In JoVE (1)

Other Publications (80)

Articles by Bernd Fritzsch in JoVE

Other articles by Bernd Fritzsch on PubMed

Antimicrobial Peptides and Protease Inhibitors in the Skin Secretions of the Crawfish Frog, Rana Areolata

Biochimica Et Biophysica Acta. Nov, 2002  |  Pubmed ID: 12429503

The dorsal skin of the crawfish frog, Rana areolata, is associated with numerous prominent granular glands. Proteomic analysis of electrically stimulated skin secretions from these glands enabled the identification and characterization of eight peptides with antimicrobial and hemolytic activity belonging to the previously identified brevinin-1, temporin-1, palustrin-2, palustrin-3, esculentin-1 (two peptides), and ranatuerin-2 (two peptides) families. The primary structures of the peptides were consistent with a close phylogenetic relationship between R. areolata and the pickerel frog, Rana palustris. Three structurally related cationic, cysteine-containing peptides were identified that show sequence similarity to peptide Leucine-Arginine, a peptide with immunomodulatory and histamine-releasing properties from the skin of the northern leopard frog, Rana pipiens. The skin secretions contained a 61-amino-acid-residue peptide that inhibited porcine trypsin and possessed a 10-cysteine-residue motif that is characteristic of a protease inhibitor previously isolated from the parasitic nematode, Ascaris suum. A 48-amino-acid-residue protein containing eight cysteine residues in the whey acidic protein (WAP) motif, characteristic of elafin (skin-derived antileukoproteinase) and secretory leukocyte protease inhibitor, was also isolated. The data suggest that protease inhibitors in skin secretions may play a role complementary to cationic, amphipathic alpha-helical peptides in protecting anurans from invasions by microorganisms.

Auditory System Development: Primary Auditory Neurons and Their Targets

Annual Review of Neuroscience. 2002  |  Pubmed ID: 12052904

The neurons of the cochlear ganglion transmit acoustic information between the inner ear and the brain. These placodally derived neurons must produce a topographically precise pattern of connections in both the inner ear and the brain. In this review, we consider the current state of knowledge concerning the development of these neurons, their peripheral and central connections, and their influences on peripheral and central target cells. Relatively little is known about the cellular and molecular regulation of migration or the establishment of precise topographic connection to the hair cells or cochlear nucleus (CN) neurons. Studies of mice with neurotrophin deletions are beginning to yield increasing understanding of variations in ganglion cell survival and resulting innervation patterns, however. Finally, existing evidence suggests that while ganglion cells have little influence on the differentiation of their hair cell targets, quite the opposite is true in the brain. Ganglion cell innervation and synaptic activity are essential for normal development of neurons in the cochlear nucleus.

The Developmental Segregation of Posterior Crista and Saccular Vestibular Fibers in Mice: a Carbocyanine Tracer Study Using Confocal Microscopy

Brain Research. Developmental Brain Research. Apr, 2002  |  Pubmed ID: 11978388

The developmental segregation of gravistatic input mediated by saccular fibers and of angular acceleration input mediated by posterior crista (PC) fibers was analyzed for the first time in a developing mammal using carbocyanine dye tracing in fixed tissue. The data reveal a more extensive projection of either endorgan in 7-day-old mice (P7) than has previously been reported in adult mammals. While we confirm and extend many previous findings, we also describe a novel segregation of saccular and posterior crista fibers in the anterior half of the medial vestibular nucleus (Mv) not reported before. Our developmental analysis shows a progressive segregation of posterior crista and saccular fibers to their respective discrete projection areas between embryonic day 15 (E15) and birth (P0). Retention of overlap in young adult animals appears to reflect the early embryonic overlap found in most areas. The vestibular projection does not show a topological projection as has been described in many other sensory systems. We propose that the unique projection features of the vestibular endorgans may relate to the transformation of vestibular signals into a motor output in the three neuron reflex arc of the VOR, of which the primary vestibular projection constitutes the first leg.

Distinct Requirements for TrkB and TrkC Signaling in Target Innervation by Sensory Neurons

Genes & Development. Mar, 2002  |  Pubmed ID: 11877382

Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking the docking site for Shc adaptors (trkB(shc/shc) and trkC(shc/shc) mice), we show that TrkB and TrkC promote survival of sensory neurons mainly through Shc site-independent pathways, suggesting that these receptors use similar pathways to prevent apoptosis. In contrast, the regulation of target innervation appears different: in trkB(shc/shc) mice neurons lose target innervation, whereas in trkC(shc/shc) mice the surviving TrkC-dependent neurons maintain target innervation and function. Biochemical analysis indicates that phosphorylation at the Shc site positively regulates autophosphorylation of TrkB, but not of TrkC. Our findings show that although TrkB and TrkC signals mediating survival are largely similar, TrkB and TrkC signals required for maintenance of target innervation in vivo are regulated by distinct mechanisms.

Cochlear Whole Mount in Situ Hybridization: Identification of Longitudinal and Radial Gradients

Brain Research. Brain Research Protocols. Feb, 2002  |  Pubmed ID: 11852272

The morphology of the organ of Corti has a radial asymmetry and also changes longitudinally from base to apex. Cellular localization of transcripts within the inner ear has relied primarily on the use of sectioned tissue with in situ hybridization. However, radial and longitudinal gradients of expression are not readily recognized using sectioned tissue owing to problems in visualization of signals with varying intensities. Herein, we describe the use of whole mount in situ hybridization for identification of cochlear longitudinal and radial expression gradients in the neurosensory epithelium, hair cells. Not only can these hair cell gradients be shown in adult tissues, but also the developmental up-regulation and down-regulation of genes and their associated spatio-temporal expression patterns can be demonstrated.

The Ear of Latimeria Chalumnae Revisited

Zoology (Jena, Germany). 2003  |  Pubmed ID: 16351908

Nkx6.1 Controls Migration and Axon Pathfinding of Cranial Branchio-motoneurons

Development (Cambridge, England). Dec, 2003  |  Pubmed ID: 14534138

As many studies have focused on the mechanisms of motoneuron specification, little is known about the factors that control the subsequent development of postmitotic motoneurons. Previously, we showed that the transcription factor Nkx6.1 is required for the early specification of somatic motoneuron progenitors in the spinal cord. Our present analysis of hindbrain motoneuron development in Nkx6.1-deficient mouse embryos reveals that the early specification of branchio-motoneurons is independent of Nkx6.1 function, but that it is required for their subsequent development. In Nkx6.1 mutant mice, we observed defects in the migration, as well as in the axon projections of branchio-motoneurons. A detailed analysis of the migratory defect in facial branchio-motoneurons reveals ectopic expression of the cell surface receptors Ret and Unc5h3 in premigratory neurons, but no changes in the rhombomeric environment. Taken together, our findings demonstrate a requirement for Nkx6.1 in the development of postmitotic motoneurons, and suggest a cell-autonomous function in the control of branchio-motoneuron migration.

Neuropilin-1 Conveys Semaphorin and VEGF Signaling During Neural and Cardiovascular Development

Developmental Cell. Jul, 2003  |  Pubmed ID: 12852851

Neuropilin-1 (Npn-1) is a receptor that binds multiple ligands from structurally distinct families, including secreted semaphorins (Sema) and vascular endothelial growth factors (VEGF). We generated npn-1 knockin mice, which express an altered ligand binding site variant of Npn-1, and npn-1 conditional null mice to establish the cell-type- and ligand specificity of Npn-1 function in the developing cardiovascular and nervous systems. Our results show that VEGF-Npn-1 signaling in endothelial cells is required for angiogenesis. In striking contrast, Sema-Npn-1 signaling is not essential for general vascular development but is required for axonal pathfinding by several populations of neurons in the CNS and PNS. Remarkably, both Sema-Npn-1 signaling and VEGF-Npn-1 signaling are critical for heart development. Therefore, Npn-1 is a multifunctional receptor that mediates the activities of structurally distinct ligands during development of the heart, vasculature, and nervous system.

Development of Vestibular Afferent Projections into the Hindbrain and Their Central Targets

Brain Research Bulletin. Jun, 2003  |  Pubmed ID: 12787869

In contrast to most other sensory systems, hardly anything is known about the neuroanatomical development of central projections of primary vestibular neurons and how their second order target neurons develop. Recent data suggest that afferent projections may develop not unlike other sensory systems, forming first the overall projection by molecular means followed by an as yet unspecified phase of activity mediated refinement. The latter aspect has not been tested critically and most molecules that guide the initial projection are unknown. The molecular and topological origin of the vestibular and cochlear nucleus neurons is also only partially understood. Auditory and vestibular nuclei form from several rhombomeres and a given rhombomere can contribute to two or more auditory or vestibular nuclei. Rhombomere compartments develop as functional subdivisions from a single column that extends from the hindbrain to the spinal cord. Suggestions are provided for the molecular origin of these columns but data on specific mutants testing these proposals are not yet available. Overall, the functional significance of both overlapping and segregated projections are not yet fully experimentally explored in mammals. Such lack of details of the adult organization compromises future developmental analysis.

Development of Inner Ear Afferent Connections: Forming Primary Neurons and Connecting Them to the Developing Sensory Epithelia

Brain Research Bulletin. Jun, 2003  |  Pubmed ID: 12787865

The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

Expression and Function of FGF10 in Mammalian Inner Ear Development

Developmental Dynamics : an Official Publication of the American Association of Anatomists. Jun, 2003  |  Pubmed ID: 12761848

We have investigated the expression of FGF10 during ear development and the effect of an FGF10 null mutation on ear development. Our in situ hybridization data reveal expression of FGF10 in all three canal crista sensory epithelia and the cochlea anlage as well as all sensory neurons at embryonic day 11.5 (E11.5). Older embryos (E18.5) displayed strong graded expression in all sensory epithelia. FGF10 null mutants show complete agenesis of the posterior canal crista and the posterior canal. The posterior canal sensory neurons form initially and project rather normally by E11.5, but they disappear within 2 days. FGF10 null mutants have no posterior canal system at E18.5. In addition, these mutants have deformations of the anterior and horizontal cristae, reduced formation of the anterior and horizontal canals, as well as altered position of the remaining sensory epithelia with respect to the utricle. Hair cells form but some have defects in their cilia formation. No defects were detected in the organ of Corti at the cellular level. Together these data suggest that FGF10 plays a major role in ear morphogenesis. Most of these data are consistent with earlier findings on a null mutation in FGFR2b, one of FGF10's main receptors.

Partial Segregation of Posterior Crista and Saccular Fibers to the Nodulus and Uvula of the Cerebellum in Mice, and Its Development

Brain Research. Developmental Brain Research. Feb, 2003  |  Pubmed ID: 12586428

The projection of the posterior canal crista and saccular afferents to the cerebellum of embryonic and neonatal mice was investigated using carbocyanine dyes. Anterograde tracing from these two endorgans reveals a partial segregation of these two sets of afferents. The saccule projects predominantly to the uvula, with very minor input to the nodulus. The posterior canal projects mainly to the nodulus and, to a lesser extent, to the uvula. Retrograde tracing from the uvula and nodulus confirms this partial segregation for these two endorgans and extends it to other vestibular endorgans. Uvular injections result in many more labeled fibers in the gravistatic maculae than in the canals' cristae. In contrast, nodular injection reveals many more labeled fibers in the canal cristae than in the gravistatic maculae. This partial segregation may play a role in the information processing in these folia. Our developmental data suggest that the initial segregation at E17 coincides with the formation of the postero-lateral fissure. This embryonic segregation of the primary vestibular mossy fibers to the uvula and nodulus commences long before the maturity of their targets, the granule cells and unipolar brush cells. Thus, the segregation of the primary vestibular projection to the uvula and nodulus does not depend on cues related to the target cells. Rather, the segregation may reflect more global cerebellar patterning mechanisms involving guidance for the vestibular afferent fibers independent of the future target cells.

Brn3c Null Mutant Mice Show Long-term, Incomplete Retention of Some Afferent Inner Ear Innervation

BMC Neuroscience. Jan, 2003  |  Pubmed ID: 12585968

Ears of Brn3c null mutants develop immature hair cells, identifiable only by certain molecular markers, and undergo apoptosis in neonates. This partial development of hair cells could lead to enough neurotrophin expression to sustain sensory neurons through embryonic development. We have therefore investigated in these mutants the patterns of innervation and of expression of known neurotrophins.

Chick Hair Cells Do Not Exhibit Voltage-dependent Somatic Motility

The Journal of Physiology. Jan, 2003  |  Pubmed ID: 12527737

It is generally believed that mechanical amplification by cochlear hair cells is necessary to enhance the sensitivity and frequency selectivity of hearing. In the mammalian ear, the basis of cochlear amplification is believed to be the voltage-dependent electromotility of outer hair cells (OHCs). The avian basilar papilla contains tall and short hair cells, with the former being comparable to inner hair cells, and the latter comparable to OHCs, based on their innervation patterns. In this study, we sought evidence for somatic electromotility by direct measurements of voltage-dependent length changes in both tall and short hair cells at nanometre resolution. Microchamber and whole-cell voltage-clamp techniques were used. Motility was measured with a photodiode-based measurement system. Non-linear capacitance, an electrical signature of somatic motility, was also measured to complement motility measurement. Significantly, chick hair cells did not exhibit somatic motility nor express non-linear capacitance. The lack of somatic motility suggests that in avian hair cells the active process resides elsewhere, most likely in the hair cell stereocilia.

Eya1 and Six1 Are Essential for Early Steps of Sensory Neurogenesis in Mammalian Cranial Placodes

Development (Cambridge, England). Nov, 2004  |  Pubmed ID: 15496442

Eya1 encodes a transcriptional co-activator and is expressed in cranial sensory placodes. It interacts with and functions upstream of the homeobox gene Six1 during otic placodal development. Here, we have examined their role in cranial sensory neurogenesis. Our data show that the initial cell fate determination for the vestibuloacoustic neurons and their delamination appeared to be unaffected in the absence of Eya1 or Six1 as judged by the expression of the basic helix-loop-helix genes, Neurog1 that specifies the neuroblast cell lineage, and Neurod that controls neuronal differentiation and survival. However, both genes are necessary for normal maintenance of neurogenesis. During the development of epibranchial placode-derived distal cranial sensory ganglia, while the phenotype appears less severe in Six1 than in Eya1 mutants, an early arrest of neurogenesis was observed in the mutants. The mutant epibranchial progenitor cells fail to express Neurog2 that is required for the determination of neuronal precursors, and other basic helix-loop-helix as well as the paired homeobox Phox2 genes that are essential for neural differentiation and maintenance. Failure to activate their normal differentiation program resulted in abnormal apoptosis of the progenitor cells. Furthermore, we show that disruption of viable ganglion formation leads to pathfinding errors of branchial motoneurons. Finally, our results suggest that the Eya-Six regulatory hierarchy also operates in the epibranchial placodal development. These findings uncover an essential function for Eya1 and Six1 as critical determination factors in acquiring both neuronal fate and neuronal subtype identity from epibranchial placodal progenitors. These analyses define a specific role for both genes in early differentiation and survival of the placodally derived cranial sensory neurons.

Cranial Sensory Neuron Development in the Absence of Brain-derived Neurotrophic Factor in BDNF/Bax Double Null Mice

Developmental Biology. Nov, 2004  |  Pubmed ID: 15464571

To investigate the role of brain-derived neurotrophic factor (BDNF) in differentiation of cranial sensory neurons in vivo, we analyzed development of nodose (NG), petrosal (PG), and vestibular (VG) ganglion cells in genetically engineered mice carrying null mutations in the genes encoding BDNF and the proapoptotic Bcl-2 homolog Bax. In bax(-/-) mutants, ganglion cell numbers were increased significantly compared to wild-type animals, indicating that naturally occurring cell death in these ganglia is regulated by Bax signaling. Analysis of bdnf(-/-)bax(-/-) mutants revealed that, although the Bax null mutation completely rescued cell loss in the absence of BDNF, it did not rescue the lethality of the BDNF null phenotype. Moreover, despite rescue of BDNF-dependent neurons by the bax null mutation, sensory target innervation was abnormal in double null mutants. Vagal sensory innervation to baroreceptor regions of the cardiac outflow tract was completely absent, and the density of vestibular sensory innervation to the cristae organs was markedly decreased, compared to wild-type controls. Moreover, vestibular afferents failed to selectively innervate their hair cell targets within the cristae organs in the double mutants. These innervation failures occurred despite successful navigation of sensory fibers to the peripheral field, demonstrating that BDNF is required locally for afferent ingrowth into target tissues. In addition, the bax null mutation failed to rescue expression of the dopaminergic phenotype in a subset of NG and PG neurons. These data demonstrate that BDNF signaling is required not only to support survival of cranial sensory neurons, but also to regulate local growth of afferent fibers into target tissues and, in some cells, transmitter phenotypic expression is required.

Time Course of Embryonic Midbrain and Thalamic Auditory Connection Development in Mice As Revealed by Carbocyanine Dye Tracing

The Journal of Comparative Neurology. Nov, 2004  |  Pubmed ID: 15457503

Central auditory connections develop in mice before the onset of hearing, around postnatal day 7. Two previous studies have investigated the development of auditory nuclei projections and lateral lemniscal nuclear projections in embryonic rats, respectively. Here, we provide detail for the first time of the initiation and progression of projections from the inferior colliculus (IC) to the medial geniculate body (MGB) and from the MGB to the auditory cortex (AC). Overall, the developmental progression of projections follows that of terminal mitoses in various nuclei, suggesting the consistent use of a developmental timetable at a given nucleus, independent of that of other nuclei. Our data further suggest that neurons project specifically and reciprocally from the MGB to the AC as early as embryonic day 14.5. These projections develop approximately a day before the reciprocal connections between the MGB and IC and before development of projections from the auditory nuclei to the IC. The development of IC projections is prolonged and progresses from rostral to caudal areas. Brainstem nuclear projections to the IC arrive first from the lateral lemniscus nuclei then the superior olive and finally the cochlear nuclei. Overall, the auditory connection development strongly suggests that most of the overall specificity of nuclear connections is set up at least 2 weeks before the onset of sound-mediated cochlea responses in mice and, thus, is likely governed predominantly by molecular genetic clues.

Creation of a Transgenic Mouse for Hair-cell Gene Targeting by Using a Modified Bacterial Artificial Chromosome Containing Prestin

Developmental Dynamics : an Official Publication of the American Association of Anatomists. Sep, 2004  |  Pubmed ID: 15305300

We made a transgenic mouse that expresses Cre recombinase activity in inner ear hair cells by using a modified bacterial artificial chromosome containing Prestin. Cre recombinase activity was restricted to inner and outer hair cells, a subset of vestibular hair cells, spiral and vestibular ganglia in the inner ear, and a subset of cells in the testis, epididymis, and ear bone. This mouse will be useful for hair-cell-specific gene targeting.

Inner Hair Cell Cre-expressing Transgenic Mouse

Genesis (New York, N.Y. : 2000). Jul, 2004  |  Pubmed ID: 15282743

Cochlear hair cells of the inner ear are mechanosensory transducers critical for sound reception in mammals. A mouse with a specific expression of Cre recombinase activity in hair cells is essential for hair cell-specific gene targeting. Here we report a transgenic mouse in which Cre activity is detected in inner hair cells, not in supporting cells, in the cochlea. The Cre activity was visualized with both X-gal staining and beta-galactosidase immunostaining in progeny of a cross between our Cre line and the reporter ROSA26R line. In inner hair cells, the Cre activity started at postnatal day 14 and was maintained throughout adulthood. Starting at postnatal day 50, a few outer hair cells in the outermost row of cochlear apical and middle turns displayed the Cre activity. In vestibular hair cells and spiral ganglia, the Cre activity was also detected. Cre activity was present in cells widely distributed throughout brain, testis, and retina, but was absent in many other tissues such as kidney, heart, liver, and intestine. This Cre mouse line can thus be used for conditional gene targeting in mature inner hair cells of the cochlea. genesis 39:173-177, 2004.

NT-3 Replacement with Brain-derived Neurotrophic Factor Redirects Vestibular Nerve Fibers to the Cochlea

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Mar, 2004  |  Pubmed ID: 15014133

Survival of inner ear sensory neurons depends on two neurotrophins, BDNF and NT-3, and their respective receptors, TrkB and TrkC. Because both receptors are present in the same neuron, it has been suggested that BDNF and NT-3 are functionally redundant in promoting neuronal survival. Knock-in of one ligand into the locus of the other one confirmed this hypothesis for the cochlea, leaving open the question of why two neurotrophins are required for proper innervation of the mammalian ear. Here, we show that the precise spatiotemporal pattern of expression of the two neurotrophins is essential for proper patterning of the inner ear innervation. Mice expressing BDNF under the control of the NT-3 promoter develop exuberant projections of vestibular sensory neurons to the basal turn of the cochlea. This projection can be enhanced by combining the transgene with a null mutation of BDNF. However, vestibular fibers rerouted into the cochlea do not reach hair cells and remain outside the organ of Corti, suggesting a chemotactic role for neurotrophins on these fibers. Our data provide genetic evidence that neurotrophins in the ear exert both survival and axon guidance roles.

Abdominal Vagal Mediation of the Satiety Effects of CCK in Rats

American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. Jun, 2004  |  Pubmed ID: 14701717

CCK type 1 (CCK1) receptor antagonists differing in blood-brain barrier permeability were used to test the hypothesis that satiety is mediated in part by CCK action at CCK1 receptors on vagal sensory nerves innervating the small intestine. Devazepide penetrates the blood-brain barrier; A-70104, the dicyclohexylammonium salt of N alpha-3-quinolinoyl-D-Glu-N,N-dipentylamide, does not. At dark onset, non-food-deprived control rats and rats with subdiaphragmatic vagotomies received a bolus injection of devazepide (2.5 micromol/kg i.v.) or a 3-h infusion of A-70104 (3 i.v.) either alone or coadministered with a 2-h intragastric infusion of peptone (0.75 or 1 g/h). Food intake was determined from continuous computer recordings of changes in food bowl weight. In control rats both antagonists stimulated food intake and attenuated the anorexic response to intragastric infusion of peptone. In contrast, only devazepide was effective in stimulating food intake in vagotomized rats. Thus endogenous CCK appears to act both at CCK1 receptors beyond the blood-brain barrier and by a CCK1 receptor-mediated mechanism involving abdominal vagal nerves to inhibit food intake.

Neurotrophins in the Ear: Their Roles in Sensory Neuron Survival and Fiber Guidance

Progress in Brain Research. 2004  |  Pubmed ID: 14699969

We review the history of neurotrophins in the ear and the current understanding of the function of neurotrophins in ear innervation, development and maintenance. Only two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), and their receptors, tyrosine kinase B (TrkB) and TrkC, appear to provide trophic support for inner ear sensory neuron afferents. Mice lacking either both receptors or both ligands lose essentially all sensory innervation of targets in the vestibular and auditory systems of the ear. Analyzes of single mutants show less complete and differential effects on innervation of the different sensory organs within the ear. BDNF and TrkB are most important for survival of vestibular sensory neurons whereas NT-3 and TrkC are most important for survival of cochlear sensory neurons. The largely complementary roles of BDNF to TrkB and NT-3 to TrkC signaling do not reflect specific requirements for innervation of different classes of hair cells. Most neurons express both receptors. Instead, the losses observed in single mutants are related to the spatio-temporal expression pattern of the two neurotrophins. In an area where only one neurotrophin is expressed at a particular time in development, the other neurotrophin is not present to compensate for this absence, resulting in death of neurons innervating that region. Decisive evidence for this suggestion is provided by transgenic mice in which the BDNF coding region has been inserted into the NT-3 gene, resulting in expression of BDNF instead of NT-3. The expression of BDNF in the spatio-temporal pattern of NT-3 results in survival of almost all neurons that are normally lost in the NT-3 mutant. Thus, BDNF and NT-3 have a high level of functional equivalence for inner ear sensory neuron survival. Further analysis of the patterns of afferent fiber losses in mutations that do not develop differentiated hair cells shows that the expression of neurotrophins is remarkably strong and can support afferent innervation. Indeed, BDNF may be one of the earliest genes expressed selectively in hair cells and it appears to be regulated somewhat independently of the genes needed for hair cell differentiation.

Innervation of the Maxillary Vibrissae in Mice As Revealed by Anterograde and Retrograde Tract Tracing

Cell and Tissue Research. Feb, 2004  |  Pubmed ID: 14610665

Vibrissae are a unique sensory system of mammals that is characterized by a rich and diverse innervation involved in numerous sensory tasks with the potential for species-specific differences. In the present study, indocarbocyanine dyes (DiI and PTIR271) and confocal microscopy were combined to study the innervation of the mystacial vibrissae and vibrissa-specific sensory neuron distribution in the maxillary portion of the trigeminal ganglion of the mouse. The deeper regions of the vibrissa cavernous sinus (CS) contained a dense plexus of free nerve endings, possibly of autonomic fibers. The superficial part of this sinus displayed a massive array of corpuscular endings. Innervation in the region of the ring sinus consisted of Merkel endings and different morphological variances of lanceolate endings. The region of the inner conical body had a circular plexus of free nerve endings. In addition to confirming previous observations obtained by a variety of other techniques and ultrastructural studies, our studies revealed denser terminal receptor endings in a different distribution pattern than previously demonstrated in studies using the rat. We also revealed the distribution of sensory neurons in the trigeminal ganglion using retrograde tracing with fluorescent tracers from two nearby vibrissae. We determined that the populations of sensory neurons innervating the two vibrissae were largely overlapping. This suggests that the somatotopic maps of vibrissal projections reported at the different levels in the neuraxis are not faithfully reproduced at the level of the ganglion.

Development and Evolution of the Vestibular Sensory Apparatus of the Mammalian Ear

Journal of Vestibular Research : Equilibrium & Orientation. 2005  |  Pubmed ID: 16614470

Herein, we will review molecular aspects of vestibular ear development and present them in the context of evolutionary changes and hair cell regeneration. Several genes guide the development of anterior and posterior canals. Although some of these genes are also important for horizontal canal development, this canal strongly depends on a single gene, Otx1. Otx1 also governs the segregation of saccule and utricle. Several genes are essential for otoconia and cupula formation, but protein interactions necessary to form and maintain otoconia or a cupula are not yet understood. Nerve fiber guidance to specific vestibular end-organs is predominantly mediated by diffusible neurotrophic factors that work even in the absence of differentiated hair cells. Neurotrophins, in particular Bdnf, are the most crucial attractive factor released by hair cells. If Bdnf is misexpressed, fibers can be redirected away from hair cells. Hair cell differentiation is mediated by Atoh1. However, Atoh1 may not initiate hair cell precursor formation. Resolving the role of Atoh1 in postmitotic hair cell precursors is crucial for future attempts in hair cell regeneration. Additional analyses are needed before gene therapy can help regenerate hair cells, restore otoconia, and reconnect sensory epithelia to the brain.

The Development of the Hindbrain Afferent Projections in the Axolotl: Evidence for Timing As a Specific Mechanism of Afferent Fiber Sorting

Zoology (Jena, Germany). 2005  |  Pubmed ID: 16351978

The aim of this study is to reveal the timing and growth pattern of central octavolateral projection development in the Mexican axolotl, Ambystoma mexicanum. In this amphibian species the development of the inner ear occurs first, followed by mechanosensory lateral line organs, and finally by ampullary electroreceptors. Several hypotheses have been proposed about how the development of peripheral organs, including differential projections of the ear, might relate to the development of central projections. Our data suggest that the sequence of maturation of the ear, mechanosensory lateral line, and ampullary electroreceptive organs is closely accompanied by the timed development of the trigeminal, inner ear, mechanosensory lateral line organs, and the ampullary electroreceptor afferent projections in the axolotl. Our data suggest that segregation of central termination within the alar plate is a function of time and space: later forming organs are likely innervated by later forming ganglia that project centrally later and to more dorsal areas of the alar plate that have not yet received any other afferents. Later forming ganglia of the same type may grow along existing pathways of earlier formed neurons.

Differential Expression of KCNQ4 in Inner Hair Cells and Sensory Neurons is the Basis of Progressive High-frequency Hearing Loss

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Oct, 2005  |  Pubmed ID: 16207888

Human KCNQ4 mutations known as DFNA2 cause non-syndromic, autosomal-dominant, progressive high-frequency hearing loss in which the cellular and molecular basis is unclear. We provide immunofluorescence data showing that Kcnq4 expression in the adult cochlea has both longitudinal (base to apex) and radial (inner to outer hair cells) gradients. The most intense labeling is in outer hair cells at the apex and in inner hair cells as well as spiral ganglion neurons at the base. Spatiotemporal expression studies show increasing intensity of KCNQ4 protein labeling from postnatal day 21 (P21) to P120 mice that is most apparent in inner hair cells of the middle turn. We have identified four alternative splice variants of Kcnq4 in mice. The alternative use of exons 9-11 produces three transcript variants (v1-v3), whereas the fourth variant (v4) skips all three exons; all variants have the same amino acid sequence at the C termini. Both reverse transcription-PCR and quantitative PCR analyses demonstrate that these variants have differential expression patterns along the length of the mouse organ of Corti and spiral ganglion neurons. Our expression data suggest that the primary defect leading to high-frequency loss in DFNA2 patients may be attributable to high levels of the dysfunctional Kcnq4_v3 variant in the spiral ganglion and inner hair cells in the basal hook region. Progressive hearing loss associated with aging may result from an increasing mutational load expansion toward the apex in inner hair cells and spiral ganglion neurons.

Mutant Mice Reveal the Molecular and Cellular Basis for Specific Sensory Connections to Inner Ear Epithelia and Primary Nuclei of the Brain

Hearing Research. Aug, 2005  |  Pubmed ID: 16080998

We review the in vivo evidence for afferent fiber guidance to the inner ear sensory epithelia and the central nuclei of termination. Specifically, we highlight our current molecular understanding for the role of hair cells and sensory epithelia in guiding afferents, how disruption of certain signals can alter fiber pathways, even in the presence of normal hair cells, and what role neurotrophins play in fiber guidance of sensory neurons to hair cells. The data suggest that the neurotrophin BDNF is the most important molecule known for inner ear afferent fiber guidance to hair cells in vivo. This suggestion is based on experiments on Ntf3 transgenic mice expressing BDNF under Ntf3 promoter that show deviations of fiber growth in the ear to areas that express BDNF but have no hair cells. However, fiber growth can occur in the absence of BDNF as demonstrated by double mutants for BDNF and Bax. We directly tested the significance of hair cells or sensory epithelia for fiber guidance in mutants that lose hair cells (Pou4f3) or do not form a posterior crista (Fgf10). While these data emphasize the role played by BDNF, normally released from hair cells, there is some limited capacity for directed growth even in the absence of hair cells, BDNF, or sensory epithelia. This directed growth may rely on semaphorins or other matrix proteins because targeted ablation of the sema3 docking site on the sema receptor Npn1 results in targeting errors of fibers even in the presence of hair cells and BDNF. Overall, our data support the notion that targeting of the afferent processes in the ear is molecularly distinct from targeting processes in the central nuclei. This conclusion is derived from data that show no recognizable central projection deviation, even if fibers are massively rerouted in the periphery, as in Ntf3(tgBDNF) mice in which vestibular fibers project to the cochlea.

Ancestry of Photic and Mechanic Sensation?

Science (New York, N.Y.). May, 2005  |  Pubmed ID: 15912599

Ancestry of Photic and Mechanic Sensation?

Science (New York, N.Y.). May, 2005  |  Pubmed ID: 15908343

The Retinoblastoma Gene Pathway Regulates the Postmitotic State of Hair Cells of the Mouse Inner Ear

Development (Cambridge, England). May, 2005  |  Pubmed ID: 15843406

Precursors of cochlear and vestibular hair cells of the inner ear exit the cell cycle at midgestation. Hair cells are mitotically quiescent during late-embryonic differentiation stages and postnatally. We show here that the retinoblastoma gene Rb and the encoded protein pRb are expressed in differentiating and mature hair cells. In addition to Rb, the cyclin dependent kinase inhibitor (CKI) p21 is expressed in developing hair cells, suggesting that p21 is an upstream effector of pRb activity. p21 apparently cooperates with other CKIs, as p21-null mice exhibited an unaltered inner ear phenotype. By contrast, Rb inactivation led to aberrant hair cell proliferation, as analysed at birth in a loss-of-function/transgenic mouse model. Supernumerary hair cells expressed various cell type-specific differentiation markers, including components of stereocilia. The extent of alterations in stereociliary bundle morphology ranged from near-normal to severe disorganization. Apoptosis contributed to the mutant phenotype, but did not compensate for the production of supernumerary hair cells, resulting in hyperplastic sensory epithelia. The Rb-null-mediated proliferation led to a distinct pathological phenotype, including multinucleated and enlarged hair cells, and infiltration of hair cells into the mesenchyme. Our findings demonstrate that the pRb pathway is required for hair cell quiescence and that manipulation of the cell cycle machinery disrupts the coordinated development within the inner ear sensory epithelia.

The Molecular Basis of Neurosensory Cell Formation in Ear Development: a Blueprint for Hair Cell and Sensory Neuron Regeneration?

BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology. Dec, 2006  |  Pubmed ID: 17120192

The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future.

Comparative Analysis of Neurotrophin Receptors and Ligands in Vertebrate Neurons: Tools for Evolutionary Stability or Changes in Neural Circuits?

Brain, Behavior and Evolution. 2006  |  Pubmed ID: 16912469

To better understand the role of multiple neurotrophin ligands and their receptors in vertebrate brain evolution, we examined the distribution of trk neurotrophin receptors in representatives of several vertebrate classes. Trk receptors are largely expressed in homologous neuronal populations among different species/classes of vertebrates. In many neurons, trkB and trkC receptors are co-expressed. TrkB and trkC receptors are primarily found in neurons with more restricted, specialized dendritic and axonal fields that are thought to be involved in discriminative or 'analytical' functions. The neurotrophin receptor trkA is expressed predominantly in neurons with larger, overlapping dendritic fields with more heterogeneous connections ('integrative' or 'modulatory' systems) such as nociceptive and sympathetic autonomic nervous system, locus coeruleus and cholinergic basal forebrain. Surveys of trk receptor expression and function in the peripheral nervous system of different vertebrate classes reveal trends ranging from dependency on a single neurotrophin to a more complex dependency on increasing numbers of neurotrophins and their receptors, for example, in taste and inner ear innervation. Gene deletion studies in mice provide evidence for a complex regulation of neuronal survival of sensory ganglion cells by different neurotrophins. Although expression of neurotrophins and their receptors is predominantly conserved in most circuits, increasing diversity of neurotrophin ligands and their receptors and a more complex dependency of neurons on neurotrophins might have facilitated the formation of at least some new neuronal entities.

Foxg1 is Required for Morphogenesis and Histogenesis of the Mammalian Inner Ear

Developmental Dynamics : an Official Publication of the American Association of Anatomists. Sep, 2006  |  Pubmed ID: 16691564

The forkhead genes are involved in patterning, morphogenesis, cell fate determination, and proliferation. Several Fox genes (Foxi1, Foxg1) are expressed in the developing otocyst of both zebrafish and mammals. We show that Foxg1 is expressed in most cell types of the inner ear of the adult mouse and that Foxg1 mutants have both morphological and histological defects in the inner ear. These mice have a shortened cochlea with multiple rows of hair cells and supporting cells. Additionally, they demonstrate striking abnormalities in cochlear and vestibular innervation, including loss of all crista neurons and numerous fibers that overshoot the organ of Corti. Closer examination shows that some anterior crista fibers exist in late embryos. Tracing these fibers shows that they do not project to the brain but, instead, to the cochlea. Finally, these mice completely lack a horizontal crista, although a horizontal canal forms but comes off the anterior ampulla. Anterior and posterior cristae, ampullae, and canals are reduced to varying degrees, particularly in combination with Fgf10 heterozygosity. Compounding Fgf10 heterozygotic effects suggest an additive effect of Fgf10 on Foxg1, possibly mediated through bone morphogenetic protein regulation. We show that sensory epithelia formation and canal development are linked in the anterior and posterior canal systems. Much of the Foxg1 phenotype can be explained by the participation of the protein binding domain in the delta/notch/hes signaling pathway. Additional Foxg1 effects may be mediated by the forkhead DNA binding domain.

Cells, Molecules and Morphogenesis: the Making of the Vertebrate Ear

Brain Research. May, 2006  |  Pubmed ID: 16643865

The development and evolution of mechanosensory cells and the vertebrate ear is reviewed with an emphasis on delineating the cellular, molecular and developmental basis of these changes. Outgroup comparisons suggests that mechanosensory cells are ancient features of multicellular organisms. Molecular evidence suggests that key genes involved in mechanosensory cell function and development are also conserved among metazoans. The divergent morphology of mechanosensory cells across phyla is interpreted here as 'deep molecular homology' that was in parallel shaped into different forms in each lineage. The vertebrate mechanosensory hair cell and its associated neuron are interpreted as uniquely derived features of vertebrates. It is proposed that the vertebrate otic placode presents a unique embryonic adaptation in which the diffusely distributed ancestral mechanosensory cells became concentrated to generate a large neurosensory precursor population. Morphogenesis of the inner ear is reviewed and shown to depend on genes expressed in and around the hindbrain that interact with the otic placode to define boundaries and polarities. These patterning genes affect downstream genes needed to maintain proliferation and to execute ear morphogenesis. We propose that fibroblast growth factors (FGFs) and their receptors (FGFRs) are a crucial central node to translate patterning into the complex morphology of the vertebrate ear. Unfortunately, the FGF and FGFR genes have not been fully analyzed in the many mutants with morphogenetic ear defects described thus far. Likewise, little information exists on the ear histogenesis and neurogenesis in many mutants. Nevertheless, a molecular mechanism is now emerging for the formation of the horizontal canal, an evolutionary novelty of the gnathostome ear. The existing general module mediating vertical canal growth and morphogenesis was modified by two sets of new genes: one set responsible for horizontal canal morphogenesis and another set for neurosensory formation of the horizontal crista and associated sensory neurons. The dramatic progress in deciphering the molecular basis of ear morphogenesis offers grounds for optimism for translational research toward intervention in human morphogenetic defects of the ear.

A Disorganized Innervation of the Inner Ear Persists in the Absence of ErbB2

Brain Research. May, 2006  |  Pubmed ID: 16630588

ErbB2 protein is essential for the development of Schwann cells and for the normal fiber growth and myelin formation of peripheral nerves. We have investigated the fate of the otocyst-derived inner ear sensory neurons in the absence of ErbB2 using ErbB2 null mutants. Afferent innervation of the ear sensory epithelia shows numerous fibers overshooting the organ of Corti, followed by a reduction of those fibers in near term embryos. This suggests that mature Schwann cells do not play a role in targeting or maintaining the inner ear innervation. Comparable to the overshooting of nerve fibers, sensory neurons migrate beyond their normal locations into unusual positions in the modiolus. They may miss a stop signal provided by the Schwann cells that are absent as revealed with detailed histology. Reduction of overshooting afferents may be enhanced by a reduction of the neurotrophin Ntf3 transcript to about 25% of wild type. Ntf3 transcript reductions are comparable to an adult model that uses a dominant negative form of ErbB4 expressed in the supporting cells and Schwann cells of the organ of Corti. ErbB2 null mice retain afferents to inner hair cells possibly because of the prominent expression of the neurotrophin Bdnf in developing hair cells. Despite the normal presence of Bdnf transcript, afferent fibers are disoriented near the organ of Corti. Efferent fibers do not form an intraganglionic spiral bundle in the absence of spiral ganglia and appear reduced and disorganized. This suggests that either ErbB2 mediated alterations in sensory neurons or the absence of Schwann cells affects efferent fiber growth to the organ of Corti.

Conditional and Inducible Gene Recombineering in the Mouse Inner Ear

Brain Research. May, 2006  |  Pubmed ID: 16488403

Genetically engineered mice have greatly improved our understanding of gene functions and disease mechanisms. Nevertheless, the traditional knock-out approach has limitations in the overall viability of mutants. The application of the Cre/loxP system in the inner ear can help bypass this difficulty by generation of conditional gene recombineering. However, to do so requires an expression system that allows ear-specific temporally inducible, gene abrogation of one or more of the increasingly available floxed genes. To date, three approaches have been successfully used to create murine inner ear-specific Cre lines: conventional transgenesis, BAC transgenesis, and gene knock-in. Unfortunately, timing of conditional Cre activity does not extend beyond the regulatory range of the gene controlling Cre expression. Rectification of this problem requires the generation of tamoxifen or tetracycline inducible systems in the inner ear. Examination of integrase expression at different loci will facilitate studies on the expression of exogenous transgenes. These genetic applications for the mouse genome will dramatically advance in vivo gene function studies.

Long-distance Three-color Neuronal Tracing in Fixed Tissue Using NeuroVue Dyes

Immunological Investigations. 2007  |  Pubmed ID: 18161528

Dissecting development of neuronal connections is critical for understanding neuronal function in both normal and diseased states. Charting the development of the multitude of connections is a monumental task, since a given neuron typically receives hundreds of convergent inputs from other neurons and provides divergent outputs for hundreds of other neurons. Although progress is being made utilizing various mutants and/or genetic constructs expressing fluorescent proteins like GFP, substantial work remains before a database documenting the development and final location of the neuronal pathways in an adult animal is completed. The vast majority of developing neurons cannot be specifically labeled with antibodies and making specific GFP-expressing constructs to tag each of them is an overwhelming task. Fortunately, fluorescent lipophilic dyes have emerged as very useful tools to systematically compare changes in neuronal networks between wild-type and mutant mice. These dyes diffuse laterally along nerve cell membranes in fixed preparations, allowing tracing of the position of a given neuron within the neuronal network in murine mutants fixed at various stages of development. Until recently, however, most evaluations have been limited to one, or at most, two color analyses. We have previously reported three color neuronal profiling using the novel lipophilic dyes NeuroVue (NV) Green, Red and Maroon (Fritzsch et al., Brain. Res. Bull. 66: 249-258, 2005). Unfortunately such three color experiments have been limited by the fact that NV Green and its brighter successor, NV Emerald, both exhibit substantially decreased signal intensities when times greater than 48 hours at 37 degrees C are required to achieve neuronal profile filling (unpublished observations). Here we describe a standardized test system developed to allow comparison of candidate dyes and its use to evaluate a series of 488 nm-excited green-emitting lipophilic dyes. The best of these, NV Jade, has spectral properties well matched to NV Red and NV Maroon, better solubility in DMF than DiO or DiA, improved thermostability compared with NV Emerald, and the ability to fill neuronal profiles at rates of 1 mm per day for periods of at least 5 days. Use of NV Jade in combination with NV Red and NV Maroon substantially improves the efficiency of connectional analysis in complex mutants and transgenic models where limited numbers of specimens are available.

Molecular Evolution of the Vertebrate Mechanosensory Cell and Ear

The International Journal of Developmental Biology. 2007  |  Pubmed ID: 17891725

The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has been spent on the evolution of the inner ear and the central auditory system. Recent advances in our molecular understanding of ear and brain development provide novel avenues to this neglected aspect of auditory neurosensory evolution.

The Molecular Biology of Ear Development - "Twenty Years Are Nothing"

The International Journal of Developmental Biology. 2007  |  Pubmed ID: 17891706

Views of classical biological problems changed dramatically with the rise of molecular biology as a common framework. It was indeed the new language of life sciences. Molecular biology increasingly moved us towards a unified view of developmental genetics as ideas and techniques were imported to vertebrates from other biological systems where genetics was in a more advanced state. The ultimate advance has been the ability to actually perform genetic manipulations in vertebrate organisms that were almost unthinkable before. During the last two decades these technical advances entered into and affected the research on ear development. These events are still very recent and have been with us for no longer than two decades, which is the reason for the title of this article. This new scenario forms the basis of the current and productive work of many laboratories, and this is what this Special Issue of The International Journal of Developmental Biology wants to show, presenting a snapshot of insights at the beginning of the 21st Century. In this article, we give an overview of the topics that are addressed in this Ear Development Special Issue, and also we take the opportunity to informally dig into the genealogy of some of those topics, trying to link the current work with some classical work of the past.

Targeted Knockout and LacZ Reporter Expression of the Mouse Tmhs Deafness Gene and Characterization of the Hscy-2J Mutation

Mammalian Genome : Official Journal of the International Mammalian Genome Society. Sep, 2007  |  Pubmed ID: 17876667

The Tmhs gene codes for a tetraspan transmembrane protein that is expressed in hair cell stereocilia. We previously showed that a spontaneous missense mutation of Tmhs underlies deafness and vestibular dysfunction in the hurry-scurry (hscy) mouse. Subsequently, mutations in the human TMHS gene were shown to be responsible for DFNB67, an autosomal recessive nonsyndromic deafness locus. Here we describe a genetically engineered null mutation of the mouse Tmhs gene (Tmhs ( tm1Kjn )) and show that its phenotype is identical to that of the hscy missense mutation, confirming the deleterious nature of the hscy cysteine-to-phenylalanine substitution. In the targeted null allele, the Tmhs promoter drives expression of a lacZ reporter gene. Visualization of beta-galactosidase activity in Tmhs ( tm1Kjn ) heterozygous mice indicates that Tmhs is highly expressed in the cochlear and vestibular hair cells of the inner ear. Expression is first detectable at E15.5, peaks around P0, decreases slightly at P6, and is absent by P15, a duration that supports the involvement of Tmhs in stereocilia development. Tmhs reporter gene expression also was detected in several cranial and cervical sensory ganglia, but not in the vestibular or spiral ganglia. We also describe a new nontargeted mutation of the Tmhs gene, hscy-2J, that causes abnormal splicing from a cryptic splice site within exon 2 and is predicted to produce a functionally null protein lacking 51 amino acids of the wild-type sequence.

Disruption of Fibroblast Growth Factor Receptor 3 Signaling Results in Defects in Cellular Differentiation, Neuronal Patterning, and Hearing Impairment

Developmental Dynamics : an Official Publication of the American Association of Anatomists. Jul, 2007  |  Pubmed ID: 17557302

Deletion of fibroblast growth factor receptor 3 (Fgfr3) leads to hearing impairment in mice due to defects in the development of the organ of Corti, the sensory epithelium of the Cochlea. To examine the role of FGFR3 in auditory development, cochleae from Fgfr3(-/-) mice were examined using anatomical and physiological methods. Deletion of Fgfr3 leads to the absence of inner pillar cells and an increase in other cell types, suggesting that FGFR3 regulates cell fate. Defects in outer hair cell differentiation were also observed and probably represent the primary basis for hearing loss. Furthermore, innervation defects were detected consistent with changes in the fiber guidance properties of pillar cells. To elucidate the mechanisms underlying the effects of FGFR3, we examined the expression of Bmp4, a known target. Bmp4 was increased in Fgfr3(-/-) cochleae, and exogenous application of bone morphogenetic protein 4 (BMP4) onto cochlear explants induced a significant increase in the outer hair cells, suggesting the Fgf and Bmp signaling act in concert to pattern the cochlea.

Developmental Expression of Kcnq4 in Vestibular Neurons and Neurosensory Epithelia

Brain Research. Mar, 2007  |  Pubmed ID: 17292869

Sensory signal transduction of the inner ear afferent neurons and hair cells (HCs) requires numerous ionic conductances. The KCNQ4 voltage-gated M-type potassium channel is thought to set the resting membrane potential in cochlear HCs. Here we describe the spatiotemporal expression patterns of Kcnq4 and the associated alternative splice forms in the HCs of vestibular labyrinth. Whole mount immunodetection, qualitative and quantitative RT-PCR were performed to characterize the expression patterns of Kcnq4 transcripts and proteins. A topographical expression and upregulation of Kcnq4 during development was observed and indicated that Kcnq4 is not restricted to either a specific vestibular structure or cell type, but is present in afferent calyxes, vestibular ganglion neurons, and both type I and type II HCs. Of the four alternative splice variants, Kcnq4_v1 transcripts were the predominant form in the HCs, while Kcnq4_v3 was the major variant in the vestibular neurons. Differential quantitative expression of Kcnq4_v1 and Kcnq4_v3 were respectively detected in the striolar and extra-striolar regions of the utricle and saccule. Analysis of gerbils and rats yielded results similar to those obtained in mice, suggesting that the spatiotemporal expression pattern of Kcnq4 in the vestibular system is conserved among rodents. Analyses of vestibular HCs of Bdnf conditional mutant mice, which are devoid of any innervation, demonstrate that regulation of Kcnq4 expression in vestibular HCs is independent of innervation.

Sox2 Signaling in Prosensory Domain Specification and Subsequent Hair Cell Differentiation in the Developing Cochlea

Proceedings of the National Academy of Sciences of the United States of America. Nov, 2008  |  Pubmed ID: 19011097

Sox2 is a high-mobility transcription factor that is one of the earliest markers of developing inner ear prosensory domains. In humans, mutations in SOX2 cause sensorineural hearing loss and a loss of function study in mice showed that Sox2 is required for prosensory formation in the cochlea. However, the specific roles of Sox2 have not been determined. Here we illustrate a dynamic role of Sox2 as an early permissive factor in prosensory domain formation followed by a mutually antagonistic relationship with Atoh1, a bHLH protein necessary for hair cell development. We demonstrate that decreased levels of Sox2 result in precocious hair cell differentiation and an over production of inner hair cells and that these effects are likely mediated through an antagonistic interaction between Sox2 and the bHLH molecule Atoh1. Using gain- and loss-of-function experiments we provide evidence for the molecular pathway responsible for the formation of the cochlear prosensory domain. Sox2 expression is promoted by Notch signaling and Prox1, a homeobox transcription factor, is a downstream target of Sox2. These results demonstrate crucial and diverse roles for Sox2 in the development, specification, and maintenance of sensory cells within the cochlea.

Lmx1a is Required for Segregation of Sensory Epithelia and Normal Ear Histogenesis and Morphogenesis

Cell and Tissue Research. Dec, 2008  |  Pubmed ID: 18985389

At embryonic day 8.5, the LIM-homeodomain factor Lmx1a is expressed throughout the otic placode but becomes developmentally restricted to non-sensory epithelia of the ear (endolymphatic duct, ductus reuniens, cochlea lateral wall). We confirm here that the ears of newborn dreher (Lmx1a (dr)) mutants are dysmorphic. Hair cell markers such as Atoh1 and Myo7 reveal, for the first time, that newborn Lmx1a mutants have only three sensory epithelia: two enlarged canal cristae and one fused epithelium comprising an amalgamation of the cochlea, saccule, and utricle (a "cochlear-gravistatic" endorgan). The enlarged anterior canal crista develops by fusion of horizontal and anterior crista, whereas the posterior crista fuses with an enlarged papilla neglecta that may extend into the cochlear lateral wall. In the fused endorgan, the cochlear region is distinguished from the vestibular region by markers such as Gata3, the presence of a tectorial membrane, and cochlea-specific innervation. The cochlea-like apex displays minor disorganization of the hair and supporting cells. This contrasts with the basal half of the cochlear region, which shows a vestibular epithelium-like organization of hair cells and supporting cells. The dismorphic features of the cochlea are also reflected in altered gene expression patterns. Fgf8 expression expands from inner hair cells in the apex to most hair cells in the base. Two supporting cell marker proteins, Sox2 and Prox1, also differ in their cellular distribution between the base and the apex. Sox2 expression expands in mutant canal cristae prior to their enlargement and fusion and displays a more diffuse and widespread expression in the base of the cochlear region, whereas Prox1 is not detected in the base. These changes in Sox2 and Prox1 expression suggest that Lmx1a expression restricts and sharpens Sox2 expression, thereby defining non-sensory and sensory epithelium. The adult Lmx1a mutant organ of Corti shows a loss of cochlear hair cells, suggesting that the long-term maintenance of hair cells is also disrupted in these mutants.

Cloning and Developmental Expression of the SoxB2 Genes, Sox14 and Sox21, During Xenopus Laevis Embryogenesis

The International Journal of Developmental Biology. 2008  |  Pubmed ID: 18956331

The Sox family of transcription factors is thought to regulate gene expression in a wide variety of developmental processes. Here we describe the cloning of the X. laevis orthologs of the SoxB2 family of transcription factors, sox14 and sox21. In situ hybridization revealed that sox14 expression is restricted to the hypothalamus, dorsal thalamus, the optic tectum, a region of the somatic motornucleus in the midbrain and hindbrain, the vestibular nuclei in the hindbrain and a discrete ventral domain in the developing spinal cord. In contrast to the limited expression domain of sox14, sox21 is found throughout the developing central nervous system, including the olfactory placodes, with strongest expression at the boundary between the midbrain and hindbrain.

Eya1 Gene Dosage Critically Affects the Development of Sensory Epithelia in the Mammalian Inner Ear

Human Molecular Genetics. Nov, 2008  |  Pubmed ID: 18678597

Haploinsufficiency of the transcription co-activator EYA1 causes branchio-oto-renal syndrome, congenital birth defects that account for as many as 2% of profoundly deaf children; however, the underlying cause for its dosage requirement and its specific role in sensory cell development of the inner ear are unknown. Here, an allelic series of Eya1 were generated to study the basis of Eya1 dosage requirements for sensory organ development. Our results show different threshold requirements for the level of Eya1 in different regions of the inner ear. Short and disorganized hair cell sterocilia was observed in wild-type/null heterozygous or hypomorphic/hypomorphic homozygous cochleae. Patterning and gene-marker analyses indicate that in Eya1 hypomorphic/null heterozygous mice, a reduction of Eya1 expression to 21% of normal level causes an absence of cochlear and vestibular sensory formation. Eya1 is initially expressed in the progenitors throughout the epithelium of all six sensory regions, and later on during sensory cell differentiation, its expression becomes restricted to the differentiating hair cells. We provide genetic evidence that Eya1 activity, in a concentration-dependent manner, plays a key role in the regulation of genes known to be important for sensory development. Furthermore, we show that Eya1 co-localizes with Sox2 in the sensory progenitors and both proteins physically interact. Together, our results indicate that Eya1 appears to be upstream of very early events during the sensory organ development, hair cell differentiation and inner-ear patterning. These results also provide a molecular mechanism for understanding how hypomorphic levels of EYA1 cause inner-ear defects in humans.

Regenerating Cochlear Hair Cells: Quo Vadis Stem Cell

Cell and Tissue Research. Sep, 2008  |  Pubmed ID: 18575894

Many elderly people worldwide lose the neurosensory part of their ear and turn deaf. Cochlear implants to restore some hearing after neurosensory hearing loss are, at present, the only therapy for these people. In contrast to this therapy, replacement of hair cells via stem cell therapies holds the promise for a cure. We review here current insights into embryonic, adult, and inducible stem cells that might provide cells for seeding the cochlea with the hope of new hair cell formation. We propose a two-step approach using a first set of transcription factors to enhance the generation of inducible pluripotent stem (iPS) cells and a second set of factors to initiate the differentiation of hair cells. Recent evidence regarding ear development and stem cell research strongly suggest that microRNAs will be an important new regulatory factor in both iPS cell formation and differentiation to reprogram cells into hair cells. In addition, we highlight currently insurmountable obstacles to the successful transformation of stem cells into hair cell precursors and their injection into the cochlear canal to replace lost hair cells.

Evolutionary Insights into the Unique Electromotility Motor of Mammalian Outer Hair Cells

Evolution & Development. May-Jun, 2008  |  Pubmed ID: 18460092

Prestin (SLC26A5) is the molecular motor responsible for cochlear amplification by mammalian cochlea outer hair cells and has the unique combined properties of energy-independent motility, voltage sensitivity, and speed of cellular shape change. The ion transporter capability, typical of SLC26A members, was exchanged for electromotility function and is a newly derived feature of the therian cochlea. A putative minimal essential motif for the electromotility motor (meEM) was identified through the amalgamation of comparative genomic, evolution, and structural diversification approaches. Comparisons were done among nonmammalian vertebrates, eutherian mammalian species, and the opossum and platypus. The opossum and platypus SLC26A5 proteins were comparable to the eutherian consensus sequence. Suggested from the point-accepted mutation analysis, the meEM motif spans all the transmembrane segments and represented residues 66-503. Within the eutherian clade, the meEM was highly conserved with a substitution frequency of only 39/7497 (0.5%) residues, compared with 5.7% in SLC26A4 and 12.8% in SLC26A6 genes. Clade-specific substitutions were not observed and there was no sequence correlation with low or high hearing frequency specialists. We were able to identify that within the highly conserved meEM motif two regions, which are unique to all therian species, appear to be the most derived features in the SLC26A5 peptide.

Orbital Spaceflight During Pregnancy Shapes Function of Mammalian Vestibular System

Behavioral Neuroscience. Feb, 2008  |  Pubmed ID: 18298265

Pregnant rats were flown on the NASA Space Shuttle during the early developmental period of their fetuses' vestibular apparatus and onset of vestibular function. The authors report that prenatal spaceflight exposure shapes vestibular-mediated behavior and central morphology. Postflight testing revealed (a) delayed onset of body righting responses, (b) cardiac deceleration (bradycardia) to 70 degrees head-up roll, (c) decreased branching of gravistatic afferent axons, but (d) no change in branching of angular acceleration receptor projections with comparable synaptogenesis of the medial vestibular nucleus in flight relative to control fetuses. Kinematic analyses of the dams' on-orbit behavior suggest that, although the fetal otolith organs are unloaded in microgravity, the fetus' semicircular canals receive high levels of stimulation during longitudinal rotations of the mother's weightless body. Behaviorally derived stimulation from maternal movements may be a significant factor in studies of vestibular sensory development. Taken together, these studies provide evidence that gravity and angular acceleration shape prenatal organization and function within the mammalian vestibular system.

MicroRNA-183 Family Conservation and Ciliated Neurosensory Organ Expression

Evolution & Development. Jan-Feb, 2008  |  Pubmed ID: 18184361

MicroRNAs (miRNAs) are an integral component of the metazoan genome and affect posttranscriptional repression of target messenger RNAs. The extreme phylogenetic conservation of certain miRNAs suggests their ancient origin and crucial function in conserved developmental processes. We demonstrate that highly conserved miRNA-183 orthologs exist in both deuterostomes and protostomes and their expression is predominant in ciliated ectodermal cells and organs. The miRNA-183 family members are expressed in vertebrate sensory hair cells, in innervated regions of invertebrate deuterostomes, and in sensilla of Drosophila and C. elegans. Thus, miRNA-183 family member expression is conserved in possibly homologous but morphologically distinct sensory cells and organs. The results suggest that miR-183 family members contribute specifically to neurosensory development or function, and that extant metazoan sensory organs are derived from cells that share genetic programs of common evolutionary origin.

Disorganized Innervation and Neuronal Loss in the Inner Ear of Slitrk6-deficient Mice

PloS One. 2009  |  Pubmed ID: 19936227

Slitrks are type I transmembrane proteins that share conserved leucine-rich repeat domains similar to those in the secreted axonal guidance molecule Slit. They also show similarities to Ntrk neurotrophin receptors in their carboxy-termini, sharing a conserved tyrosine residue. Among 6 Slitrk family genes in mammals, Slitrk6 has a unique expression pattern, with strong expression in the sensory epithelia of the inner ear. We generated Slitrk6-knockout mice and investigated the development of their auditory and vestibular sensory organs. Slitrk6-deficient mice showed pronounced reduction in the cochlear innervation. In the vestibule, the innervation to the posterior crista was often lost, reduced, or sometimes misguided. These defects were accompanied by the loss of neurons in the spiral and vestibular ganglia. Cochlear sensory epithelia from Slitrk6-knockout mice have reduced ability in promoting neurite outgrowth of spiral ganglion neurons. Indeed the Slitrk6-deficient inner ear showed a mild but significant decrease in the expression of Bdnf and Ntf3, both of which are essential for the innervation and survival of sensory neurons. In addition, the expression of Ntrk receptors, including their phosphorylated forms was decreased in Slitrk6-knockout cochlea. These results suggest that Slitrk6 promotes innervation and survival of inner ear sensory neurons by regulating the expression of trophic and/or tropic factors including neurotrophins from sensory epithelia.

Atoh1-lineal Neurons Are Required for Hearing and for the Survival of Neurons in the Spiral Ganglion and Brainstem Accessory Auditory Nuclei

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Sep, 2009  |  Pubmed ID: 19741118

Atoh1 is a basic helix-loop-helix transcription factor necessary for the specification of inner ear hair cells and central auditory system neurons derived from the rhombic lip. We used the Cre-loxP system and two Cre-driver lines (Egr2(Cre) and Hoxb1(Cre)) to delete Atoh1 from different regions of the cochlear nucleus (CN) and accessory auditory nuclei (AAN). Adult Atoh1-conditional knock-out mice (Atoh1(CKO)) are behaviorally deaf, have diminished auditory brainstem evoked responses, and have disrupted CN and AAN morphology and connectivity. In addition, Egr2; Atoh1(CKO) mice lose spiral ganglion neurons in the cochlea and AAN neurons during the first 3 d of life, revealing a novel critical period in the development of these neurons. These new mouse models of predominantly central deafness illuminate the importance of the CN for support of a subset of peripheral and central auditory neurons.

Defects in the Cerebella of Conditional Neurod1 Null Mice Correlate with Effective Tg(Atoh1-cre) Recombination and Granule Cell Requirements for Neurod1 for Differentiation

Cell and Tissue Research. Sep, 2009  |  Pubmed ID: 19609565

Neurod1 is a crucial basic helix-loop-helix gene for most cerebellar granule cells and mediates the differentiation of these cells downstream of Atoh1-mediated proliferation of the precursors. In Neurod1 null mice, granule cells die throughout the posterior two thirds of the cerebellar cortex during development. However, Neurod1 is also necessary for pancreatic beta-cell development, and therefore Neurod1 null mice are diabetic, which potentially influences cerebellar defects. Here, we report a new Neurod1 conditional knock-out mouse model created by using a Tg(Atoh1-cre) line to eliminate Neurod1 in the cerebellar granule cell precursors. Our data confirm and extend previous work on systemic Neurod1 null mice and show that, in the central lobules, granule cells can be eradicated in the absence of Neurod1. Granule cells in the anterior lobules are partially viable and depend on as yet unknown genes, but the Purkinje cells show defects not previously recognized. Interestingly, delayed and incomplete Tg(Atoh1-cre) upregulation occurs in the most posterior lobules; this leads to near normal expression of Neurod1 with a concomitant normal differentiation of granule cells, Purkinje cells, and unipolar brush cells in lobules IX and X. Our analysis suggests that Neurod1 negatively regulates Atoh1 to ensure a rapid transition from proliferative precursors to differentiating neurons. Our data have implications for research on medulloblastoma, one of the most frequent brain tumors of children, as the results suggest that targeted overexpression of Neurod1 under Atoh1 promoter control may initiate the differentiation of these tumors.

Differential and Overlapping Expression Pattern of SOX2 and SOX9 in Inner Ear Development

Gene Expression Patterns : GEP. Sep, 2009  |  Pubmed ID: 19427409

The development of the inner ear involves complex processes of morphological changes, patterning and cell fate specification that are under strict molecular control. SOX2 and SOX9 are SOX family transcription factors that are involved in the regulation of one or more of these processes. Previous findings have shown early expression of SOX9 in the otic placode and vesicle at E8.5-E9.5. Here we describe in detail, the expression pattern of SOX9 in the developing mouse inner ear beyond the otocyst stage and compare it with that of SOX2 from E9.5 to E18.5 using double fluorescence immunohistochemistry. We found that SOX9 was widely expressed in the otic epithelium, periotic mesenchyme and cartilaginous otic capsule. SOX2 persistently marked the prosensory and sensory epithelia. During the development of the sensory epithelia, SOX2 was initially expressed in all prosensory regions and later in both the supporting and hair cells up to E15.5, when its expression in hair cells gradually diminished. SOX9 expression overlapped with that of SOX2 in the prosensory and sensory region until E14.5 when its expression was restricted to supporting cells. This initial overlap but subsequent differential expression of SOX2 and SOX9 in the sensory epithelia, suggest that SOX2 and SOX9 may have distinct roles in molecular pathways that direct cells towards different cell fates.

Residual MicroRNA Expression Dictates the Extent of Inner Ear Development in Conditional Dicer Knockout Mice

Developmental Biology. Apr, 2009  |  Pubmed ID: 19389351

Inner ear development requires coordinated transformation of a uniform sheet of cells into a labyrinth with multiple cell types. While numerous regulatory proteins have been shown to play critical roles in this process, the regulatory functions of microRNAs (miRNAs) have not been explored. To demonstrate the importance of miRNAs in inner ear development, we generated conditional Dicer knockout mice by the expression of Cre recombinase in the otic placode at E8.5. Otocyst-derived ganglia exhibit rapid neuron-specific miR-124 depletion by E11.5, degeneration by E12.5, and profound defects in subsequent sensory epithelial innervations by E17.5. However, the small and malformed inner ear at E17.5 exhibits residual and graded hair cell-specific miR-183 expression in the three remaining sensory epithelia (posterior crista, utricle, and cochlea) that closely corresponds to the degree of hair cell and sensory epithelium differentiation, and Fgf10 expression required for morphohistogenesis. The highest miR-183 expression is observed in near-normal hair cells of the posterior crista, whereas the reduced utricular macula demonstrates weak miR-183 expression and develops presumptive hair cells with numerous disorganized microvilli instead of ordered stereocilia. The correlation of differential and delayed depletion of mature miRNAs with the derailment of inner ear development demonstrates that miRNAs are crucial for inner ear neurosensory development and neurosensory-dependent morphogenesis.

Transplantation of Xenopus Laevis Ears Reveals the Ability to Form Afferent and Efferent Connections with the Spinal Cord

The International Journal of Developmental Biology. 2010  |  Pubmed ID: 21302254

Previous comparative and developmental studies have suggested that the cholinergic inner ear efferent system derives from developmentally redirected facial branchial motor neurons that innervate the vertebrate ear hair cells instead of striated muscle fibers. Transplantation of Xenopus laevis ears into the path of spinal motor neuron axons could show whether spinal motor neurons could reroute to innervate the hair cells as efferent fibers. Such transplantations could also reveal whether ear development could occur in a novel location including afferent and efferent connections with the spinal cord. Ears from stage 24-26 embryos were transplanted from the head to the trunk and allowed to mature to stage 46. Of 109 transplanted ears, 73 developed with otoconia. The presence of hair cells was confirmed by specific markers and by general histology of the ear, including TEM. Injections of dyes ventral to the spinal cord revealed motor innervation of hair cells. This was confirmed by immunohistochemistry and by electron microscopy structural analysis, suggesting that some motor neurons rerouted to innervate the ear. Also, injection of dyes into the spinal cord labeled vestibular ganglion cells in transplanted ears indicating that these ganglion cells connected to the spinal cord. These nerves ran together with spinal nerves innervating the muscles, suggesting that fasciculation with existing fibers is necessary. Furthermore, ear removal had little effect on development of cranial and lateral line nerves. These results indicate that the ear can develop normally, in terms of histology, in a new location, complete with efferent and afferent innervations to and from the spinal cord.

PLCγ-activated Signalling is Essential for TrkB Mediated Sensory Neuron Structural Plasticity

BMC Developmental Biology. 2010  |  Pubmed ID: 20932311

The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental.

Pax2 and Pax8 Cooperate in Mouse Inner Ear Morphogenesis and Innervation

BMC Developmental Biology. 2010  |  Pubmed ID: 20727173

Pax2;5;8 transcription factors play diverse roles in vertebrate and invertebrate organogenesis, including the development of the inner ear. Past research has suggested various cochlear defects and some vestibular defects in Pax2 null mice but the details of the cochlear defects and the interaction with other Pax family members in ear development remain unclear.

Neurod1 Suppresses Hair Cell Differentiation in Ear Ganglia and Regulates Hair Cell Subtype Development in the Cochlea

PloS One. 2010  |  Pubmed ID: 20661473

At least five bHLH genes regulate cell fate determination and differentiation of sensory neurons, hair cells and supporting cells in the mammalian inner ear. Cross-regulation of Atoh1 and Neurog1 results in hair cell changes in Neurog1 null mice although the nature and mechanism of the cross-regulation has not yet been determined. Neurod1, regulated by both Neurog1 and Atoh1, could be the mediator of this cross-regulation.

Atypical Cadherins Celsr1-3 Differentially Regulate Migration of Facial Branchiomotor Neurons in Mice

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Jul, 2010  |  Pubmed ID: 20631168

During hindbrain development, facial branchiomotor neurons (FBM neurons) migrate from medial rhombomere (r) 4 to lateral r6. In zebrafish, mutations in planar cell polarity genes celsr2 and frizzled3a block caudal migration of FBM neurons. Here, we investigated the role of cadherins Celsr1-3, and Fzd3 in FBM neuron migration in mice. In Celsr1 mutants (knock-out and Crash alleles), caudal migration was compromised and neurons often migrated rostrally into r2 and r3, as well as laterally. These phenotypes were not caused by defects in hindbrain patterning or neuronal specification. Celsr1 is expressed in FBM neuron precursors and the floor plate, but not in FBM neurons. Consistent with this, conditional inactivation showed that the function of Celsr1 in FBM neuron migration was non-cell autonomous. In Celsr2 mutants, FBM neurons initiated caudal migration but moved prematurely into lateral r4 and r5. This phenotype was enhanced by inactivation of Celsr3 in FBM neurons and mimicked by inactivation of Fzd3. Furthermore, Celsr2 was epistatic to Celsr1. These data indicate that Celsr1-3 differentially regulate FBM neuron migration. Celsr1 helps to specify the direction of FBM neuron migration, whereas Celsr2 and 3 control its ability to migrate.

Neurod1 Regulates Survival and Formation of Connections in Mouse Ear and Brain

Cell and Tissue Research. Jul, 2010  |  Pubmed ID: 20512592

The developing sensory neurons of the mammalian ear require two sequentially activated bHLH genes, Neurog1 and Neurod1, for their development. Neurons never develop in Neurog1 null mice, and most neurons die in Neurod1 null mutants, a gene upregulated by Neurog1. The surviving neurons of Neurod1 null mice are incompletely characterized in postnatal mice because of the early lethality of mutants and the possible compromising effect of the absence of insulin on peripheral neuropathies. Using Tg(Pax2-cre), we have generated a conditional deletion of floxed Neurod1 for the ear; this mouse is viable and allows us to investigate ear innervation defects of Neurod1 absence only in the ear. We have compared the defects in embryos and show an ear phenotype in conditional Neurod1 null mice comparable with the systemic Neurod1 null mouse. By studying postnatal animals, we show that Neurod1 not only is necessary for the survival of most spiral and many vestibular neurons, but is also essential for a segregated central projection of vestibular and cochlear afferents. In the absence of Neurod1 in the ear, vestibular and cochlear afferents enter the cochlear nucleus as a single mixed nerve. Neurites coming from vestibular and cochlear sensory epithelia project centrally to both cochlear and vestibular nuclei, in addition to their designated target projections. The peripheral innervation of the remaining sensory neurons is disorganized and shows collaterals of single neurons projecting to multiple endorgans, displaying no tonotopic organization of the organ of Corti or the cochlear nucleus. Pending elucidation of the molecular details for these Neurod1 functions, these data demonstrate that Neurod1 is not only a major factor for the survival of neurons but is crucial for the development of normal ear connections, both in the ear and in the central nervous system.

The Role of BHLH Genes in Ear Development and Evolution: Revisiting a 10-year-old Hypothesis

Cellular and Molecular Life Sciences : CMLS. Sep, 2010  |  Pubmed ID: 20495996

In mouse ear development, two bHLH genes, Atoh1 and Neurog1, are essential for hair cell and sensory neuron differentiation. Evolution converted the original simple atonal-dependent neurosensory cell formation program of diploblasts into the derived developmental program of vertebrates that generates two neurosensory cell types, the sensory neuron and the sensory hair cell. This transformation was achieved through gene multiplication in ancestral triploblasts resulting in the expansion of the atonal bHLH gene family. Novel genes of the Neurogenin and NeuroD families are upregulated prior to the expression of Atoh1. Recent data suggest that NeuroD and Neurogenin were lost or their function in neuronal specification reduced in flies, thus changing our perception of the evolution of these genes. This sequence of expression changes was accompanied by modification of the E-box binding sites of these genes to regulate different downstream genes and to form inhibitory loops among each other, thus fine-tuning expression transitions.

Development and Organization of Polarity-specific Segregation of Primary Vestibular Afferent Fibers in Mice

Cell and Tissue Research. May, 2010  |  Pubmed ID: 20424840

A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears.

Canal Cristae Growth and Fiber Extension to the Outer Hair Cells of the Mouse Ear Require Prox1 Activity

PloS One. 2010  |  Pubmed ID: 20186345

The homeobox gene Prox1 is required for lens, retina, pancreas, liver, and lymphatic vasculature development and is expressed in inner ear supporting cells and neurons.

Dog Genome Evolution: a Strategy to Segregate Biogeographic Effects from Human Selection

Proceedings of the National Academy of Sciences of the United States of America. Jan, 2010  |  Pubmed ID: 20080606

Deletion of an Enhancer Near DLX5 and DLX6 in a Family with Hearing Loss, Craniofacial Defects, and an Inv(7)(q21.3q35)

Human Genetics. Jan, 2010  |  Pubmed ID: 19707792

Precisely regulated temporal and spatial patterns of gene expression are essential for proper human development. Cis-acting regulatory elements, some located at large distances from their corresponding genes, play a critical role in transcriptional control of key developmental genes and disruption of these regulatory elements can lead to disease. We report a three generation family with five affected members, all of whom have hearing loss, craniofacial defects, and a paracentric inversion of the long arm of chromosome 7, inv(7)(q21.3q35). High resolution mapping of the inversion showed that the 7q21.3 breakpoint is located 65 and 80 kb centromeric of DLX6 and DLX5, respectively. Further analysis revealed a 5,115 bp deletion at the 7q21.3 breakpoint. While the breakpoint does not disrupt either DLX5 or DLX6, the syndrome present in the family is similar to that observed in Dlx5 knockout mice and includes a subset of the features observed in individuals with DLX5 and DLX6 deletions, implicating dysregulation of DLX5 and DLX6 in the family's phenotype. Bioinformatic analysis indicates that the 5,115 bp deletion at the 7q21.3 breakpoint could contain regulatory elements necessary for DLX5 and DLX6 expression. Using a transgenic mouse reporter assay, we show that the deleted sequence can drive expression in the inner ear and developing bones of E12.5 embryos. Consequently, the observed familial syndrome is likely caused by dysregulation of DLX5 and/or DLX6 in specific tissues due to deletion of an enhancer and possibly separation from other regulatory elements by the chromosomal inversion.

Regeneration of Hair Cells: Making Sense of All the Noise

Pharmaceuticals (Basel, Switzerland). Jun, 2011  |  Pubmed ID: 21966254

Hearing loss affects hundreds of millions of people worldwide by dampening or cutting off their auditory connection to the world. Current treatments for sensorineural hearing loss (SNHL) with cochlear implants are not perfect, leaving regenerative medicine as the logical avenue to a perfect cure. Multiple routes to regeneration of damaged hair cells have been proposed and are actively pursued. Each route not only requires a keen understanding of the molecular basis of ear development but also faces the practical limitations of stem cell regulation in the delicate inner ear where topology of cell distribution is essential. Improvements in our molecular understanding of the minimal essential genes necessary for hair cell formation and recent advances in stem cell manipulation, such as seen with inducible pluripotent stem cells (iPSCs) and epidermal neural crest stem cells (EPI-NCSCs), have opened new possibilities to advance research in translational stem cell therapies for individuals with hearing loss. Despite this, more detailed network maps of gene expression are needed, including an appreciation for the roles of microRNAs (miRs), key regulators of transcriptional gene networks. To harness the true potential of stem cells for hair cell regeneration, basic science and clinical medicine must work together to expedite the transition from bench to bedside by elucidating the full mechanisms of inner ear hair cell development, including a focus on the role of miRs, and adapting this knowledge safely and efficiently to stem cell technologies.

Limited Inner Ear Morphogenesis and Neurosensory Development Are Possible in the Absence of GATA3

The International Journal of Developmental Biology. 2011  |  Pubmed ID: 21553382

Haploinsufficiency of Gata3 causes hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome in mice and humans. Gata3 null mutation leads to early lethality around embryonic day (E)11.5, but catecholamine precursor administration can rescue Gata3 null mutants to E16.5. At E11.5, GATA3 deficiency results in the development of an empty otocyst with an endolymphatic duct. However, using rescued mice we found that some morphogenesis and neurosensory development is possible in the ear without Gata3. Extending previous studies, we find that at E16.5, Gata3 mutant inner ears can undergo partial morphogenesis and develop an endolymphatic duct, a utricular and saccular recess, and a shortened cochlear duct. In addition to the obvious morphogenic aberrations, these studies demonstrate that a subset of neurons develop and connect a fragmented sensory patch of MYO7A-positive hair cells to the vestibular nuclei of the brainstem. In situ hybridization studies reveal altered expression of several transcription factors relevant to ear development and we hypothesize that this may relate to the observed dysmorphia and restricted neurosensory development. While a cochlear duct can form, there is no concurrent cochlear neurosensory development, observations consistent with specific hearing defects encountered by HDR patients and mice with Gata3-associated expression alterations. Gata3 null mutant phenocopies the otic maldevelopment (cochlear duct formation in the absence of neurosensory development) seen in Foxg1cre mediated conditional deletion of microRNA processing enzyme, Dicer1. Finally, while GATA3 is expressed in the developing vestibulo-cochlear efferent (VCE) neurons, and its absence in the null mutants disrupts VCE projections to the ear, loss of GATA3 does not affect VCE progenitor cell migration.

Conditional Deletion of N-Myc Disrupts Neurosensory and Non-sensory Development of the Ear

Developmental Dynamics : an Official Publication of the American Association of Anatomists. Jun, 2011  |  Pubmed ID: 21448975

Ear development requires interactions of transcription factors for proliferation and differentiation. The proto-oncogene N-Myc is a member of the Myc family that regulates proliferation. To investigate the function of N-Myc, we conditionally knocked out N-Myc in the ear using Tg(Pax2-Cre) and Foxg1(KiCre). N-Myc CKOs had reduced growth of the ear, abnormal morphology including fused sensory epithelia, disrupted histology, and disorganized neuronal innervation. Using Thin-Sheet Laser Imaging Microscopy (TSLIM), 3D reconstruction and quantification of the cochlea revealed a greater than 50% size reduction. Immunochemistry and in situ hybridization showed a gravistatic organ-cochlear fusion and a "circularized" apex with no clear inner and outer hair cells. Furthermore, the abnormally developed cochlea had cross innervation from the vestibular ganglion near the basal tip. These findings are put in the context of the possible functional relationship of N-Myc with a number of other cell proliferative and fate determining genes during ear development.

The Molecular Basis of Making Spiral Ganglion Neurons and Connecting Them to Hair Cells of the Organ of Corti

Hearing Research. Aug, 2011  |  Pubmed ID: 21414397

The bipolar spiral ganglion neurons apparently delaminate from the growing cochlear duct and migrate to Rosenthal's canal. They project radial fibers to innervate the organ of Corti (type I neurons to inner hair cells, type II neurons to outer hair cells) and also project tonotopically to the cochlear nuclei. The early differentiation of these neurons requires transcription factors to regulate migration, pathfinding and survival. Neurog1 null mice lack formation of neurons. Neurod1 null mice show massive neuronal death combined with aberrant central and peripheral projections. Prox1 protein is necessary for proper type II neuron process navigation, which is also affected by the neurotrophins Bdnf and Ntf3. Neurotrophin null mutants show specific patterns of neuronal loss along the cochlea but remaining neurons compensate by expanding their target area. All neurotrophin mutants have reduced radial fiber growth proportional to the degree of loss of neurotrophin alleles. This suggests a simple dose response effect of neurotrophin concentration. Keeping overall concentration constant, but misexpressing one neurotrophin under regulatory control of another one results in exuberant fiber growth not only of vestibular fibers to the cochlea but also of spiral ganglion neurons to outer hair cells suggesting different effectiveness of neurotrophins for spiral ganglion neurite growth. Finally, we report here for the first time that losing all neurons in double null mutants affects extension of the cochlear duct and leads to formation of extra rows of outer hair cells in the apex, possibly by disrupting the interaction of the spiral ganglion with the elongating cochlea.

MicroRNA-183 Family Expression in Hair Cell Development and Requirement of MicroRNAs for Hair Cell Maintenance and Survival

Developmental Dynamics : an Official Publication of the American Association of Anatomists. Apr, 2011  |  Pubmed ID: 21360794

MicroRNAs (miRNAs) post-transcriptionally repress complementary target gene expression and can contribute to cell differentiation. The coordinate expression of miRNA-183 family members (miR-183, miR-96, and miR-182) has been demonstrated in sensory cells of the mouse inner ear and other vertebrate sensory organs. To further examine hair cell miRNA expression in the mouse inner ear, we have analyzed miR-183 family expression in wild type animals and various mutants with defects in neurosensory development. miR-183 family member expression follows neurosensory cell specification, exhibits longitudinal (basal-apical) gradients in maturating cochlear hair cells, and is maintained in sensory neurons and most hair cells into adulthood. Depletion of hair cell miRNAs resulting from Dicer1 conditional knockout (CKO) in Atoh1-Cre transgenic mice leads to more disparate basal-apical gene expression profiles and eventual hair cell loss. Results suggest that hair cell miRNAs subdue cochlear gradient gene expression and are required for hair cell maintenance and survival.

Hoxb3 Negatively Regulates Hoxb1 Expression in Mouse Hindbrain Patterning

Developmental Biology. Apr, 2011  |  Pubmed ID: 21320481

The spatial regulation of combinatorial expression of Hox genes is critical for determining hindbrain rhombomere (r) identities. To address the cross-regulatory relationship between Hox genes in hindbrain neuronal specification, we have generated a gain-of-function transgenic mouse mutant Hoxb3(Tg) using the Hoxb2 r4-specific enhancer element. Interestingly, in r4 of the Hoxb3(Tg) mutant where Hoxb3 was ectopically expressed, the expression of Hoxb1 was specifically abolished. The hindbrain neuronal defects of the Hoxb3(Tg) mutant mice were similar to those of Hoxb1(-/-) mutants. Therefore, we hypothesized that Hoxb3 could directly suppress Hoxb1 expression. We first identified a novel Hoxb3 binding site S3 on the Hoxb1 locus and confirmed protein binding to this site by EMSA, and by in vivo ChIP analysis using P19 cells and hindbrain tissues from the Hoxb3(Tg) mutant. We further showed that Hoxb3 could suppress Hoxb1 transcriptional activity by chick in ovo luciferase reporter assay. Moreover, in E10.5 wildtype caudal hindbrain, where Hoxb1 is not expressed, we showed by in vivo ChIP that Hoxb3 was consistently bound to the S3 site on the Hoxb1 gene. This study reveals a novel negative regulatory mechanism by which Hoxb3 as a posterior gene serves to restrict Hoxb1 expression in r4 by direct transcriptional repression to maintain the rhombomere identity.

Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

American Journal of Human Genetics. Feb, 2011  |  Pubmed ID: 21276947

Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.

Dissecting the Molecular Basis of Organ of Corti Development: Where Are We Now?

Hearing Research. Jun, 2011  |  Pubmed ID: 21256948

This review summarizes recent progress in our understanding of the molecular basis of cochlear duct growth, specification of the organ of Corti, and differentiation of the different types of hair cells. Studies of multiple mutations suggest that developing hair cells are involved in stretching the organ of Corti through convergent extension movements. However, Atoh1 null mutants have only undifferentiated and dying organ of Corti precursors but show a near normal extension of the cochlear duct, implying that organ of Corti precursor cells can equally drive this process. Some factors influence cochlear duct growth by regulating the cell cycle and proliferation. Shortened cell cycle and premature cell cycle exit can lead to a shorter organ of Corti with multiple rows of hair cells (e.g., Foxg1 null mice). Other genes affect the initial formation of a cochlear duct with or without affecting the organ of Corti. Such observations are consistent with evolutionary data that suggest some developmental uncoupling of cochlear duct from organ of Corti formation. Positioning the organ of Corti requires multiple genes expressed in the organ of Corti and the flanking region. Several candidate factors have emerged but how they cooperate to specify the organ of Corti and the topology of hair cells remains unclear. Atoh1 is required for differentiation of all hair cells, but regulation of inner versus outer hair cell differentiation is still unidentified. In summary, the emerging molecular complexity of organ of Corti development demands further study before a rational approach towards regeneration of unique types of hair cells in specific positions is possible.

The Role of Sensory Organs and the Forebrain for the Development of the Craniofacial Shape As Revealed by Foxg1-cre-mediated MicroRNA Loss

Genesis (New York, N.Y. : 2000). Apr, 2011  |  Pubmed ID: 21225654

Cranial development is critically influenced by the relative growth of distinct elements. Previous studies have shown that the transcription factor Foxg1 is essential the for development of the telencephalon, olfactory epithelium, parts of the eye and the ear. Here we investigate the effects of a Foxg1-cre-mediated conditional deletion of Dicer1 and microRNA (miRNA) depletion on mouse embryos. We report the rapid and complete loss of the telencephalon and cerebellum as well as the severe reduction in the ears and loss of the anterior half of the eyes. These losses result in unexpectedly limited malformations of anterodorsal aspects of the skull. We investigated the progressive disappearance of these initially developing structures and found a specific miRNA of nervous tissue, miR-124, to disappear before reduction in growth of the specific neurosensory areas. Correlated with the absence of miR-124, these areas showed numerous apoptotic cells that stained positive for anticleaved caspase 3 and the phosphatidylserine stain PSVue® before the near or complete loss of those brain and sensory areas (forebrain, cerebellum, anterior retina, and ear). We conclude that Foxg1-cre-mediated conditional deletion of Dicer1 leads to the absence of functional miRNA followed by complete or nearly complete loss of neurons. Embryonic neurosensory development therefore depends critically on miRNA. Our data further suggest that loss of a given neuronal compartment can be triggered using early deletion of Dicer1 and thus provides a novel means to genetically remove specific neurosensory areas to investigate loss of their function on morphology (this study) or signal processing within the brain.

Conditional Deletion of Atoh1 Using Pax2-Cre Results in Viable Mice Without Differentiated Cochlear Hair Cells That Have Lost Most of the Organ of Corti

Hearing Research. May, 2011  |  Pubmed ID: 21146598

Atonal homolog1 (Atoh1, formerly Math1) is a crucial bHLH transcription factor for inner ear hair cell differentiation. Its absence in embryos results in complete absence of mature hair cells at birth and its misexpression can generate extra hair cells. Thus Atoh1 may be both necessary and sufficient for hair cell differentiation in the ear. Atoh1 null mice die at birth and have some undifferentiated cells in sensory epithelia carrying Atoh1 markers. The fate of these undifferentiated cells in neonates is unknown due to lethality. We use Tg(Pax2-Cre) to delete floxed Atoh1 in the inner ear. This generates viable conditional knockout (CKO) mice for studying the postnatal development of the inner ear without differentiated hair cells. Using in situ hybridization we find that Tg(Pax2-Cre) recombines the floxed Atoh1 prior to detectable Atoh1 expression. Only the posterior canal crista has Atoh1 expressing hair cells due to incomplete recombination. Most of the organ of Corti cells are lost in CKO mice via late embryonic cell death. Marker genes indicate that the organ of Corti is reduced to two rows of cells wedged between flanking markers of the organ of Corti (Fgf10 and Bmp4). These two rows of cells (instead of five rows of supporting cells) are positive for Prox1 in neonates. By postnatal day 14 (P14), the remaining cells of the organ of Corti are transformed into a flat epithelium with no distinction of any specific cell type. However, some of the remaining organ of Corti cells express Myo7a at late postnatal stages and are innervated by remaining afferent fibers. Initial growth of afferents and efferents in embryos shows no difference between control mice and Tg(Pax2-Cre)::Atoh1 CKO mice. Most afferents and efferents are lost in the CKO mutant before birth, except for the apex and few fibers in the base. Afferents focus their projections on patches that express the prosensory specifying gene, Sox2. This pattern of innervation by sensory neurons is maintained at least until P14, but fibers target the few Myo7a positive cells found in later stages.

Mutational Ataxia Resulting from Abnormal Vestibular Acquisition and Processing is Partially Compensated For

Behavioral Neuroscience. Feb, 2012  |  Pubmed ID: 22309445

Due to the multisensory input into the balance system, the loss of one input, such as an ear, can generally be compensated for. However, when a mismatch or incomplete loss of inputs occurs, the ability to compensate for the stimulus misrepresentation may be compromised. The inner ear and cerebellum are important input and processing centers for balance but no genetic models have been generated to assess balance or compensation in the abnormal development of both these organs/brain areas. Important to their formation is regulation of proliferation mediated by the proto-oncogene N-Myc. Conditional knockouts (CKOs) of N-Myc using Tg(Pax2-Cre) have a misshapen and smaller ear with a fused utricle, saccule, and cochlea and absent horizontal canal, aberrant cochlear and vestibular innervations, and a size reduction in the cerebellum. CKOs are viable with obvious behavioral deficits, including circling behavior and unstable gait. To test the degree of ataxia and possible compensation of vestibular defects in these mutant mice, we use the Noldus Catwalk System to assess the gait of Tg(Pax2-Cre) N-Myc CKOs over five months. N-Myc CKOs perform worse than control littermates, in particular, in step regularity. We show that disrupting one member of the Myc family during embryonic development coincides with a differential loss of function in the cochlea compared to the vestibular apparatus. In addition, we show that the distortion in the ear morphology combined with a reduction of the cerebellum, rather than a complete loss of the vestibular-cerebellar pathway, leads to partial behavioral compensation that remains unchanged over time. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

Expression of Neurog1 Instead of Atoh1 Can Partially Rescue Organ of Corti Cell Survival

PloS One. 2012  |  Pubmed ID: 22292060

In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1(KINeurog1)) in which Atoh1 is replaced by Neurog1. Expression of Neurog1 under Atoh1 promoter control alters the cellular gene expression pattern, differentiation and survival of hair cell precursors in both heterozygous (Atoh1(+/KINeurog1)) and homozygous (Atoh1(KINeurog1/KINeurog1)) KI mice. Homozygous KI mice develop patches of organ of Corti precursor cells that express Neurog1, Neurod1, several prosensory genes and neurotrophins. In addition, these patches of cells receive afferent and efferent processes. Some cells among these patches form multiple microvilli but no stereocilia. Importantly, Neurog1 expressing mutants differ from Atoh1 null mutants, as they have intermittent formation of organ of Corti-like patches, opposed to a complete 'flat epithelium' in the absence of Atoh1. In heterozygous KI mice co-expression of Atoh1 and Neurog1 results in change in fate and patterning of some hair cells and supporting cells in addition to the abnormal hair cell polarity in the later stages of development. This differs from haploinsufficiency of Atoh1 (Pax2cre; Atoh1(f/+)), indicating the effect of Neurog1 expression in developing hair cells. Our data suggest that Atoh1(KINeurog1) can provide some degree of functional support for survival of organ of Corti cells. In contrast to the previously demonstrated fate plasticity of neurons to differentiate as hair cells, hair cell precursors can be maintained for a limited time by Neurog1 but do not transdifferentiate as neurons.

A Novel Atoh1 "self-terminating" Mouse Model Reveals the Necessity of Proper Atoh1 Level and Duration for Hair Cell Differentiation and Viability

PloS One. 2012  |  Pubmed ID: 22279587

Atonal homolog1 (Atoh1) is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO) mouse line using Tg(Atoh1-cre), in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to "self-terminate" its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy.

Scanning Thin-sheet Laser Imaging Microscopy Elucidates Details on Mouse Ear Development

Developmental Dynamics : an Official Publication of the American Association of Anatomists. Mar, 2012  |  Pubmed ID: 22271591

Background: The mammalian inner ear is transformed from a flat placode into a three-dimensional (3D) structure with six sensory epithelia that allow for the perception of sound and both linear and angular acceleration. While hearing and balance problems are typically considered to be adult onset diseases, they may arise as a developmental perturbation to the developing ear. Future prevention of hearing or balance loss requires an understanding of how closely genetic mutations in model organisms reflect the human case, necessitating an objective multidimensional comparison of mouse ears with human ears that have comparable mutations in the same gene. Results: Here, we present improved 3D analyses of normal murine ears during embryonic development using optical sections obtained through Thin-Sheet Laser Imaging Microscopy. We chronicle the transformation of an undifferentiated otic vesicle between mouse embryonic day 11.5 to a fully differentiated inner ear at postnatal day 15. Conclusions: Our analysis of ear development provides new insights into ear development, enables unique perspectives into the complex development of the ear, and allows for the first full quantification of volumetric and linear aspects of ear growth. Our data provide the framework for future analysis of mutant phenotypes that are currently under-appreciated using only two dimensional renderings. Developmental Dynamics 241:465-480, 2012. © 2012 Wiley Periodicals, Inc.

simple hit counter