procedures require surgical steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol. We also briefly discuss different transplantation models: syngeneic, allogeneic, syngeneic autoimmune, and allogeneic autoimmune.
Medicine, Issue 50, islet isolation, islet transplantation, diabetes, murine, pancreas
2096
Play Button
Use of a Hanging-weight System for Liver Ischemia in Mice
Authors: Michael Zimmerman, Eunyoung Tak, Maria Kaplan, Mercedes Susan Mandell, Holger K. Eltzschig, Almut Grenz.
Institutions: University of Colorado, Denver, University of Colorado, Denver.
Acute liver injury due to ischemia can occur during several clinical procedures e.g. liver transplantation, hepatic tumor resection or trauma repair and can result in liver failure which has a high mortality rate1-2. Therefore murine studies of hepatic ischemia have become an important field of research by providing the opportunity to utilize pharmacological and genetic studies3-9. Specifically, conditional mice with tissue specific deletion of a gene (cre, flox system) provide insights into the role of proteins in particular tissues10-13 . Because of the technical difficulty associated with manually clamping the portal triad in mice, we performed a systematic evaluation using a hanging-weight system for portal triad occlusion which has been previously described3. By using a hanging-weight system we place a suture around the left branch of the portal triad without causing any damage to the hepatic lobes, since also the finest clamps available can cause hepatic tissue damage because of the close location of liver tissue to the vessels. Furthermore, the right branch of the hepatic triad is still perfused thus no intestinal congestion occurs with this technique as blood flow to the right hepatic lobes is preserved. Furthermore, the portal triad is only manipulated once throughout the entire surgical procedure. As a result, procedures like pre-conditioning, with short times of ischemia and reperfusion, can be easily performed. Systematic evaluation of this model by performing different ischemia and reperfusion times revealed a close correlation of hepatic ischemia time with liver damage as measured by alanine (ALT) and aspartate (AST) aminotransferase serum levels3,9. Taken together, these studies confirm highly reproducible liver injury when using the hanging-weight system for hepatic ischemia and intermittent reperfusion. Thus, this technique might be useful for other investigators interested in liver ischemia studies in mice. Therefore the video clip provides a detailed step-by-step description of this technique.
Medicine, Issue 66, Physiology, Immunology, targeted gene deletion, murine model, liver failure, ischemia, reperfusion, video demonstration
2550
Play Button
Thermal Ablation for the Treatment of Abdominal Tumors
Authors: Christopher L. Brace, J. Louis Hinshaw, Meghan G. Lubner.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison.
Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 °C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves. Of these, RF and microwave ablation are most commonly used worldwide. During RF ablation, alternating electrical current (~500 kHz) produces resistive heating around the interstitial electrode. Skin surface electrodes (ground pads) are used to complete the electrical circuit. RF ablation has been in use for nearly 20 years, with good results for local tumor control, extended survival and low complication rates1,2. Recent studies suggest RF ablation may be a first-line treatment option for small hepatocellular carcinoma and renal-cell carcinoma3-5. However, RF heating is hampered by local blood flow and high electrical impedance tissues (eg, lung, bone, desiccated or charred tissue)6,7. Microwaves may alleviate some of these problems by producing faster, volumetric heating8-10. To create larger or conformal ablations, multiple microwave antennas can be used simultaneously while RF electrodes require sequential operation, which limits their efficiency. Early experiences with microwave systems suggest efficacy and safety similar to, or better than RF devices11-13. Alternatively, cryoablation freezes the target tissues to lethal levels (-20 to -40 °C). Percutaneous cryoablation has been shown to be effective against RCC and many metastatic tumors, particularly colorectal cancer, in the liver14-16. Cryoablation may also be associated with less post-procedure pain and faster recovery for some indications17. Cryoablation is often contraindicated for primary liver cancer due to underlying coagulopathy and associated bleeding risks frequently seen in cirrhotic patients. In addition, sudden release of tumor cellular contents when the frozen tissue thaws can lead to a potentially serious condition known as cryoshock 16. Thermal tumor ablation can be performed at open surgery, laparoscopy or using a percutaneous approach. When performed percutaneously, the ablation procedure relies on imaging for diagnosis, planning, applicator guidance, treatment monitoring and follow-up. Ultrasound is the most popular modality for guidance and treatment monitoring worldwide, but computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used as well. Contrast-enhanced CT or MRI are typically employed for diagnosis and follow-up imaging.
Medicine, Issue 49, Thermal ablation, interventional oncology, image-guided therapy, radiology, cancer
2596
Play Button
Hyperinsulinemic-euglycemic Clamps in Conscious, Unrestrained Mice
Authors: Julio E. Ayala, Deanna P. Bracy, Carlo Malabanan, Freyja D. James, Tasneem Ansari, Patrick T. Fueger, Owen P. McGuinness, David H. Wasserman.
Institutions: Sanford-Burnham Medical Research Institute at Lake Nona, Vanderbilt University School of Medicine, Vanderbilt University School of Medicine, Indiana University School of Medicine.
Type 2 diabetes is characterized by a defect in insulin action. The hyperinsulinemic-euglycemic clamp, or insulin clamp, is widely considered the "gold standard" method for assessing insulin action in vivo. During an insulin clamp, hyperinsulinemia is achieved by a constant insulin infusion. Euglycemia is maintained via a concomitant glucose infusion at a variable rate. This variable glucose infusion rate (GIR) is determined by measuring blood glucose at brief intervals throughout the experiment and adjusting the GIR accordingly. The GIR is indicative of whole-body insulin action, as mice with enhanced insulin action require a greater GIR. The insulin clamp can incorporate administration of isotopic 2[14C]deoxyglucose to assess tissue-specific glucose uptake and [3-3H]glucose to assess the ability of insulin to suppress the rate of endogenous glucose appearance (endoRa), a marker of hepatic glucose production, and to stimulate the rate of whole-body glucose disappearance (Rd). The miniaturization of the insulin clamp for use in genetic mouse models of metabolic disease has led to significant advances in diabetes research. Methods for performing insulin clamps vary between laboratories. It is important to note that the manner in which an insulin clamp is performed can significantly affect the results obtained. We have published a comprehensive assessment of different approaches to performing insulin clamps in conscious mice1 as well as an evaluation of the metabolic response of four commonly used inbred mouse strains using various clamp techniques2. Here we present a protocol for performing insulin clamps on conscious, unrestrained mice developed by the Vanderbilt Mouse Metabolic Phenotyping Center (MMPC; URL: www.mc.vanderbilt.edu/mmpc). This includes a description of the method for implanting catheters used during the insulin clamp. The protocol employed by the Vanderbilt MMPC utilizes a unique two-catheter system3. One catheter is inserted into the jugular vein for infusions. A second catheter is inserted into the carotid artery, which allows for blood sampling without the need to restrain or handle the mouse. This technique provides a significant advantage to the most common method for obtaining blood samples during insulin clamps which is to sample from the severed tip of the tail. Unlike this latter method, sampling from an arterial catheter is not stressful to the mouse1. We also describe methods for using isotopic tracer infusions to assess tissue-specific insulin action. We also provide guidelines for the appropriate presentation of results obtained from insulin clamps.
Medicine, Issue 57, Glucose, insulin, clamp, mice, insulin resistance, diabetes, liver, muscle, conscious, restraint-free, non-stressed
3188
Play Button
Orthotopic Small Bowel Transplantation in Rats
Authors: Koji Kitamura, Martin W. von Websky, Ichiro Ohsawa, Azin Jaffari, Thomas C. Pech, Tim Vilz, Sven Wehner, Shinji Uemoto, Joerg C. Kalff, Nico Schaefer.
Institutions: University of Bonn, Germany, Kyoto University Hospital.
Small bowel transplantation has become an accepted clinical option for patients with short gut syndrome and failure of parenteral nutrition (irreversible intestinal failure). In specialized centers improved operative and managing strategies have led to excellent short- and intermediate term patient and graft survival while providing high quality of life 1,3. Unlike in the more common transplantation of other solid organs (i.e. heart, liver) many underlying mechanisms of graft function and immunologic alterations induced by intestinal transplantation are not entirely known6,7. Episodes of acute rejection, sepsis and chronic graft failure are the main obstacles still contributing to less favorable long term outcome and hindering a more widespread employment of the procedure despite a growing number of patients on home parenteral nutrition who would potentially benefit from such a transplant. The small intestine contains a large number of passenger leucocytes commonly referred to as part of the gut associated lymphoid system (GALT) this being part of the reason for the high immunogenity of the intestinal graft. The presence and close proximity of many commensals and pathogens in the gut explains the severity of sepsis episodes once graft mucosal integrity is compromised (for example by rejection). To advance the field of intestinal- and multiorgan transplantation more data generated from reliable and feasible animal models is needed. The model provided herein combines both reliability and feasibility once established in a standardized manner and can provide valuable insight in the underlying complex molecular, cellular and functional mechanisms that are triggered by intestinal transplantation. We have successfully used and refined the described procedure over more than 5 years in our laboratory 8-11. The JoVE video-based format is especially useful to demonstrate the complex procedure and avoid initial pitfalls for groups planning to establish an orthotopic rodent model investigating intestinal transplantation.
Medicine, Issue 69, Anatomy, Physiology, Immunology, intestinal transplantation, orthotopic small bowel transplantation, acute rejection, small bowel, surgery, operation, rat
4102
Play Button
Normothermic Ex Vivo Kidney Perfusion for the Preservation of Kidney Grafts prior to Transplantation
Authors: J. Moritz Kaths, Vinzent N. Spetzler, Nicolas Goldaracena, Juan Echeverri, Kristine S. Louis, Daniel B. Foltys, Mari Strempel, Paul Yip, Rohan John, Istvan Mucsi, Anand Ghanekar, Darius Bagli, Lisa Robinson, Markus Selzner.
Institutions: Toronto General Hospital, The Hospital for Sick Children, Toronto, University Medical Center Mainz, Merheim Medical Center Cologne, Toronto General Hospital, The Hospital for Sick Children, Toronto, The Hospital for Sick Children, Toronto.
Kidney transplantation has become a well-established treatment option for patients with end-stage renal failure. The persisting organ shortage remains a serious problem. Therefore, the acceptance criteria for organ donors have been extended leading to the usage of marginal kidney grafts. These marginal organs tolerate cold storage poorly resulting in increased preservation injury and higher rates of delayed graft function. To overcome the limitations of cold storage, extensive research is focused on alternative normothermic preservation methods. Ex vivo normothermic organ perfusion is an innovative preservation technique. The first experimental and clinical trials for ex vivo lung, liver, and kidney perfusions demonstrated favorable outcomes. In addition to the reduction of cold ischemic injury, the method of normothermic kidney storage offers the opportunity for organ assessment and repair. This manuscript provides information about kidney retrieval, organ preservation techniques, and isolated ex vivo normothermic kidney perfusion (NEVKP) in a porcine model. Surgical techniques, set up for the perfusion solution and the circuit, potential assessment options, and representative results are demonstrated.
Medicine, Issue 101, Kidney transplantation, organ shortage, organ preservation, normothermic ex vivo kidney perfusion (NEVKP), cold storage (CS), hypothermic machine perfusion (HMP), standard criteria donor (SCD), extended criteria donor (ECD), donation after circulatory death (DCD), marginal graft, delayed graft function (DGF), primary non function (PNF)
52909
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.