In JoVE (1)

Other Publications (81)

Articles by Charles C. Richardson in JoVE

Other articles by Charles C. Richardson on PubMed

Lagging Strand Synthesis in Coordinated DNA Synthesis by Bacteriophage T7 Replication Proteins

Journal of Molecular Biology. Feb, 2002  |  Pubmed ID: 11829500

The proteins of bacteriophage T7 DNA replication mediate coordinated leading and lagging strand synthesis on a minicircle template. A distinguishing feature of the coordinated synthesis is the presence of a replication loop containing double and single-stranded DNA with a combined average length of 2600 nucleotides. Lagging strands consist of multiple Okazaki fragments, with an average length of 3000 nucleotides, suggesting that the replication loop dictates the frequency of initiation of Okazaki fragments. The size of Okazaki fragments is not affected by varying the components (T7 DNA polymerase, gene 4 helicase-primase, gene 2.5 single-stranded DNA binding protein, and rNTPs) of the reaction over a relatively wide range. Changes in the size of Okazaki fragments occurs only when leading and lagging strand synthesis is no longer coordinated. The synthesis of each Okazaki fragment is initiated by the synthesis of an RNA primer by the gene 4 primase at specific recognition sites. In the absence of a primase recognition site on the minicircle template no lagging strand synthesis occurs. The size of the Okazaki fragments is not affected by the number of recognition sites on the template.

Interaction of Adjacent Primase Domains Within the Hexameric Gene 4 Helicase-primase of Bacteriophage T7

Proceedings of the National Academy of Sciences of the United States of America. Oct, 2002  |  Pubmed ID: 12228732

The interaction of primase monomers within the hexameric gene 4 helicase-primase of bacteriophage T7 has been examined by using two genetically distinct gene 4 proteins. The T7 56-kDa gene 4 protein differs from the full-length 63-kDa protein in that it lacks the N-terminal zinc motif essential for the recognition of primase recognition sites. A second gene 4 protein, gp4-K122A, is unable to catalyze the synthesis of phosphodiester bonds as the result of an amino acid change in the catalytic site. Although each protein alone is inactive, the two together catalyze the synthesis of RNA primers. Reconstitution of activity depends on hexamer formation. We propose that the zinc motif of one subunit in the hexamer interacts with the catalytic sites of adjacent subunits.

Essential Amino Acid Residues in the Single-stranded DNA-binding Protein of Bacteriophage T7. Identification of the Dimer Interface

The Journal of Biological Chemistry. Dec, 2002  |  Pubmed ID: 12379653

Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein. T7 phage with gene 2.5 deleted can grow only on Escherichia coli cells that express gene 2.5 from a plasmid. This complementation assay was used to screen for lethal mutations in gene 2.5. By screening a library of randomly mutated plasmids encoding gene 2.5, we identified 20 different single amino acid alterations in gene 2.5 protein that are lethal in vivo. The location of these essential residues within the three-dimensional structure of gene 2.5 protein assists in the identification of motifs in the protein. In this study we show that a subset of these alterations defines the dimer interface of gene 2.5 protein predicted by the crystal structure. Recombinantly expressed and purified gene 2.5 protein-P22L, gene 2.5 protein-F31S, and gene 2.5 protein-G36S do not form dimers at salt concentrations where the wild-type gene 2.5 protein exists as a dimer. The basis of the lethality of these mutations in vivo is not known because altered proteins retain the ability to bind single-stranded DNA, anneal complementary strands of DNA, and interact with T7 DNA polymerase.

The DNA Binding Domain of the Gene 2.5 Single-stranded DNA-binding Protein of Bacteriophage T7

The Journal of Biological Chemistry. Feb, 2003  |  Pubmed ID: 12496273

Gene 2.5 of bacteriophage T7 encodes a single-stranded DNA-binding protein that is essential for viral survival. Its crystal structure reveals a conserved oligosaccharide/oligonucleotide binding fold predicted to interact with single-stranded DNA. However, there is no experimental evidence to support this hypothesis. Recently, we reported a genetic screen for lethal mutations in gene 2.5 that we are using to identify functional domains of the gene 2.5 protein. This screen uncovered a number of mutations that led to amino acid substitutions in the proposed DNA binding domain. Three variant proteins, gp2.5-Y158C, gp2.5-K152E, and gp2.5-Y111C/Y158C, exhibit a decrease in binding affinity for oligonucleotides. A fourth, gp2.5-K109I, exhibits an altered mode of binding single-stranded DNA. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta26C, binds single-stranded DNA 10-fold more tightly than the wild-type protein. The three altered proteins defective in single-stranded DNA binding cannot mediate the annealing of homologous DNA, whereas gp2.5-Delta26C mediates the reaction more effectively than does wild-type. Gp2.5-K109I retains this annealing ability, albeit slightly less efficiently. With the exception of gp2.5-Delta26C, all variant proteins form dimers in solution and physically interact with T7 DNA polymerase.

A Covalent Linkage Between the Gene 5 DNA Polymerase of Bacteriophage T7 and Escherichia Coli Thioredoxin, the Processivity Factor: Fate of Thioredoxin During DNA Synthesis

The Journal of Biological Chemistry. Jun, 2003  |  Pubmed ID: 12692131

Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of the two proteins. The polymerase activity of the covalently linked complex (gp5-S-S-trx) is similar to that of gp5/trx on poly(dA)/oligo(dT). However, gp5-S-S-trx has only one third the polymerase activity of gp5/trx on single-stranded M13 DNA. gp5-S-S-trx has difficulty polymerizing nucleotides through sites of secondary structure on M13 DNA and stalls at these sites, resulting in lower processivity. However, gp5-S-S-trx has an identical processivity and rate of elongation when E. coli single-stranded DNA-binding protein (SSB protein) is used to remove secondary structure from M13 DNA. Upon completing synthesis on a DNA template lacking secondary structure, both complexes recycle intact, without dissociation of the processivity factor, to initiate synthesis on a new DNA template. However, a complex stalled at secondary structure becomes unstable, and both subunits dissociate from each other as the polymerase prematurely releases from M13 DNA.

A Single-stranded DNA-binding Protein of Bacteriophage T7 Defective in DNA Annealing

The Journal of Biological Chemistry. Aug, 2003  |  Pubmed ID: 12748198

The annealing of complementary strands of DNA is a vital step during the process of DNA replication, recombination, and repair. In bacteriophage T7-infected cells, the product of viral gene 2.5, a single-stranded DNA-binding protein, performs this function. We have identified a single amino acid residue in gene 2.5 protein, arginine 82, that is critical for its DNA annealing activity. Expression of gene 2.5 harboring this mutation does not complement the growth of a T7 bacteriophage lacking gene 2.5. Purified gene 2.5 protein-R82C binds single-stranded DNA with a greater affinity than the wild-type protein but does not mediate annealing of complementary strands of DNA. A carboxyl-terminal-deleted protein, gene 2.5 protein-Delta26C, binds even more tightly to single-stranded DNA than does gene 2.5 protein-R82C, but it anneals homologous strands of DNA as well as does the wild-type protein. The altered protein forms dimers and interacts with T7 DNA polymerase comparable with the wild-type protein. Gene 2.5 protein-R82C condenses single-stranded M13 DNA in a manner similar to wild-type protein when viewed by electron microscopy.

The Carboxyl-terminal Domain of Bacteriophage T7 Single-stranded DNA-binding Protein Modulates DNA Binding and Interaction with T7 DNA Polymerase

The Journal of Biological Chemistry. Aug, 2003  |  Pubmed ID: 12766155

Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein (gp2.5). Previous studies have demonstrated that the acidic carboxyl terminus of the protein is essential and that it mediates multiple protein-protein interactions. A screen for lethal mutations in gene 2.5 uncovered a variety of essential amino acids, among which was a single amino acid substitution, F232L, at the carboxyl-terminal residue. gp2.5-F232L exhibits a 3-fold increase in binding affinity for single-stranded DNA and a slightly lower affinity for T7 DNA polymerase when compared with wild type gp2.5. gp2.5-F232L stimulates the activity of T7 DNA polymerase and, in contrast to wild-type gp2.5, promotes strand displacement DNA synthesis by T7 DNA polymerase. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta 26C, binds single-stranded DNA 40-fold more tightly than the wild-type protein and cannot physically interact with T7 DNA polymerase. gp2.5-Delta 26C is inhibitory for DNA synthesis catalyzed by T7 DNA polymerase on single-stranded DNA, and it does not stimulate strand displacement DNA synthesis at high concentration. The biochemical and genetic data support a model in which the carboxyl-terminal tail modulates DNA binding and mediates essential interactions with T7 DNA polymerase.

Modular Architecture of the Bacteriophage T7 Primase Couples RNA Primer Synthesis to DNA Synthesis

Molecular Cell. May, 2003  |  Pubmed ID: 12769857

DNA primases are template-dependent RNA polymerases that synthesize oligoribonucleotide primers that can be extended by DNA polymerase. The bacterial primases consist of zinc binding and RNA polymerase domains that polymerize ribonucleotides at templating sequences of single-stranded DNA. We report a crystal structure of bacteriophage T7 primase that reveals its two domains and the presence of two Mg(2+) ions bound to the active site. NMR and biochemical data show that the two domains remain separated until the primase binds to DNA and nucleotide. The zinc binding domain alone can stimulate primer extension by T7 DNA polymerase. These findings suggest that the zinc binding domain couples primer synthesis with primer utilization by securing the DNA template in the primase active site and then delivering the primed DNA template to DNA polymerase. The modular architecture of the primase and a similar mechanism of priming DNA synthesis are likely to apply broadly to prokaryotic primases.

Single-molecule Kinetics of Lambda Exonuclease Reveal Base Dependence and Dynamic Disorder

Science (New York, N.Y.). Aug, 2003  |  Pubmed ID: 12947199

We used a multiplexed approach based on flow-stretched DNA to monitor the enzymatic digestion of lambda-phage DNA by individual bacteriophage lambda exonuclease molecules. Statistical analyses of multiple single-molecule trajectories observed simultaneously reveal that the catalytic rate is dependent on the local base content of the substrate DNA. By relating single-molecule kinetics to the free energies of hydrogen bonding and base stacking, we establish that the melting of a base from the DNA is the rate-limiting step in the catalytic cycle. The catalytic rate also exhibits large fluctuations independent of the sequence, which we attribute to conformational changes of the enzyme-DNA complex.

Proteomic Analysis of Thioredoxin-targeted Proteins in Escherichia Coli

Proceedings of the National Academy of Sciences of the United States of America. Mar, 2004  |  Pubmed ID: 15004283

Thioredoxin, a ubiquitous and evolutionarily conserved protein, modulates the structure and activity of proteins involved in a spectrum of processes, such as gene expression, apoptosis, and the oxidative stress response. Here, we present a comprehensive analysis of the thioredoxin-linked Escherichia coli proteome by using tandem affinity purification and nanospray microcapillary tandem mass spectrometry. We have identified a total of 80 proteins associated with thioredoxin, implicating the involvement of thioredoxin in at least 26 distinct cellular processes that include transcription regulation, cell division, energy transduction, and several biosynthetic pathways. We also found a number of proteins associated with thioredoxin that either participate directly (SodA, HPI, and AhpC) or have key regulatory functions (Fur and AcnB) in the detoxification of the cell. Transcription factors NusG, OmpR, and RcsB, not considered to be under redox control, are also associated with thioredoxin.

Effect of Single-stranded DNA-binding Proteins on the Helicase and Primase Activities of the Bacteriophage T7 Gene 4 Protein

The Journal of Biological Chemistry. May, 2004  |  Pubmed ID: 15044449

Gene 4 protein (gp4) of bacteriophage T7 provides two essential functions at the T7 replication fork, primase and helicase activities. Previous studies have shown that the single-stranded DNA-binding protein of T7, encoded by gene 2.5, interacts with gp4 and modulates its multiple functions. To further characterize the interactions between gp4 and gene 2.5 protein (gp2.5), we have examined the effect of wild-type and altered gene 2.5 proteins as well as Escherichia coli single-stranded DNA-binding (SSB) protein on the ability of gp4 to synthesize primers, hydrolyze dTTP, and unwind duplex DNA. Wild-type gp2.5 and E. coli SSB protein stimulate primer synthesis and DNA-unwinding activities of gp4 at low concentrations but do not significantly affect single-stranded DNA-dependent hydrolysis of dTTP. Neither protein inhibits the binding of gp4 to single-stranded DNA. The variant gene 2.5 proteins, gp2.5-F232L and gp2.5-Delta26C, inhibit primase, dTTPase, and helicase activities proportional to their increased affinities for DNA. Interestingly, wild-type gp2.5 stimulates the unwinding activity of gp4 except at very high concentrations, whereas E. coli SSB protein is highly inhibitory at relative low concentrations.

The Linker Region Between the Helicase and Primase Domains of the Gene 4 Protein of Bacteriophage T7. Role in Helicase Conformation and Activity

The Journal of Biological Chemistry. May, 2004  |  Pubmed ID: 15044475

The gene 4 protein of bacteriophage T7 provides both helicase and primase activities. The C-terminal helicase domain is responsible for DNA-dependent dTTP hydrolysis, translocation, and DNA unwinding whereas the N-terminal primase domain is responsible for template-directed oligoribonucleotide synthesis. A 26 amino acid linker region (residues 246-271) connects the two domains and is essential for the formation of functional hexamers. In order to further dissect the role of the linker region, three residues (Ala257, Pro259, and Asp263) that was disordered in the crystal structure of the hexameric helicase fragment were substituted with all amino acids, and the altered proteins were analyzed for their ability to support growth of T7 phage lacking gene 4. The in vivo screening revealed Ala257 and Asp263 to be essential whereas Pro259 could be replaced with any amino acid without loss of function. Selected gene 4 proteins with substitution for Ala257 or Asp263 were purified and examined for their ability to unwind DNA, hydrolyze dTTP, translocate on ssDNA, and oligomerize. In the presence of Mg2+, all of the altered proteins oligomerize. However, in the absence of divalent ion, alterations at position 257 increase the extent of oligomerization whereas those at position 263 reduce oligomer formation. Although dTTP hydrolysis activity is reduced only 2-3-fold, none of the altered gene 4 proteins can translocate effectively on single-strand DNA, and they cannot mediate the unwinding of duplex DNA. Primer synthesis catalyzed by the altered proteins is relatively normal on a short DNA template but it is severely impaired on longer templates where translocation is required. The results suggest that the linker region not only connects the two domains of the gene 4 protein and participates in oligomerization, but also contributes to helicase activity by mediating conformations within the functional hexamer.

The Arginine Finger of Bacteriophage T7 Gene 4 Helicase: Role in Energy Coupling

Proceedings of the National Academy of Sciences of the United States of America. Mar, 2004  |  Pubmed ID: 15070725

The DNA helicase encoded by gene 4 of bacteriophage T7 couples DNA unwinding to the hydrolysis of dTTP. The loss of coupling in the presence of orthovanadate (Vi) suggests that the gamma-phosphate of dTTP plays an important role in this mechanism. The crystal structure of the hexameric helicase shows Arg-522, located at the subunit interface, positioned to interact with the gamma-phosphate of bound nucleoside 5' triphosphate. In this respect, it is analogous to arginine fingers found in other nucleotide-hydrolyzing enzymes. When Arg-522 is replaced with alanine (gp4-R522A) or lysine (gp4-R522K), the rate of dTTP hydrolysis is significantly decreased. dTTPase activity of the altered proteins is not inhibited by Vi, suggesting the loss of an interaction between Vi and gene 4 protein. gp4-R522A cannot unwind DNA, whereas gp4-R522K does so, proportionate to its dTTPase activity. However, gp4-R522K cannot stimulate T7 polymerase activity on double-stranded DNA. These findings support the involvement of the Arg-522 residue in the energy coupling mechanism.

A Unique Region in Bacteriophage T7 DNA Polymerase Important for Exonucleolytic Hydrolysis of DNA

The Journal of Biological Chemistry. Oct, 2004  |  Pubmed ID: 15292168

A crystal structure of the bacteriophage T7 gene 5 protein/Escherichia coli thioredoxin complex reveals a region in the exonuclease domain (residues 144-157) that is not present in other members of the E. coli DNA polymerase I family. To examine the role of this region, a genetically altered enzyme that lacked residues 144-157 (T7 polymerase (pol) Delta144-157) was purified and characterized biochemically. The polymerase activity and processivity of T7 pol Delta144-157 on primed M13 DNA are similar to that of wild-type T7 DNA polymerase implying that these residues are not important for DNA synthesis. The ability of T7 pol Delta144-157 to catalyze the hydrolysis of a phosphodiester bond, as judged from the rate of hydrolysis of a p-nitrophenyl ester of thymidine monophosphate, also remains unaffected. However, the 3'-5' exonuclease activity on polynucleotide substrates is drastically reduced; exonuclease activity on single-stranded DNA is 10-fold lower and that on double-stranded DNA is 20-fold lower as compared with wild-type T7 DNA polymerase. Taken together, our results suggest that residues 144-157 of gene 5 protein, although not crucial for polymerase activity, are important for DNA binding during hydrolysis of polynucleotides.

The Highly Processive DNA Polymerase of Bacteriophage T5. Role of the Unique N and C Termini

The Journal of Biological Chemistry. Nov, 2004  |  Pubmed ID: 15377656

The DNA polymerase encoded by bacteriophage T5 has been reported previously to be processive and to catalyze extensive strand displacement synthesis. The enzyme, purified from phage-infected cells, did not require accessory proteins for these activities. Although T5 DNA polymerase shares extensive sequence homology with Escherichia coli DNA polymerase I and T7 DNA polymerase, it contains unique regions of 130 and 71 residues at its N and C termini, respectively. We cloned the gene encoding wild-type T5 DNA polymerase and characterized the overproduced protein. We also examined the effect of N- and C-terminal deletions on processivity and strand displacement synthesis. T5 DNA polymerase lacking its N-terminal 30 residues resembled the wild-type enzyme albeit with a 2-fold reduction in polymerase activity. Deletion of 24 residues at the C terminus resulted in a 30-fold reduction in polymerase activity on primed circular DNA, had dramatically reduced processivity, and was unable to carry out strand displacement synthesis. Deletion of 63 residues at the C terminus resulted in a 20,000-fold reduction in polymerase activity. The 3' to 5' double-stranded DNA exonuclease activity associated with T5 DNA polymerase was reduced by a factor of 5 in the polymerase truncated at the N terminus but was stimulated by a factor of 7 in the polymerase truncated at the C terminus. We propose a model in which the C terminus increases the affinity of the DNA for the polymerase active site, thus increasing processivity and decreasing the accessibility of the DNA to the exonuclease active site.

Crystal Structures of 2-acetylaminofluorene and 2-aminofluorene in Complex with T7 DNA Polymerase Reveal Mechanisms of Mutagenesis

Proceedings of the National Academy of Sciences of the United States of America. Nov, 2004  |  Pubmed ID: 15528277

The carcinogen 2-acetylaminofluorene forms two major DNA adducts: N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and its deacetylated derivative, N-(2'-deoxyguanosin-8-yl)-2-aminofluorene (dG-AF). Although the dG-AAF and dG-AF adducts are distinguished only by the presence or absence of an acetyl group, they have profoundly different effects on DNA replication. dG-AAF poses a strong block to DNA synthesis and primarily induces frameshift mutations in bacteria, resulting in the loss of one or two nucleotides during replication past the lesion. dG-AF is less toxic and more easily bypassed by DNA polymerases, albeit with an increased frequency of misincorporation opposite the lesion, primarily resulting in G --> T transversions. We present three crystal structures of bacteriophage T7 DNA polymerase replication complexes, one with dG-AAF in the templating position and two others with dG-AF in the templating position. Our crystallographic data suggest why a dG-AAF adduct blocks replication more strongly than does a dG-AF adduct and provide a possible explanation for frameshift mutagenesis during replication bypass of a dG-AAF adduct. The dG-AAF nucleoside adopts a syn conformation that facilitates the intercalation of its fluorene ring into a hydrophobic pocket on the surface of the fingers subdomain and locks the fingers in an open, inactive conformation. In contrast, the dG-AF base at the templating position is not well defined by the electron density, consistent with weak binding to the polymerase and a possible interchange of this adduct between the syn and anti conformations.

A Unique Loop in T7 DNA Polymerase Mediates the Binding of Helicase-primase, DNA Binding Protein, and Processivity Factor

Proceedings of the National Academy of Sciences of the United States of America. Apr, 2005  |  Pubmed ID: 15795374

Bacteriophage T7 DNA polymerase (gene 5 protein, gp5) interacts with its processivity factor, Escherichia coli thioredoxin, via a unique loop at the tip of the thumb subdomain. We find that this thioredoxin-binding domain is also the site of interaction of the phage-encoded helicase/primase (gp4) and ssDNA binding protein (gp2.5). Thioredoxin itself interacts only weakly with gp4 and gp2.5 but drastically enhances their binding to gp5. The acidic C termini of gp4 and gp2.5 are critical for this interaction in the absence of DNA. However, the C-terminal tail of gp4 is not required for binding to gp5 when the latter is bound to a primer/template. We propose that the thioredoxin-binding domain is a molecular switch that regulates the interaction of T7 DNA polymerase with other proteins of the replisome.

Acidic Residues in the Nucleotide-binding Site of the Bacteriophage T7 DNA Primase

The Journal of Biological Chemistry. Jul, 2005  |  Pubmed ID: 15917241

DNA primases catalyze the synthesis of oligoribonucleotides to initiate lagging strand DNA synthesis during DNA replication. Like other prokaryotic homologs, the primase domain of the gene 4 helicase-primase of bacteriophage T7 contains a zinc motif and a catalytic core. Upon recognition of the sequence, 5'-GTC-3' by the zinc motif, the catalytic site condenses the cognate nucleotides to produce a primer. The TOPRIM domain in the catalytic site contains several charged residues presumably involved in catalysis. Each of eight acidic residues in this region was replaced with alanine, and the properties of the altered primases were examined. Six of the eight residues (Glu-157, Glu-159, Asp-161, Asp-207, Asp-209, and Asp-237) are essential in that altered gene 4 proteins containing these mutations cannot complement T7 phage lacking gene 4 for T7 growth. These six altered gene 4 proteins can neither synthesize primers de novo nor extend an oligoribonucleotide. Despite the inability to catalyze phosphodiester bond formation, the altered proteins recognize the sequence 5'-GTC-3' in the template and deliver preformed primer to T7 DNA polymerase. The alterations in the TOPRIM domain result in the loss of binding affinity for ATP as measured by surface plasmon resonance assay together with ATP-agarose affinity chromatography.

DNA-induced Switch from Independent to Sequential DTTP Hydrolysis in the Bacteriophage T7 DNA Helicase

Molecular Cell. Jan, 2006  |  Pubmed ID: 16427007

We show that the mechanisms of DNA-dependent and -independent dTTP hydrolysis by the gene 4 protein of bacteriophage T7 differ in the pathways by which these reactions are catalyzed. In the presence of dTTP, gene 4 protein monomers assemble as a ring that binds single-stranded DNA and couples the hydrolysis of dTTP to unidirectional translocation and the unwinding of duplex DNA. When mixing wild-type monomers with monomers lacking the catalytic base for the dTTPase reaction, we observe that each wild-type subunit hydrolyzes dTTP independently in the absence of single-stranded DNA. Conversely, when either these catalytically inactive monomers or altered monomers incapable of binding single-stranded DNA are mixed with wild-type monomers, a small fraction of altered to wild-type monomers causes a sharp decline in DNA-dependent dTTP hydrolysis. We propose that sequential hydrolysis of dTTP is coupled to the transfer of single-stranded DNA from subunit to adjacent subunit.

DNA Primase Acts As a Molecular Brake in DNA Replication

Nature. Feb, 2006  |  Pubmed ID: 16452983

A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.

Primer Initiation and Extension by T7 DNA Primase

The EMBO Journal. May, 2006  |  Pubmed ID: 16642036

T7 DNA primase is composed of a catalytic RNA polymerase domain (RPD) and a zinc-binding domain (ZBD) connected by an unstructured linker. The two domains are required to initiate the synthesis of the diribonucleotide pppAC and its extension into a functional primer pppACCC (de novo synthesis), as well as for the extension of exogenous AC diribonucleotides into an ACCC primer (extension synthesis). To explore the mechanism underlying the RPD and ZBD interactions, we have changed the length of the linker between them. Wild-type T7 DNA primase is 10-fold superior in de novo synthesis compared to T7 DNA primase having a shorter linker. However, the primase having the shorter linker exhibits a two-fold enhancement in its extension synthesis. T7 DNA primase does not catalyze extension synthesis by a ZBD of one subunit acting on a RPD of an adjacent subunit (trans mode), whereas de novo synthesis is feasible in this mode. We propose a mechanism for primer initiation and extension based on these findings.

Oligomeric States of Bacteriophage T7 Gene 4 Primase/helicase

Journal of Molecular Biology. Jul, 2006  |  Pubmed ID: 16777142

Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or beta,gamma-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.

The C-terminal Residues of Bacteriophage T7 Gene 4 Helicase-primase Coordinate Helicase and DNA Polymerase Activities

The Journal of Biological Chemistry. Sep, 2006  |  Pubmed ID: 16807231

The gene 4 protein of bacteriophage T7 plays a central role in DNA replication by providing both helicase and primase activities. The C-terminal helicase domain is not only responsible for DNA-dependent dTTP hydrolysis, translocation, and DNA unwinding, but it also interacts with T7 DNA polymerase to coordinate helicase and polymerase activities. The C-terminal 17 residues of gene 4 protein are critical for its interaction with the T7 DNA polymerase/thioredoxin complex. This C terminus is highly acidic; replacement of these residues with uncharged residues leads to a loss of interaction with T7 DNA polymerase/thioredoxin and an increase in oligomerization of the gene 4 protein. Such an alteration on the C terminus results in a reduced efficiency in strand displacement DNA synthesis catalyzed by gene 4 protein and T7 DNA polymerase/thioredoxin. Replacement of the C-terminal amino acid, phenylalanine, with non-aromatic residues also leads to a loss of interaction of gene 4 protein with T7 DNA polymerase/thioredoxin. However, neither of these modifications of the C terminus affects helicase and primase activities. A chimeric gene 4 protein containing the acidic C terminus of the T7 gene 2.5 single-stranded DNA-binding protein is more active in strand displacement synthesis. Gene 4 hexamers containing even one subunit of a defective C terminus are defective in their interaction with T7 DNA polymerase.

Essential Residues in the C Terminus of the Bacteriophage T7 Gene 2.5 Single-stranded DNA-binding Protein

The Journal of Biological Chemistry. Sep, 2006  |  Pubmed ID: 16807232

Gene 2.5 of bacteriophage T7 encodes a single-stranded DNA (ssDNA)-binding protein (gp2.5) that is an essential component of the phage replisome. Similar to other prokaryotic ssDNA-binding proteins, gp2.5 has an acidic C terminus that is involved in protein-protein interactions at the replication fork and in modulation of the ssDNA binding properties of the molecule. We have used genetic and biochemical approaches to identify residues critical for the function of the C terminus of gp2.5. The presence of an aromatic residue in the C-terminal position is essential for gp2.5 function. Deletion of the C-terminal residue, phenylalanine, is detrimental to its function, as is the substitution of this residue with non-aromatic amino acids. Placing the C-terminal phenylalanine in the penultimate position also results in loss of function. Moderate shortening of the length of the acidic portion of the C terminus is tolerated when the aromatic nature of the C-terminal residue is preserved. Gradual removal of the acidic C terminus of gp2.5 results in a higher affinity for ssDNA and a decreased ability to interact with T7 DNA polymerase/thioredoxin. The replacement of the charged residues in the C terminus with neutral amino acids abolishes gp2.5 function. Our data show that both the C-terminal aromatic residue and the overall acidic charge of the C terminus of gp2.5 are critical for its function.

Single Molecule Force Spectroscopy of Salt-dependent Bacteriophage T7 Gene 2.5 Protein Binding to Single-stranded DNA

The Journal of Biological Chemistry. Dec, 2006  |  Pubmed ID: 17050544

The gene 2.5 protein (gp2.5) encoded by bacteriophage T7 binds preferentially to single-stranded DNA. This property is essential for its role in DNA replication and recombination in the phage-infected cell. gp2.5 lowers the phage lambda DNA melting force as measured by single molecule force spectroscopy. T7 gp2.5-Delta26C, lacking 26 acidic C-terminal residues, also reduces the melting force but at considerably lower concentrations. The equilibrium binding constants of these proteins to single-stranded DNA (ssDNA) as a function of salt concentration have been determined, and we found for example that gp2.5 binds with an affinity of (3.5 +/- 0.6) x 10(5) m(-1) in a 50 mm Na(+) solution, whereas the truncated protein binds to ssDNA with a much higher affinity of (7.8 +/- 0.9) x 10(7) m(-1) under the same solution conditions. T7 gp2.5-Delta26C binding to single-stranded DNA also exhibits a stronger salt dependence than the full-length protein. The data are consistent with a model in which a dimeric gp2.5 must dissociate prior to binding to ssDNA, a dissociation that consists of a weak non-electrostatic and a strong electrostatic component.

Genomewide Screens for Escherichia Coli Genes Affecting Growth of T7 Bacteriophage

Proceedings of the National Academy of Sciences of the United States of America. Dec, 2006  |  Pubmed ID: 17135349

Use of bacteriophages as a therapy for bacterial infection has been attempted over the last century. Such an endeavor requires the elucidation of basic aspects of the host-virus interactions and the resistance mechanisms of the host. Two recently developed bacterial collections now enable a genomewide search of the genetic interactions between Escherichia coli and bacteriophages. We have screened >85% of the E. coli genes for their ability to inhibit growth of T7 phage and >90% of the host genes for their ability to be used by the virus. In addition to identifying all of the known interactions, several other interactions have been identified. E. coli CMP kinase is essential for T7 growth, whereas overexpression of the E. coli uridine/cytidine kinase inhibits T7 growth. Mutations in any one of nine genes that encode enzymes for the synthesis of the E. coli lipopolysaccharide receptor for T7 adsorption leads to T7 resistance. Selection of T7 phage that can recognize these altered receptors has enabled the construction of phage to which the host is 100-fold less resistant.

Exchange of DNA Polymerases at the Replication Fork of Bacteriophage T7

Proceedings of the National Academy of Sciences of the United States of America. Mar, 2007  |  Pubmed ID: 17369350

T7 gene 5 DNA polymerase (gp5) and its processivity factor, Escherichia coli thioredoxin, together with the T7 gene 4 DNA helicase, catalyze strand displacement synthesis on duplex DNA processively (>17,000 nucleotides per binding event). The processive DNA synthesis is resistant to the addition of a DNA trap. However, when the polymerase-thioredoxin complex actively synthesizing DNA is challenged with excess DNA polymerase-thioredoxin exchange occurs readily. The exchange can be monitored by the use of a genetically altered T7 DNA polymerase (gp5-Y526F) in which tyrosine-526 is replaced with phenylalanine. DNA synthesis catalyzed by gp5-Y526F is resistant to inhibition by chain-terminating dideoxynucleotides because gp5-Y526F is deficient in the incorporation of these analogs relative to the wild-type enzyme. The exchange also occurs during coordinated DNA synthesis in which leading- and lagging-strand synthesis occur at the same rate. On ssDNA templates with the T7 DNA polymerase alone, such exchange is not evident, suggesting that free polymerase is first recruited to the replisome by means of T7 gene 4 helicase. The ability to exchange DNA polymerases within the replisome without affecting processivity provides advantages for fidelity as well as the cycling of the polymerase from a completed Okazaki fragment to a new primer on the lagging strand.

Dynamic DNA Helicase-DNA Polymerase Interactions Assure Processive Replication Fork Movement

Molecular Cell. Aug, 2007  |  Pubmed ID: 17707227

A single copy of bacteriophage T7 DNA polymerase and DNA helicase advance the replication fork with a processivity greater than 17,000 nucleotides. Nonetheless, the polymerase transiently dissociates from the DNA without leaving the replisome. Ensemble and single-molecule techniques demonstrate that this dynamic processivity is made possible by two modes of DNA polymerase-helicase interaction. During DNA synthesis the polymerase and the helicase interact at a high-affinity site. In this polymerizing mode, the polymerase dissociates from the DNA approximately every 5000 bases. The polymerase, however, remains bound to the helicase via an electrostatic binding mode that involves the acidic C-terminal tail of the helicase and a basic region in the polymerase to which the processivity factor also binds. The polymerase transfers via the electrostatic interaction around the hexameric helicase in search of the primer-template.

Inadequate Inhibition of Host RNA Polymerase Restricts T7 Bacteriophage Growth on Hosts Overexpressing Udk

Molecular Microbiology. Jan, 2008  |  Pubmed ID: 18067538

Overexpression of udk, an Escherichia coli gene encoding a uridine/cytidine kinase, interferes with T7 bacteriophage growth. We show here that inhibition of T7 phage growth by udk overexpression can be overcome by inhibition of host RNA polymerase. Overexpression of gene 2, whose product inhibits host RNA polymerase, restores T7 phage growth on hosts overexpressing udk. In addition, rifampicin, an inhibitor of host RNA polymerase, restores the burst size of T7 phage on udk-overexpressing hosts to normal. In agreement with these findings, suppressor mutants that overcome the inhibition arising from udk overexpression gain the ability to grow on hosts that are resistant to inhibition of RNA polymerase by gene 2 protein, and suppressor mutants that overcome a lack of gene 2 protein gain the ability to grow on hosts that overexpress udk. Mutations that eliminate or weaken strong promoters for host RNA polymerase in T7 DNA, and mutations in T7 gene 3.5 that affect its interaction with T7 RNA polymerase, also reduce the interference with T7 growth by host RNA polymerase. We propose a general model for the requirement of host RNA polymerase inhibition.

Acidic C-terminal Tail of the SsDNA-binding Protein of Bacteriophage T7 and SsDNA Compete for the Same Binding Surface

Proceedings of the National Academy of Sciences of the United States of America. Feb, 2008  |  Pubmed ID: 18238893

ssDNA-binding proteins are key components of the machinery that mediates replication, recombination, and repair. Prokaryotic ssDNA-binding proteins share a conserved DNA-binding fold and an acidic C-terminal tail. It has been proposed that in the absence of ssDNA, the C-terminal tail contacts the ssDNA-binding cleft, therefore predicting that the binding of ssDNA and the C-terminal tail is mutually exclusive. Using chemical cross-linking, competition studies, and NMR chemical-shift mapping, we demonstrate that: (i) the C-terminal peptide of the gene 2.5 protein cross-links to the core of the protein only in the absence of ssDNA, (ii) the cross-linked species fails to bind to ssDNA, and (iii) a C-terminal peptide and ssDNA bind to the same overall surface of the protein. We propose that the protection of the DNA-binding cleft by the electrostatic shield of the C-terminal tail observed in prokaryotic ssDNA-binding proteins, ribosomal proteins, and high-mobility group proteins is an evolutionarily conserved mechanism. This mechanism prevents random binding of charged molecules to the nucleic acid-binding pocket and coordinates nucleic acid-protein and protein-protein interactions.

Communication Between Subunits Critical to DNA Binding by Hexameric Helicase of Bacteriophage T7

Proceedings of the National Academy of Sciences of the United States of America. Jul, 2008  |  Pubmed ID: 18574147

The DNA helicase encoded by bacteriophage T7 consists of six identical subunits that form a ring through which the DNA passes. Binding of ssDNA is a prior step to translocation and unwinding of DNA by the helicase. Arg-493 is located at a conserved structural motif within the interior cavity of the helicase and plays an important role in DNA binding. Replacement of Arg-493 with lysine or histidine reduces the ability of the helicase to bind DNA, hydrolyze dTTP, and unwind dsDNA. In contrast, replacement of Arg-493 with glutamine abolishes these activities, suggesting that positive charge at the position is essential. Based on the crystallographic structure of the helicase, Asp-468 is in the range to form a hydrogen bonding with Arg-493 on the adjacent subunit. In vivo complementation results indicate that an interaction between Asp-468 and Arg-493 is critical for a functional helicase and those residues can be swapped without losing the helicase activity. This study suggests that hydrogen bonding between Arg-493 and Asp-468 from adjacent subunits is critical for DNA binding ability of the T7 hexameric helicase.

Gene 1.7 of Bacteriophage T7 Confers Sensitivity of Phage Growth to Dideoxythymidine

Proceedings of the National Academy of Sciences of the United States of America. Jul, 2008  |  Pubmed ID: 18599435

Bacteriophage T7 DNA polymerase efficiently incorporates dideoxynucleotides into DNA, resulting in chain termination. Dideoxythymidine (ddT) present in the medium at levels not toxic to Escherichia coli inhibits phage T7. We isolated 95 T7 phage mutants that were resistant to ddT. All contained a mutation in T7 gene 1.7, a nonessential gene of unknown function. When gene 1.7 was expressed from a plasmid, T7 phage resistant to ddT still arose; analysis of 36 of these mutants revealed that all had a single mutation in gene 5, which encodes T7 DNA polymerase. This mutation changes tyrosine-526 to phenylalanine, which is known to increase dramatically the ability of T7 DNA polymerase to discriminate against dideoxynucleotides. DNA synthesis in cells infected with wild-type T7 phage was inhibited by ddT, suggesting that it resulted in chain termination of DNA synthesis in the presence of gene 1.7 protein. Overexpression of gene 1.7 from a plasmid rendered E. coli cells sensitive to ddT, indicating that no other T7 proteins are required to confer sensitivity to ddT.

Peptide Ligands Specific to the Oxidized Form of Escherichia Coli Thioredoxin

Biochimica Et Biophysica Acta. Nov, 2008  |  Pubmed ID: 18672101

Thioredoxin (Trx) is a highly conserved redox protein involved in several essential cellular processes. In this study, our goal was to isolate peptide ligands to Escherichia coli Trx that mimic protein-protein interactions, specifically the T7 polymerase-Trx interaction. To do this, we subjected Trx to affinity selection against a panel of linear and cysteine-constrained peptides using M13 phage display. A novel cyclized conserved peptide sequence, with a motif of C(D/N/S/T/G)D(S/T)-hydrophobic-C-X-hydrophobic-P, was isolated to Trx. These peptides bound specifically to the E. coli Trx when compared to the human and spirulina homologs. An alanine substitution of the active site cysteines (CGPC) resulted in a significant loss of peptide binding affinity to the Cys-32 mutant. The peptides were also characterized in the context of Trx's role as a processivity factor of the T7 DNA polymerase (gp5). As the interaction between gp5 and Trx normally takes place under reducing conditions, which might interfere with the conformation of the disulfide-bridged peptides, we made use of a 22 residue deletion mutant of gp5 in the thioredoxin binding domain (gp5Delta22) that bypassed the requirements of reducing conditions to interact with Trx. A competition study revealed that the peptide selectively inhibits the interaction of gp5Delta22 with Trx, under oxidizing conditions, with an IC50 of approximately 10 microM.

Interactions of Escherichia Coli Thioredoxin, the Processivity Factor, with Bacteriophage T7 DNA Polymerase and Helicase

The Journal of Biological Chemistry. Nov, 2008  |  Pubmed ID: 18757858

Escherichia coli thioredoxin binds to a unique flexible loop of 71 amino acid residues, designated the thioredoxin binding domain (TBD), located in the thumb subdomain of bacteriophage T7 gene 5 DNA polymerase. The initial designation of thioredoxin as a processivity factor was premature. Rather it remodels the TBD for interaction with DNA and the other replication proteins. The binding of thioredoxin exposes a number of basic residues on the TBD that lie over the duplex region of the primer-template and increases the processivity of nucleotide polymerization. Two small solvent-exposed loops (loops A and B) located within TBD electrostatically interact with the acidic C-terminal tail of T7 gene 4 helicase-primase, an interaction that is enhanced by the binding of thioredoxin. Several basic residues on the surface of thioredoxin in the polymerase-thioredoxin complex lie in close proximity to the TBD. One of these residues, lysine 36, is located proximal to loop A. The substitution of glutamate for lysine has a dramatic effect on the binding of gene 4 helicase to a DNA polymerase-thioredoxin complex lacking charges on loop B; binding is decreased 15-fold relative to that observed with wild-type thioredoxin. This defective interaction impairs the ability of T7 DNA polymerase-thioredoxin together with T7 helicase to mediate strand displacement synthesis. This is the first demonstration that thioredoxin interacts with replication proteins other than T7 DNA polymerase.

Dynamics of DNA Replication Loops Reveal Temporal Control of Lagging-strand Synthesis

Nature. Jan, 2009  |  Pubmed ID: 19029884

In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesize in the opposite direction. By extending RNA primers, the lagging-strand polymerase restarts at short intervals and produces Okazaki fragments. At least in prokaryotic systems, this directionality problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. Here we use single-molecule techniques to visualize, in real time, the formation and release of replication loops by individual replisomes of bacteriophage T7 supporting coordinated DNA replication. Analysis of the distributions of loop sizes and lag times between loops reveals that initiation of primer synthesis and the completion of an Okazaki fragment each serve as a trigger for loop release. The presence of two triggers may represent a fail-safe mechanism ensuring the timely reset of the replisome after the synthesis of every Okazaki fragment.

DNA Recognition by the DNA Primase of Bacteriophage T7: a Structure-function Study of the Zinc-binding Domain

Biochemistry. Mar, 2009  |  Pubmed ID: 19206208

Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

Promiscuous Usage of Nucleotides by the DNA Helicase of Bacteriophage T7: Determinants of Nucleotide Specificity

The Journal of Biological Chemistry. May, 2009  |  Pubmed ID: 19297330

The multifunctional protein encoded by gene 4 of bacteriophage T7 (gp4) provides both helicase and primase activity at the replication fork. T7 DNA helicase preferentially utilizes dTTP to unwind duplex DNA in vitro but also hydrolyzes other nucleotides, some of which do not support helicase activity. Very little is known regarding the architecture of the nucleotide binding site in determining nucleotide specificity. Crystal structures of the T7 helicase domain with bound dATP or dTTP identified Arg-363 and Arg-504 as potential determinants of the specificity for dATP and dTTP. Arg-363 is in close proximity to the sugar of the bound dATP, whereas Arg-504 makes a hydrogen bridge with the base of bound dTTP. T7 helicase has a serine at position 319, whereas bacterial helicases that use rATP have a threonine in the comparable position. Therefore, in the present study we have examined the role of these residues (Arg-363, Arg-504, and Ser-319) in determining nucleotide specificity. Our results show that Arg-363 is responsible for dATP, dCTP, and dGTP hydrolysis, whereas Arg-504 and Ser-319 confer dTTP specificity. Helicase-R504A hydrolyzes dCTP far better than wild-type helicase, and the hydrolysis of dCTP fuels unwinding of DNA. Substitution of threonine for serine 319 reduces the rate of hydrolysis of dTTP without affecting the rate of dATP hydrolysis. We propose that different nucleotides bind to the nucleotide binding site of T7 helicase by an induced fit mechanism. We also present evidence that T7 helicase uses the energy derived from the hydrolysis of dATP in addition to dTTP for mediating DNA unwinding.

Motors, Switches, and Contacts in the Replisome

Annual Review of Biochemistry. 2009  |  Pubmed ID: 19298182

Replisomes are the protein assemblies that replicate DNA. They function as molecular motors to catalyze template-mediated polymerization of nucleotides, unwinding of DNA, the synthesis of RNA primers, and the assembly of proteins on DNA. The replisome of bacteriophage T7 contains a minimum of proteins, thus facilitating its study. This review describes the molecular motors and coordination of their activities, with emphasis on the T7 replisome. Nucleotide selection, movement of the polymerase, binding of the processivity factor, unwinding of DNA, and RNA primer synthesis all require conformational changes and protein contacts. Lagging-strand synthesis is mediated via a replication loop whose formation and resolution is dictated by switches to yield Okazaki fragments of discrete size. Both strands are synthesized at identical rates, controlled by a molecular brake that halts leading-strand synthesis during primer synthesis. The helicase serves as a reservoir for polymerases that can initiate DNA synthesis at the replication fork. We comment on the differences in other systems where applicable.

Mutations in the Gene 5 DNA Polymerase of Bacteriophage T7 Suppress the Dominant Lethal Phenotype of Gene 2.5 SsDNA Binding Protein Lacking the C-terminal Phenylalanine

Molecular Microbiology. May, 2009  |  Pubmed ID: 19400798

Gene 2.5 of bacteriophage T7 encodes a ssDNA binding protein (gp2.5) essential for DNA replication. The C-terminal phenylalanine of gp2.5 is critical for function and mutations in that position are dominant lethal. In order to identify gp2.5 interactions we designed a screen for suppressors of gp2.5 lacking the C-terminal phenylalanine. Screening for suppressors of dominant lethal mutations of essential genes is challenging as the phenotype prevents propagation. We select for phage encoding a dominant lethal version of gene 2.5, whose viability is recovered via second-site suppressor mutation(s). Functional gp2.5 is expressed in trans for propagation of the unviable phage and allows suppression to occur via natural selection. The isolated intragenic suppressors support the critical role of the C-terminal phenylalanine. Extragenic suppressor mutations occur in several genes encoding enzymes of DNA metabolism. We have focused on the suppressor mutations in gene 5 encoding the T7 DNA polymerase (gp5) as the gp5/gp2.5 interaction is well documented. The suppressor mutations in gene 5 are necessary and sufficient to suppress the lethal phenotype of gp2.5 lacking the C-terminal phenylalanine. The affected residues map in proximity to aromatic residues and to residues in contact with DNA in the crystal structure of T7 DNA polymerase-thioredoxin.

Rescue of Bacteriophage T7 DNA Polymerase of Low Processivity by Suppressor Mutations Affecting Gene 3 Endonuclease

Journal of Virology. Sep, 2009  |  Pubmed ID: 19535436

The DNA polymerase encoded by gene 5 (gp5) of bacteriophage T7 has low processivity, dissociating after the incorporation of a few nucleotides. Upon binding to its processivity factor, Escherichia coli thioredoxin (Trx), the processivity is increased to approximately 800 nucleotides per binding event. Several interactions between gp5/Trx and DNA are required for processive DNA synthesis. A basic region in T7 DNA polymerase (residues K587, K589, R590, and R591) is located in proximity to the 5' overhang of the template strand. Replacement of these residues with asparagines results in a threefold reduction of the polymerization activity on primed M13 single-stranded DNA. The altered gp5/Trx exhibits a 10-fold reduction in its ability to support growth of T7 phage lacking gene 5. However, T7 phages that grow at a similar rate provided with either wild-type or altered polymerase emerge. Most of the suppressor phages contain genetic changes in or around the coding region for gene 3, an endonuclease. Altered gene 3 proteins derived from suppressor strains show reduced catalytic activity and are inefficient in complementing growth of T7 phage lacking gene 3. Results from this study reveal that defects in processivity of DNA polymerase can be suppressed by reducing endonuclease activity.

An in Trans Interaction at the Interface of the Helicase and Primase Domains of the Hexameric Gene 4 Protein of Bacteriophage T7 Modulates Their Activities

The Journal of Biological Chemistry. Aug, 2009  |  Pubmed ID: 19574219

DNA helicase and primase are essential for DNA replication. The helicase unwinds the DNA to provide single-stranded templates for DNA polymerase. The primase catalyzes the synthesis of oligoribonucleotides for the initiation of lagging strand synthesis. The two activities reside in a single polypeptide encoded by gene 4 of bacteriophage T7. Their coexistence within the same polypeptide facilitates their coordination during DNA replication. One surface of helix E within the helicase domain is positioned to interact with the primase domain and the linker connecting the two domains within the functional hexamer. The interaction occurs in trans such that helix E interacts with the primase domain and the linker of the adjacent subunit. Most alterations of residues on the surface of helix E (Arg(404), Lys(408), Tyr(411), and Gly(415)) eliminate the ability of the altered proteins to complement growth of T7 phage lacking gene 4. Both Tyr(411) and Gly(415) are important in oligomerization of the protein. Alterations G415V and K408A simultaneously influence helicase and primase activities in opposite manners that mimic events observed during coordinated DNA synthesis. The results suggest that Asp(263) located in the linker of one subunit can interact with Tyr(411), Lys(408), or Arg(404) in helix E of the adjacent subunit depending on the oligomerization state. Thus the switch in contacts between Asp(263) and its three interacting residues in helix E of the adjacent subunit results in conformational changes that modulate helicase and primase activity.

C-terminal Phenylalanine of Bacteriophage T7 Single-stranded DNA-binding Protein is Essential for Strand Displacement Synthesis by T7 DNA Polymerase at a Nick in DNA

The Journal of Biological Chemistry. Oct, 2009  |  Pubmed ID: 19726688

Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.

Thioredoxin Suppresses Microscopic Hopping of T7 DNA Polymerase on Duplex DNA

Proceedings of the National Academy of Sciences of the United States of America. Feb, 2010  |  Pubmed ID: 20080681

The DNA polymerases involved in DNA replication achieve high processivity of nucleotide incorporation by forming a complex with processivity factors. A model system for replicative DNA polymerases, the bacteriophage T7 DNA polymerase (gp5), encoded by gene 5, forms a tight, 11 complex with Escherichia coli thioredoxin. By a mechanism that is not fully understood, thioredoxin acts as a processivity factor and converts gp5 from a distributive polymerase into a highly processive one. We use a single-molecule imaging approach to visualize the interaction of fluorescently labeled T7 DNA polymerase with double-stranded DNA. We have observed T7 gp5, both with and without thioredoxin, binding nonspecifically to double-stranded DNA and diffusing along the duplex. The gp5/thioredoxin complex remains tightly bound to the DNA while diffusing, whereas gp5 without thioredoxin undergoes frequent dissociation from and rebinding to the DNA. These observations suggest that thioredoxin increases the processivity of T7 DNA polymerase by suppressing microscopic hopping on and off the DNA and keeping the complex tightly bound to the duplex.

Mechanism of Sequence-specific Template Binding by the DNA Primase of Bacteriophage T7

Nucleic Acids Research. Jul, 2010  |  Pubmed ID: 20350931

DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5'-TGGTC-3') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain.

Residues in the Central Beta-hairpin of the DNA Helicase of Bacteriophage T7 Are Important in DNA Unwinding

Proceedings of the National Academy of Sciences of the United States of America. Apr, 2010  |  Pubmed ID: 20351255

The ring-shaped helicase of bacteriophage T7 (gp4), the product of gene 4, has basic beta-hairpin loops lining its central core where they are postulated to be the major sites of DNA interaction. We have altered multiple residues within the beta-hairpin loop to determine their role during dTTPase-driven DNA unwinding. Residues His-465, Leu-466, and Asn-468 are essential for both DNA unwinding and DNA synthesis mediated by T7 DNA polymerase during leading-strand DNA synthesis. Gp4-K467A, gp4-K471A, and gp4-K473A form fewer hexamers than heptamers compared to wild-type helicase and alone are deficient in DNA unwinding. However, they complement for the growth of T7 bacteriophage lacking gene 4. Single-molecule studies show that these three altered helicases support rates of leading-strand DNA synthesis comparable to that observed with wild-type gp4. Gp4-K467A, devoid of unwinding activity alone, supports leading-strand synthesis in the presence of T7 DNA polymerase. We propose that DNA polymerase limits the backward movement of the helicase during unwinding as well as assisting the forward movement necessary for strand separation.

Two Modes of Interaction of the Single-stranded DNA-binding Protein of Bacteriophage T7 with the DNA Polymerase-thioredoxin Complex

The Journal of Biological Chemistry. Jun, 2010  |  Pubmed ID: 20375019

The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD. gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions.

Direct Role for the RNA Polymerase Domain of T7 Primase in Primer Delivery

Proceedings of the National Academy of Sciences of the United States of America. May, 2010  |  Pubmed ID: 20439755

Gene 4 protein (gp4) encoded by bacteriophage T7 contains a C-terminal helicase and an N-terminal primase domain. After synthesis of tetraribonucleotides, gp4 must transfer them to the polymerase for use as primers to initiate DNA synthesis. In vivo gp4 exists in two molecular weight forms, a 56-kDa form and the full-length 63-kDa form. The 56-kDa gp4 lacks the N-terminal Cys(4) zinc-binding motif important in the recognition of primase sites in DNA. The 56-kDa gp4 is defective in primer synthesis but delivers a wider range of primers to initiate DNA synthesis compared to the 63-kDa gp4. Suppressors exist that enable the 56-kDa gp4 to support the growth of T7 phage lacking gene 4 (T7Delta4). We have identified 56-kDa DNA primases defective in primer delivery by screening for their ability to support growth of T7Delta4 phage in the presence of this suppressor. Trp69 is critical for primer delivery. Replacement of Trp69 with lysine in either the 56- or 63-kDa gp4 results in defective primer delivery with other functions unaffected. DNA primase harboring lysine at position 69 fails to stabilize the primer on DNA. Thus, a primase subdomain not directly involved in primer synthesis is involved in primer delivery. The stabilization of the primer by DNA primase is necessary for DNA polymerase to initiate synthesis.

A Novel Nucleotide Kinase Encoded by Gene 1.7 of Bacteriophage T7

Molecular Microbiology. Jul, 2010  |  Pubmed ID: 20497505

Gene 1.7 of bacteriophage T7 confers sensitivity of both phage T7 and its host Escherichia coli to dideoxythymidine (ddT). We have purified the product of gene 1.7, gp1.7. It exists in two forms of molecular weight 22,181 and 17,782. Only the C-terminal half of the protein is required to confer ddT sensitivity. We show that gp1.7 catalyses the phosphorylation of dGMP and dTMP to dGDP and dTDP, respectively, by using either GTP, dGTP or dTTP as the phosphate donor. Either form of gp1.7 exhibit identical kinase activity as compared with wild-type gp1.7 that contains a mixture of both forms. The K(m) of 70 microM and Kcat of 4.3 s(-1) for dTMP are similar to those found for E. coli thymidylate kinase. However, unlike the host enzyme, gp1.7 efficiently catalyses the conversion of the chain-terminating dideoxythymidylate (ddTMP) to ddTDP. This finding explains the sensitivity of phage T7 but not E. coli to exogenous ddT. Gp1.7 is unusual in that it has no sequence homology to any known nucleotide kinase, it has no identifiable nucleotide-binding motif and its activity is independent of added metal ions. When coupled with nucleoside diphosphate kinase, gp1.7 exponentially converts dTMP to dTTP.

Molecular Basis for Recognition of Nucleoside Triphosphate by Gene 4 Helicase of Bacteriophage T7

The Journal of Biological Chemistry. Oct, 2010  |  Pubmed ID: 20688917

The translocation of DNA helicases on single-stranded DNA and the unwinding of double-stranded DNA are fueled by the hydrolysis of nucleoside triphosphates (NTP). Although most helicases use ATP in these processes, the DNA helicase encoded by gene 4 of bacteriophage T7 uses dTTP most efficiently. To identify the structural requirements of the NTP, we determined the efficiency of DNA unwinding by T7 helicase using a variety of NTPs and their analogs. The 5-methyl group of thymine was critical for the efficient unwinding of DNA, although the presence of a 3'-ribosyl hydroxyl group partially overcame this requirement. The NTP-binding pocket of the protein was examined by randomly substituting amino acids for several amino acid residues (Thr-320, Arg-504, Tyr-535, and Leu-542) that the crystal structure suggests interact with the nucleotide. Although positions 320 and 542 required aliphatic residues of the appropriate size, an aromatic side chain was necessary at position 535 to stabilize NTP for efficient unwinding. A basic side chain of residue 504 was essential to interact with the 4-carbonyl of the thymine base of dTTP. Replacement of this residue with a small aliphatic residue allowed the accommodation of other NTPs, resulting in the preferential use of dATP and the use of dCTP, a nucleotide not normally used. Results from this study suggest that the NTP must be stabilized by specific interactions within the NTP-binding site of the protein to achieve efficient hydrolysis. These interactions dictate NTP specificity.

Conformational Dynamics of Bacteriophage T7 DNA Polymerase and Its Processivity Factor, Escherichia Coli Thioredoxin

Proceedings of the National Academy of Sciences of the United States of America. Aug, 2010  |  Pubmed ID: 20696935

Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.

Simultaneous Single-molecule Measurements of Phage T7 Replisome Composition and Function Reveal the Mechanism of Polymerase Exchange

Proceedings of the National Academy of Sciences of the United States of America. Mar, 2011  |  Pubmed ID: 21245349

A complete understanding of the molecular mechanisms underlying the functioning of large, multiprotein complexes requires experimental tools capable of simultaneously visualizing molecular architecture and enzymatic activity in real time. We developed a novel single-molecule assay that combines the flow-stretching of individual DNA molecules to measure the activity of the DNA-replication machinery with the visualization of fluorescently labeled DNA polymerases at the replication fork. By correlating polymerase stoichiometry with DNA synthesis of T7 bacteriophage replisomes, we are able to quantitatively describe the mechanism of polymerase exchange. We find that even at relatively modest polymerase concentration (∼2 nM), soluble polymerases are recruited to an actively synthesizing replisome, dramatically increasing local polymerase concentration. These excess polymerases remain passively associated with the replisome through electrostatic interactions with the T7 helicase for ∼50 s until a stochastic and transient dissociation of the synthesizing polymerase from the primer-template allows for a polymerase exchange event to occur.

The Glutamate Switch of Bacteriophage T7 DNA Helicase: Role in Coupling Nucleotide Triphosphate (NTP) and DNA Binding to NTP Hydrolysis

The Journal of Biological Chemistry. Jul, 2011  |  Pubmed ID: 21566126

The DNA helicase encoded by gene 4 of bacteriophage T7 forms a hexameric ring in the presence of dTTP, allowing it to bind DNA in its central core. The oligomerization also creates nucleotide-binding sites located at the interfaces of the subunits. DNA binding stimulates the hydrolysis of dTTP but the mechanism for this two-step control is not clear. We have identified a glutamate switch, analogous to the glutamate switch found in AAA+ enzymes that couples dTTP hydrolysis to DNA binding. A crystal structure of T7 helicase shows that a glutamate residue (Glu-343), located at the subunit interface, is positioned to catalyze a nucleophilic attack on the γ-phosphate of a bound nucleoside 5'-triphosphate. However, in the absence of a nucleotide, Glu-343 changes orientation, interacting with Arg-493 on the adjacent subunit. This interaction interrupts the interaction of Arg-493 with Asn-468 of the central β-hairpin, which in turn disrupts DNA binding. When Glu-343 is replaced with glutamine the altered helicase, unlike the wild-type helicase, binds DNA in the presence of dTDP. When both Arg-493 and Asn-468 are replaced with alanine, dTTP hydrolysis is no longer stimulated in the presence of DNA. Taken together, these results suggest that the orientation of Glu-343 plays a key role in coupling nucleotide hydrolysis to the binding of DNA.

Helicase-DNA Polymerase Interaction is Critical to Initiate Leading-strand DNA Synthesis

Proceedings of the National Academy of Sciences of the United States of America. Jun, 2011  |  Pubmed ID: 21606333

Interactions between gene 4 helicase and gene 5 DNA polymerase (gp5) are crucial for leading-strand DNA synthesis mediated by the replisome of bacteriophage T7. Interactions between the two proteins that assure high processivity are known but the interactions essential to initiate the leading-strand DNA synthesis remain unidentified. Replacement of solution-exposed basic residues (K587, K589, R590, and R591) located on the front surface of gp5 with neutral asparagines abolishes the ability of gp5 and the helicase to mediate strand-displacement synthesis. This front basic patch in gp5 contributes to physical interactions with the acidic C-terminal tail of the helicase. Nonetheless, the altered polymerase is able to replace gp5 and continue ongoing strand-displacement synthesis. The results suggest that the interaction between the C-terminal tail of the helicase and the basic patch of gp5 is critical for initiation of strand-displacement synthesis. Multiple interactions of T7 DNA polymerase and helicase coordinate replisome movement.

Pyrovanadolysis, a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate, Mn2+, and DNA Polymerase of Bacteriophage T7

The Journal of Biological Chemistry. Aug, 2011  |  Pubmed ID: 21697085

DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP(i)). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP(i), a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP(i) complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn(2+), larger than Mg(2+), fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.

Bypass of a Nick by the Replisome of Bacteriophage T7

The Journal of Biological Chemistry. Aug, 2011  |  Pubmed ID: 21701044

DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase · polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick.

Coupling DTTP Hydrolysis with DNA Unwinding by the DNA Helicase of Bacteriophage T7

The Journal of Biological Chemistry. Sep, 2011  |  Pubmed ID: 21840995

The DNA helicase encoded by gene 4 of bacteriophage T7 assembles on single-stranded DNA as a hexamer of six identical subunits with the DNA passing through the center of the toroid. The helicase couples the hydrolysis of dTTP to unidirectional translocation on single-stranded DNA and the unwinding of duplex DNA. Phe(523), positioned in a β-hairpin loop at the subunit interface, plays a key role in coupling the hydrolysis of dTTP to DNA unwinding. Replacement of Phe(523) with alanine or valine abolishes the ability of the helicase to unwind DNA or allow T7 polymerase to mediate strand-displacement synthesis on duplex DNA. In vivo complementation studies reveal a requirement for a hydrophobic residue with long side chains at this position. In a crystal structure of T7 helicase, when a nucleotide is bound at a subunit interface, Phe(523) is buried within the interface. However, in the unbound state, it is more exposed on the outer surface of the helicase. This structural difference suggests that the β-hairpin bearing the Phe(523) may undergo a conformational change during nucleotide hydrolysis. We postulate that upon hydrolysis of dTTP, Phe(523) moves from within the subunit interface to a more exposed position where it contacts the displaced complementary strand and facilitates unwinding.

Choreography of Bacteriophage T7 DNA Replication

Current Opinion in Chemical Biology. Oct, 2011  |  Pubmed ID: 21907611

The replication system of phage T7 provides a model for DNA replication. Biochemical, structural, and single-molecule analyses together provide insight into replisome mechanics. A complex of polymerase, a processivity factor, and helicase mediates leading strand synthesis. Establishment of the complex requires an interaction of the C-terminal tail of the helicase with the polymerase. During synthesis the complex is stabilized by other interactions to provide for a processivity of 5 kilobase (kb). The C-terminal tail also interacts with a distinct region of the polymerase to captures dissociating polymerase to increase the processivity to >17kb. The lagging strand is synthesized discontinuously within a loop that forms and resolves during each cycle of Okazaki fragment synthesis. The synthesis of a primer as well as the termination of a fragment signal loop resolution.

Essential Protein Interactions Within the Replisome Regulate DNA Replication

Cell Cycle (Georgetown, Tex.). Oct, 2011  |  Pubmed ID: 22067709

Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

Powder Diffraction. Jun, 2011  |  Pubmed ID: 23761703

Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg(2+), as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg(2+) to an active site because Mg(2+) is spectroscopically silent and Mg(2+) binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg(2+) with Mn(2+):Mn(2+) that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn(2+) is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn(2+) that is free in solution and Mn(2+) bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

Gene 5.5 Protein of Bacteriophage T7 in Complex with Escherichia Coli Nucleoid Protein H-NS and Transfer RNA Masks Transfer RNA Priming in T7 DNA Replication

Proceedings of the National Academy of Sciences of the United States of America. May, 2012  |  Pubmed ID: 22566619

DNA primases provide oligoribonucleotides for DNA polymerase to initiate lagging strand synthesis. A deficiency in the primase of bacteriophage T7 to synthesize primers can be overcome by genetic alterations that decrease the expression of T7 gene 5.5, suggesting an alternative mechanism to prime DNA synthesis. The product of gene 5.5 (gp5.5) forms a stable complex with the Escherichia coli histone-like protein H-NS and transfer RNAs (tRNAs). The 3'-terminal sequence (5'-ACCA-3') of tRNAs is identical to that of a functional primer synthesized by T7 primase. Mutations in T7 that suppress the inability of primase reduce the amount of gp5.5 and thus increase the pool of tRNA to serve as primers. Alterations in T7 gene 3 facilitate tRNA priming by reducing its endonuclease activity that cleaves at the tRNA-DNA junction. The tRNA bound to gp5.5 recruits H-NS. H-NS alone inhibits reactions involved in DNA replication, but the binding to gp5.5-tRNA complex abolishes this inhibition.

The Roles of Tryptophans in Primer Synthesis by the DNA Primase of Bacteriophage T7

The Journal of Biological Chemistry. Jul, 2012  |  Pubmed ID: 22605336

DNA primases catalyze the synthesis of oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Prokaryotic primases consist of a zinc-binding domain (ZBD) necessary for recognition of a specific template sequence and a catalytic RNA polymerase domain. Interactions of both domains with the DNA template and ribonucleotides are required for primer synthesis. Five tryptophan residues are dispersed in the primase of bacteriophage T7: Trp-42 in the ZBD and Trp-69, -97, -147, and -255 in the RNA polymerase domain. Previous studies showed that replacement of Trp-42 with alanine in the ZBD decreases primer synthesis, whereas substitution of non-aromatic residues for Trp-69 impairs both primer synthesis and delivery. However, the roles of tryptophan at position 97, 147, or 255 remain elusive. To investigate the essential roles of these residues, we replaced each tryptophan with the structurally similar tyrosine and examined the effect of this subtle alteration on primer synthesis. The substitution at position 42, 97, or 147 reduced primer synthesis, whereas substitution at position 69 or 255 did not. The functions of the tryptophans were further examined at each step of primer synthesis. Alteration of residue 42 disturbed the conformation of the ZBD and resulted in partial loss of the zinc ion, impairing binding to the ssDNA template. Replacement of Trp-97 with tyrosine reduced the binding affinity to NTP and the catalysis step. The replacement of Trp-147 with tyrosine also impaired the catalytic step. Therefore, Trp-42 is important in maintaining the conformation of the ZBD for template binding; Trp-97 contributes to NTP binding and the catalysis step; and Trp-147 maintains the catalysis step.

Molecular Interactions in the Priming Complex of Bacteriophage T7

Proceedings of the National Academy of Sciences of the United States of America. Jun, 2012  |  Pubmed ID: 22645372

The lagging-strand DNA polymerase requires an oligoribonucleotide, synthesized by DNA primase, to initiate the synthesis of an Okazaki fragment. In the replication system of bacteriophage T7 both DNA primase and DNA helicase activities are contained within a single protein, the bifunctional gene 4 protein (gp4). Intermolecular interactions between gp4 and T7 DNA polymerase are crucial for the stabilization of the oligoribonucleotide, its transfer to the polymerase, and its extension by DNA polymerase. We have identified conditions necessary to assemble the T7 priming complex and characterized its biophysical properties using fluorescence anisotropy. In order to reveal molecular interactions that occur during delivery of the oligoribonucleotide to DNA polymerase, we have used four genetically altered gp4 to demonstrate that both the RNA polymerase and the zinc-finger domains of DNA primase are involved in the stabilization of the priming complex and in sequence recognition in the DNA template. We find that the helicase domain of gp4 contributes to the stability of the complex by binding to the ssDNA template. The C-terminal tail of gp4 is not required for complex formation.

Characterization of a Nucleotide Kinase Encoded by Bacteriophage T7

The Journal of Biological Chemistry. Aug, 2012  |  Pubmed ID: 22761426

Gene 1.7 protein is the only known nucleotide kinase encoded by bacteriophage T7. The enzyme phosphorylates dTMP and dGMP to dTDP and dGDP, respectively, in the presence of a phosphate donor. The phosphate donors are dTTP, dGTP, and ribo-GTP as well as the thymidine and guanosine triphosphate analogs ddTTP, ddGTP, and dITP. The nucleotide kinase is found in solution as a 256-kDa complex consisting of ~12 monomers of the gene 1.7 protein. The two molecular weight forms co-purify as a complex, but each form has nearly identical kinase activity. Although gene 1.7 protein does not require a metal ion for its kinase activity, the presence of Mg(2+) in the reaction mixture results in either inhibition or stimulation of the rate of kinase reactions depending on the substrates used. Both the dTMP and dGMP kinase reactions are reversible. Neither dTDP nor dGDP is a phosphate acceptor of nucleoside triphosphate donors. Gene 1.7 protein exhibits two different equilibrium patterns toward deoxyguanosine and thymidine substrates. The K(m) of 4.4 × 10(-4) M obtained with dTTP for dTMP kinase is ~3-fold higher than that obtained with dGTP for dGMP kinase (1.3 × 10(-4) M), indicating that a higher concentration of dTTP is required to saturate the enzyme. Inhibition studies indicate a competitive relationship between dGDP and both dGTP, dGMP, whereas dTDP appears to have a mixed type of inhibition of dTMP kinase. Studies suggest two functions of dTTP, as a phosphate donor and a positive effector of the dTMP kinase reaction.

Heterohexamer of 56- and 63-kDa Gene 4 Helicase-Primase of Bacteriophage T7 in DNA Replication

The Journal of Biological Chemistry. Oct, 2012  |  Pubmed ID: 22887996

Bacteriophage T7 expresses two forms of gene 4 protein (gp4). The 63-kDa full-length gp4 contains both the helicase and primase domains. T7 phage also express a 56-kDa truncated gp4 lacking the zinc binding domain of the primase; the protein has helicase activity but no DNA-dependent primase activity. Although T7 phage grow better when both forms are present, the role of the 56-kDa gp4 is unknown. The two molecular weight forms oligomerize by virtue of the helicase domain to form heterohexamers. The 56-kDa gp4 and any mixture of 56- and 63-kDa gp4 show higher helicase activity in DNA unwinding and strand-displacement DNA synthesis than that observed for the 63-kDa gp4. However, single-molecule measurements show that heterohexamers have helicase activity similar to the 63-kDa gp4 hexamers. In oligomerization assays the 56-kDa gp4 and any mixture of the 56- and 63-kDa gp4 oligomerize to form more hexamers than does the 63-kDa gp4. The zinc binding domain of the 63-kDa gp4 interferes with hexamer formation, an inhibition that is relieved by the insertion of the 56-kDa species. Compared with the 63-kDa gp4, heterohexamers synthesize a reduced amount of oligoribonucleotides, mediated predominately by the 63-kDa subunits via a cis mode. During coordinated DNA synthesis 7% of the tetraribonucleotides synthesized are used as primers by both heterohexamers and hexamers of the 63-kDa gp4. Overall, an equimolar mixture of the two forms of gp4 shows the highest rate of DNA synthesis during coordinated DNA synthesis.

An Interaction Between DNA Polymerase and Helicase is Essential for the High Processivity of the Bacteriophage T7 Replisome

The Journal of Biological Chemistry. Nov, 2012  |  Pubmed ID: 22977246

Synthesis of the leading DNA strand requires the coordinated activity of DNA polymerase and DNA helicase, whereas synthesis of the lagging strand involves interactions of these proteins with DNA primase. We present the first structural model of a bacteriophage T7 DNA helicase-DNA polymerase complex using a combination of small angle x-ray scattering, single-molecule, and biochemical methods. We propose that the protein-protein interface stabilizing the leading strand synthesis involves two distinct interactions: a stable binding of the helicase to the palm domain of the polymerase and an electrostatic binding of the carboxyl-terminal tail of the helicase to a basic patch on the polymerase. DNA primase facilitates binding of DNA helicase to ssDNA and contributes to formation of the DNA helicase-DNA polymerase complex by stabilizing DNA helicase.

Thioredoxin, the Processivity Factor, Sequesters an Exposed Cysteine in the Thumb Domain of Bacteriophage T7 DNA Polymerase

The Journal of Biological Chemistry. Nov, 2012  |  Pubmed ID: 23012374

Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase. It achieves processivity by binding to Escherichia coli thioredoxin (trx). gp5/trx complex binds tightly to a primer-DNA template enabling the polymerization of hundreds of nucleotides per binding event. gp5 contains 10 cysteines. Under non-reducing condition, exposed cysteines form intermolecular disulfide linkages resulting in the loss of polymerase activity. No disulfide linkage is detected when Cys-275 and Cys-313 are replaced with serines. Cys-275 and Cys-313 are located on loop A and loop B of the thioredoxin binding domain, respectively. Replacement of either cysteine with serine (gp5-C275S, gp5-C313S) drastically decreases polymerase activity of gp5 on dA(350)/dT(25). On this primer-template gp5/trx in which Cys-313 or Cys-275 is replaced with serine have 50 and 90%, respectively, of the polymerase activity observed with wild-type gp5/trx. With single-stranded M13 DNA as a template gp5-C275S/trx retains 60% of the polymerase activity of wild-type gp5/trx. In contrast, gp5-C313S/trx has only one-tenth of the polymerase activity of wild-type gp5/trx on M13 DNA. Both wild-type gp5/trx and gp5-C275S/trx catalyze the synthesis of the entire complementary strand of M13 DNA, whereas gp5-C313S/trx has difficulty in synthesizing DNA through sites of secondary structure. gp5-C313S fails to form a functional complex with trx as measured by the apparent binding affinity as well as by the lack of a physical interaction with thioredoxin during hydroxyapatite-phosphate chromatography. Small angle x-ray scattering reveals an elongated conformation of gp5-C313S in comparison to a compact and spherical conformation of wild-type gp5.

Zinc-binding Domain of the Bacteriophage T7 DNA Primase Modulates Binding to the DNA Template

The Journal of Biological Chemistry. Nov, 2012  |  Pubmed ID: 23024359

The zinc-binding domain (ZBD) of prokaryotic DNA primases has been postulated to be crucial for recognition of specific sequences in the single-stranded DNA template. To determine the molecular basis for this role in recognition, we carried out homolog-scanning mutagenesis of the zinc-binding domain of DNA primase of bacteriophage T7 using a bacterial homolog from Geobacillus stearothermophilus. The ability of T7 DNA primase to catalyze template-directed oligoribonucleotide synthesis is eliminated by substitution of any five-amino acid residue-long segment within the ZBD. The most significant defect occurs upon substitution of a region (Pro-16 to Cys-20) spanning two cysteines that coordinate the zinc ion. The role of this region in primase function was further investigated by generating a protein library composed of multiple amino acid substitutions for Pro-16, Asp-18, and Asn-19 followed by genetic screening for functional proteins. Examination of proteins selected from the screening reveals no change in sequence-specific recognition. However, the more positively charged residues in the region facilitate DNA binding, leading to more efficient oligoribonucleotide synthesis on short templates. The results suggest that the zinc-binding mode alone is not responsible for sequence recognition, but rather its interaction with the RNA polymerase domain is critical for DNA binding and for sequence recognition. Consequently, any alteration in the ZBD that disturbs its conformation leads to loss of DNA-dependent oligoribonucleotide synthesis.

The RNA Polymerase of Marine Cyanophage Syn5

The Journal of Biological Chemistry. Feb, 2013  |  Pubmed ID: 23258537

A single subunit DNA-dependent RNA polymerase was identified and purified to apparent homogeneity from cyanophage Syn5 that infects the marine cyanobacteria Synechococcus. Syn5 is homologous to bacteriophage T7 that infects Escherichia coli. Using the purified enzyme its promoter has been identified by examining transcription of segments of Syn5 DNA and sequencing the 5'-termini of the transcripts. Only two Syn5 RNAP promoters, having the sequence 5'-ATTGGGCACCCGTAA-3', are found within the Syn5 genome. One promoter is located within the Syn5 RNA polymerase gene and the other is located close to the right genetic end of the genome. The purified enzyme and its promoter have enabled a determination of the requirements for transcription. Unlike the salt-sensitive bacteriophage T7 RNA polymerase, this marine RNA polymerase requires 160 mm potassium for maximal activity. The optimal temperature for Syn5 RNA polymerase is 24 °C, much lower than that for T7 RNA polymerase. Magnesium is required as a cofactor although some activity is observed with ferrous ions. Syn5 RNA polymerase is more efficient in utilizing low concentrations of ribonucleotides than T7 RNA polymerase.

Impact of Macromolecular Crowding on DNA Replication

Nature Communications. 2013  |  Pubmed ID: 23511479

Enzymatic activities in vivo occur in a crowded environment composed of many macromolecules. This environment influences DNA replication by increasing the concentration of the constituents, desolvation, decreasing the degrees of freedom for diffusion and hopping of proteins onto DNA, and enhancing binding equilibria and catalysis. However, the effect of macromolecular crowding on protein structure is poorly understood. Here we examine macromolecular crowding using the replication system of bacteriophage T7 and we show that it affects several aspects of DNA replication; the activity of DNA helicase increases and the sensitivity of DNA polymerase to salt is reduced. We also demonstrate, using small-angle X-ray scattering analysis, that the complex between DNA helicase and DNA polymerase/trx is far more compact in a crowded environment. The highest enzymatic activity corresponds to the most compact structure. Better knowledge of the effect of crowding on structure and activity will enhance mechanistic insight beyond information obtained from NMR and X-ray structures.

Molecular Crowding Enhanced ATPase Activity of the RNA Helicase EIF4A Correlates with Compaction of Its Quaternary Structure and Association with EIF4G

Journal of the American Chemical Society. Jul, 2013  |  Pubmed ID: 23767688

Enzymatic reactions occur in a crowded and confined environment in vivo, containing proteins, RNA and DNA. Previous reports have shown that interactions between macromolecules, and reactions rates differ significantly between crowded environments and dilute buffers. However, the direct effect of crowding on the level of high-resolution structures of macromolecules has not been extensively analyzed and is not well understood. Here we analyze the effect of macromolecular crowding on structure and function of the human translation initiation factors eIF4A, a two-domain DEAD-Box helicase, the HEAT-1 domain of eIF4G, and their complex. We find that crowding enhances the ATPase activity of eIF4A, which correlates with a shift to a more compact structure as revealed with small-angle X-ray scattering. However, the individual domains of eIF4A, or the eIF4G-HEAT-1 domain alone show little structural changes due to crowding except for flexible regions. Thus, the effect of macromolecular crowding on activity and structure need to be taken into account when evaluating enzyme activities and structures of multidomain proteins, proteins with flexible regions, or protein complexes obtained by X-ray crystallography, NMR, or other structural methods.

Syn5 RNA Polymerase Synthesizes Precise Run-off RNA Products

Nucleic Acids Research. Mar, 2014  |  Pubmed ID: 24285303

The enzyme predominantly used for in vitro run-off RNA synthesis is bacteriophage T7 RNA polymerase. T7 RNA polymerase synthesizes, in addition to run-off products of precise length, transcripts with an additional non-base-paired nucleotide at the 3'-terminus (N+1 product). This contaminating product is extremely difficult to remove. We recently characterized the single-subunit RNA polymerase from marine cyanophage Syn5 and identified its promoter sequence. This marine enzyme catalyses RNA synthesis over a wider range of temperature and salinity than does T7 RNA polymerase. Its processivity is >30,000 nt without significant intermediate products. The requirement for the initiating nucleotide at the promoter is less stringent for Syn5 RNA polymerase as compared to T7 RNA polymerase. A major difference is the precise run-off transcripts with homogeneous 3'-termini synthesized by Syn5 RNA polymerase. Therefore, the enzyme is advantageous for the production of RNAs that require precise 3'-termini, such as tRNAs and RNA fragments that are used for subsequent assembly.

Flap Endonuclease Activity of Gene 6 Exonuclease of Bacteriophage T7

The Journal of Biological Chemistry. Feb, 2014  |  Pubmed ID: 24394415

Flap endonucleases remove flap structures generated during DNA replication. Gene 6 protein of bacteriophage T7 is a 5'-3'-exonuclease specific for dsDNA. Here we show that gene 6 protein also possesses a structure-specific endonuclease activity similar to known flap endonucleases. The flap endonuclease activity is less active relative to its exonuclease activity. The major cleavage by the endonuclease activity occurs at a position one nucleotide into the duplex region adjacent to a dsDNA-ssDNA junction. The efficiency of cleavage of the flap decreases with increasing length of the 5'-overhang. A 3'-single-stranded tail arising from the same end of the duplex as the 5'-tail inhibits gene 6 protein flap endonuclease activity. The released flap is not degraded further, but the exonuclease activity then proceeds to hydrolyze the 5'-terminal strand of the duplex. T7 gene 2.5 single-stranded DNA-binding protein stimulates the exonuclease and also the endonuclease activity. This stimulation is attributed to a specific interaction between the two proteins because Escherichia coli single-stranded DNA binding protein does not produce this stimulatory effect. The ability of gene 6 protein to remove 5'-terminal overhangs as well as to remove nucleotides from the 5'-termini enables it to effectively process the 5'-termini of Okazaki fragments before they are ligated.

Single-molecule Studies of Polymerase Dynamics and Stoichiometry at the Bacteriophage T7 Replication Machinery

Proceedings of the National Academy of Sciences of the United States of America. Mar, 2014  |  Pubmed ID: 24591606

Replication of DNA plays a central role in transmitting hereditary information from cell to cell. To achieve reliable DNA replication, multiple proteins form a stable complex, known as the replisome, enabling them to act together in a highly coordinated fashion. Over the past decade, the roles of the various proteins within the replisome have been determined. Although many of their interactions have been characterized, it remains poorly understood how replication proteins enter and leave the replisome. In this study, we visualize fluorescently labeled bacteriophage T7 DNA polymerases within the replisome while we simultaneously observe the kinetics of the replication process. This combination of observables allows us to monitor both the activity and dynamics of individual polymerases during coordinated leading- and lagging-strand synthesis. Our data suggest that lagging-strand polymerases are exchanged at a frequency similar to that of Okazaki fragment synthesis and that two or more polymerases are present in the replisome during DNA replication. Our studies imply a highly dynamic picture of the replisome with lagging-strand DNA polymerases residing at the fork for the synthesis of only a few Okazaki fragments. Further, new lagging-strand polymerases are readily recruited from a pool of polymerases that are proximally bound to the replisome and continuously replenished from solution.

Genetic Requirements for Sensitivity of Bacteriophage T7 to Dideoxythymidine

Journal of Bacteriology. Aug, 2014  |  Pubmed ID: 24858186

We previously reported that the presence of dideoxythymidine (ddT) in the growth medium selectively inhibits the ability of bacteriophage T7 to infect Escherichia coli by inhibiting phage DNA synthese (N. Q. Tran, L. F. Rezende, U. Qimron, C. C. Richardson, and S. Tabor, Proc. Natl. Acad. Sci. U. S. A. 105:9373-9378, 2008, doi:10.1073/pnas.0804164105). In the presence of T7 gene 1.7 protein, ddT is taken up into the E. coli cell and converted to ddTTP. ddTTP is incorporated into DNA as ddTMP by the T7 DNA polymerase, resulting in chain termination. We have identified the pathway by which exogenous ddT is converted to ddTTP. The pathway consists of ddT transport by host nucleoside permeases and phosphorylation to ddTMP by the host thymidine kinase. T7 gene 1.7 protein phosphorylates ddTMP and ddTDP, resulting in ddTTP. A 74-residue peptide of the gene 1.7 protein confers ddT sensitivity to the same extent as the 196-residue wild-type gene 1.7 protein. We also show that cleavage of thymidine to thymine and deoxyribose-1-phosphate by the host thymidine phosphorylase greatly increases the sensitivity of phage T7 to ddT. Finally, a mutation in T7 DNA polymerase that leads to discrimination against the incorporation of ddTMP eliminates ddT sensitivity.

Flap Endonuclease of Bacteriophage T7: Possible Roles in RNA Primer Removal, Recombination and Host DNA Breakdown

Bacteriophage. 2014  |  Pubmed ID: 25105057

Gene 6 protein of bacteriophage T7 has 5'-3'-exonuclease activity specific for duplex DNA. We have found that gene 6 protein also has flap endonuclease activity. The flap endonuclease activity is considerably weaker than the exonuclease activity. Unlike the human homolog of gene 6 protein, the flap endonuclease activity of gene 6 protein is dependent on the length of the 5'-flap. This dependency of activity on the length of the 5'-flap may result from the structured helical gateway region of gene 6 protein which differs from that of human flap endonuclease 1. The flap endonuclease activity provides a mechanism by which RNA-terminated Okazaki fragments, displaced by the lagging strand DNA polymerase, are processed. 3'-extensions generated during degradation of duplex DNA by the exonuclease activity of gene 6 protein are inhibitory to further degradation of the 5'-terminus by the exonuclease activity of gene 6 protein. The single-stranded DNA binding protein of T7 overcomes this inhibition.

Synthesis of 2'-Fluoro RNA by Syn5 RNA Polymerase

Nucleic Acids Research. Aug, 2015  |  Pubmed ID: 25897116

The substitution of 2'-fluoro for 2'-hydroxyl moieties in RNA substantially improves the stability of RNA. RNA stability is a major issue in RNA research and applications involving RNA. We report that the RNA polymerase from the marine cyanophage Syn5 has an intrinsic low discrimination against the incorporation of 2'-fluoro dNMPs during transcription elongation. The presence of both magnesium and manganese ions at high concentrations further reduce this discrimination without decreasing the efficiency of incorporation. We have constructed a Syn5 RNA polymerase in which tyrosine 564 is replaced with phenylalanine (Y564F) that further decreases the discrimination against 2'-fluoro-dNTPs during RNA synthesis. Sequence elements in DNA templates that affect the yield of RNA and incorporation of 2'-fluoro-dNMPs by Syn5 RNA polymerase have been identified.

It Seems Like Only Yesterday

Annual Review of Biochemistry. 2015  |  Pubmed ID: 26034887

I spent my childhood and adolescence in North and South Carolina, attended Duke University, and then entered Duke Medical School. One year in the laboratory of George Schwert in the biochemistry department kindled my interest in biochemistry. After one year of residency on the medical service of Duke Hospital, chaired by Eugene Stead, I joined the group of Arthur Kornberg at Stanford Medical School as a postdoctoral fellow. Two years later I accepted a faculty position at Harvard Medical School, where I remain today. During these 50 years, together with an outstanding group of students, postdoctoral fellows, and collaborators, I have pursued studies on DNA replication. I have experienced the excitement of discovering a number of important enzymes in DNA replication that, in turn, triggered an interest in the dynamics of a replisome. My associations with industry have been stimulating and fostered new friendships. I could not have chosen a better career.

Binding Affinities Among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7

The Journal of Biological Chemistry. Jan, 2016  |  Pubmed ID: 26620561

The formation of a replication loop on the lagging strand facilitates coordinated synthesis of the leading- and lagging-DNA strands and provides a mechanism for recycling of the lagging-strand DNA polymerase. As an Okazaki fragment is completed, the loop is released, and a new loop is formed as the synthesis of a new Okazaki fragment is initiated. Loop release requires the dissociation of the complex formed by the interactions among helicase, DNA polymerase, and DNA. The completion of the Okazaki fragment may result in either a nick or a single-stranded DNA region. In the replication system of bacteriophage T7, the dissociation of the polymerase from either DNA region is faster than that observed for the dissociation of the helicase from DNA polymerase, implying that the replication loop is released more likely through the dissociation of the lagging-strand DNA from polymerase, retaining the polymerase at replication fork. Both dissociation of DNA polymerase from DNA and that of helicase from a DNA polymerase · DNA complex are much faster at a nick DNA region than the release from a ssDNA region. These results suggest that the replication loop is released as a result of the nick formed when the lagging-strand DNA polymerase encounters the previously synthesized Okazaki fragment, releasing lagging-strand DNA and retaining DNA polymerase at the replication fork for the synthesis of next Okazaki fragment.

Primer Release is the Rate-limiting Event in Lagging-strand Synthesis Mediated by the T7 Replisome

Proceedings of the National Academy of Sciences of the United States of America. May, 2016  |  Pubmed ID: 27162371

DNA replication occurs semidiscontinuously due to the antiparallel DNA strands and polarity of enzymatic DNA synthesis. Although the leading strand is synthesized continuously, the lagging strand is synthesized in small segments designated Okazaki fragments. Lagging-strand synthesis is a complex event requiring repeated cycles of RNA primer synthesis, transfer to the lagging-strand polymerase, and extension effected by cooperation between DNA primase and the lagging-strand polymerase. We examined events controlling Okazaki fragment initiation using the bacteriophage T7 replication system. Primer utilization by T7 DNA polymerase is slower than primer formation. Slow primer release from DNA primase allows the polymerase to engage the complex and is followed by a slow primer handoff step. The T7 single-stranded DNA binding protein increases primer formation and extension efficiency but promotes limited rounds of primer extension. We present a model describing Okazaki fragment initiation, the regulation of fragment length, and their implications for coordinated leading- and lagging-strand DNA synthesis.

Identification of DNA Primase Inhibitors Via a Combined Fragment-based and Virtual Screening

Scientific Reports. Nov, 2016  |  Pubmed ID: 27805033

The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.

Simultaneous Real-Time Imaging of Leading and Lagging Strand Synthesis Reveals the Coordination Dynamics of Single Replisomes

Molecular Cell. Dec, 2016  |  Pubmed ID: 27889453

The molecular machinery responsible for DNA replication, the replisome, must efficiently coordinate DNA unwinding with priming and synthesis to complete duplication of both strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, while the lagging strand is produced by repeated cycles of priming, DNA looping, and Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach to visualize this coordination in the bacteriophage T7 replisome by simultaneously monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in the lagging strand predominantly occur during priming and only infrequently support subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-fragment synthesis behind and independent of the replication complex. Individual replisomes display both looping and pausing during priming, reconciling divergent models for the regulation of primer synthesis and revealing an underlying plasticity in replisome operation.

simple hit counter