Skip to content
Articles by Charles Nicholson in JoVE
-
Real-time Iontophoresis with Tetramethylammonium to Quantify Volume Fraction and Tortuosity of Brain Extracellular Space
John Odackal*1, Robert Colbourn*2,3, Namrita Jain Odackal4, Lian Tao5, Charles Nicholson5, Sabina Hrabetova2
1Department of Medicine, University of Virginia, 2Department of Cell Biology, SUNY Downstate Medical Center, 3Neural and Behavioral Science Graduate Program, SUNY Downstate Medical Center, 4Division of Neonatology, University of Virginia, 5Department of Neuroscience and Physiology, New York University School of Medicine,
This protocol describes real-time iontophoresis, a method that measures physical parameters of the extracellular space (ECS) of living brains. The diffusion of an inert molecule released into the ECS is used to calculate the ECS volume fraction and tortuosity. It is ideal for studying acute reversible changes to brain ECS.
Other articles by Charles Nicholson on PubMed
-
-
-
Quantitative Dual-probe Microdialysis: Evaluation of [3H]mannitol Diffusion in Agar and Rat Striatum
Journal of Neurochemistry.
Apr, 2002 |
Pubmed ID: 12067240 Dual-probe microdialysis was used to study interstitial diffusion in the rat brain. A radiolabelled tracer, (3H]mannitol, was continuously infused at different concentrations via a probe acutely implanted into the striatum of an anaesthetized male rat or into a dilute agar gel. Samples were collected by a second probe placed 1 mm away from the first, and the recovered [3H]mannitol was measured by liquid scintillation counting. In the striatum, the delivery of [3H]mannitol was counteracted by its removal from the extracellular space by passive uptake into cells and clearance into the microcirculation, causing the diffusion profile to approach quasi steady-state levels within 2 h. Diffusion data from brain and agar were analysed using a mathematical model. The apparent (effective) diffusion coefficient for [3H]mannitol was D* = 2.9 x 10(-6) cm2/s, the effective volume fraction alpha* = 0.30 and the clearance rate constant kappa= 2.3 x 10(-5)/s. A tortuosity, lambda = 1.81, and penetration distance r = 4.2 mm, were calculated. We conclude that, using dual-probe microdialysis, parameters reflecting geometric and dynamic tissue properties may be obtained using appropriate mathematical analysis. Quantitative dual-probe microdialysis will be valuable in characterizing interstitial diffusion and the clearance processes underpinning volume transmission in the brain.
-
-
Independence of Extracellular Tortuosity and Volume Fraction During Osmotic Challenge in Rat Neocortex
The Journal of Physiology.
Jul, 2002 |
Pubmed ID: 12122149 The structural properties of brain extracellular space (ECS) are summarised by the tortuosity (lambda) and the volume fraction (alpha). To determine if these two parameters were independent, we varied the size of the ECS by changing the NaCl content to alter osmolality of bathing media for rat cortical slices. Values of lambda and alpha were extracted from diffusion measurements using the real-time ionophoretic method with tetramethylammonium (TMA+). In normal medium (305 mosmol kg(-1)), the average value of lambda was 1.69 and of alpha was 0.24. Reducing osmolality to 150 mosmol kg(-1), increased lambda to 1.86 and decreased alpha to 0.12. Increasing osmolality to 350 mosmol kg(-1), reduced lambda to about 1.67 where it remained unchanged even when osmolality increased further to 500 mosmol kg(-1). In contrast, alpha increased steadily to 0.42 as osmolality increased. Comparison with previously published experiments employing 3000 M(r) dextran to measure lambda, showed the same behaviour as for TMA+, including the same constant lambda in hypertonic media but with a steeper slope in the hypotonic solutions. These data show that lambda and alpha behave differently as the ECS geometry varies. When alpha decreases, lambda increases but when alpha increases, lambda rapidly attains a constant value. A previous model allowing cellular shape to alter during osmotic challenge can account qualitatively for the plateau behaviour of lambda.
-
Light Scattering in Rat Neocortical Slices Differs During Spreading Depression and Ischemia
Brain Research.
Oct, 2002 |
Pubmed ID: 12376191 Spreading depression (SD) and ischemia are different pathophysiological events but have similar characteristics. This study investigated whether similarity exists in the light scattering (LS) properties during SD and ischemia in rat neocortical slices. SD was induced by injection of K(+) while ischemia was simulated by removing oxygen and glucose. LS was simultaneously recorded with changes in extracellular direct current (DC) potential and extracellular space (ECS) volume. LS was measured using a photon counting fiber optic system and the ECS volume change was determined by measuring the ECS concentration of tetramethylammonium (TMA(+)). Slices maintained in normal artificial cerebrospinal fluid (ACSF) showed a consistent LS increase during SD, but exhibited two different LS behaviors during 6 min of ischemia. In eight slices, LS decreased and remained so until the end of the ischemic challenge. In another 10 slices, LS diminished initially but, after 2 min, suddenly reversed sign, accompanied by a rapid negative shift in extracellular DC potential. When 50 or 91% of Cl(-) in the ACSF was replaced by membrane-permeable propionate, LS retained its increase during SD, but always showed the sudden LS reversal during ischemia. In contrast, when Cl(-) was substituted with membrane-impermeant methylsulfate, the SD-induced LS increase was replaced by an LS decrease, and the sudden LS reversal during ischemia was absent. While the LS signal showed different characteristics during SD and ischemia, the DC potential always presented negative shifts and the ECS volume always exhibited similar decreases. These results suggest that the polarity of the LS signal is determined by the competition of at least two factors: cell swelling and anion influx.
-
-
-
Dead-space Microdomains Hinder Extracellular Diffusion in Rat Neocortex During Ischemia
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience.
Sep, 2003 |
Pubmed ID: 12967997 During ischemia, the transport of molecules in the extracellular space (ECS) is obstructed in comparison with healthy brain tissue, but the cause is unknown. Extracellular tortuosity (lambda), normally 1.6, increases to 1.9 in ischemic thick brain slices (1000 microm), but drops to 1.5 when 70,000 Mr dextran (dex70) is added to the tissue as a background macromolecule. We hypothesized that the ischemic increase in lambda arises from diffusion delays in newly formed dead-space microdomains of the ECS. Accordingly, lambda decreases when dead-space diffusion is eliminated by trapping dex70 in these microdomains. We tested our hypothesis by analyzing the diffusion of several molecules in neocortical slices. First we showed that diffusion of fluorescent dex70 in thick slices declined over time, indicating the entrapment of background macromolecules. Next, we measured diffusion of tetramethylammonium (TMA+) (74 Mr) to show that the reduction of lambda depended on the size of the background macromolecule. The synthetic polymer, 40,000 Mr polyvinylpyrrolidone, reduced lambda in thick slices, whereas 10,000 Mr dextran did not. The dex70 was also effective in normoxic slices (400 microm) after hypoosmotic stress altered the ECS to mimic ischemia. Finally, the dex70 effect was confirmed independently of TMA+ using fluorescent 3000 Mr dextran as a diffusion marker in thick slices: lambda decreased from 3.29 to 2.44. Taken together, these data support our hypothesis and offer a novel explanation for the origin of the large lambda observed in ischemic brain. A semiquantitative model of dead-space diffusion corroborates this new interpretation of lambda.
-
Contribution of Dead-space Microdomains to Tortuosity of Brain Extracellular Space
Neurochemistry International.
Sep, 2004 |
Pubmed ID: 15186912 The extracellular space (ECS) of the brain is a major channel for intercellular communication, nutrient and metabolite trafficking, and drug delivery. The dominant transport mechanism is diffusion, which is governed by two structural parameters, tortuosity and volume fraction. Tortuosity (lambda) represents the hindrance imposed on the diffusing molecules by the tissue in comparison with an obstacle-free medium, while volume fraction (alpha) is the proportion of tissue volume occupied by the ECS. Diffusion of small ECS markers can be exploited to measure lambda and alpha. In healthy brain tissue, lambda is about 1.6 but increases to 1.9-2.0 in pathologies that involve cellular swelling. Previously it was thought that lambda could be explained by the circumnavigation of diffusing molecules around cells. Numerical models of assemblies of convex cells, however, give an upper limit of about 1.23 for lambda. Therefore, additional factors must be responsible for lambda in brain. In principle, two mechanisms could account for the measured value: a more complex ECS geometry or an extracellular macromolecular matrix. Here we review recent work in ischemic tissue suggesting concave geometrical formations, dead-space microdomains, as a major determinant of extracellular tortuosity. A theoretical model of lambda based on diffusion dwell times supports this hypothesis and predicts that, in ischemia, dead spaces occupy approximately 60% of ECS volume fraction leaving only approximately 40% for well-connected channels. It is further proposed that dead spaces are present in healthy brain tissue where they constitute about 40% of alpha. The presence of dead-space microdomains in the ECS implies microscopic heterogeneity of extracellular channels with fundamental implications for molecular transport in brain.
-
Diffusion of Epidermal Growth Factor in Rat Brain Extracellular Space Measured by Integrative Optical Imaging
Journal of Neurophysiology.
Dec, 2004 |
Pubmed ID: 15269225 Epidermal growth factor (EGF) stimulates proliferation, process outgrowth, and survival in the CNS. Understanding the actions of EGF necessitates characterizing its distribution in brain tissue following drug delivery or release from cellular sources. We used the integrative optical imaging (IOI) method to measure diffusion of fluorescently labeled EGF (6,600 Mr; 4 microg/ml) in the presence of excess unlabeled EGF (90 microg/ml) to compete off specific receptor binding and reveal the "true" EGF diffusion coefficient following injection in rat brain slices (400 microm). The effective diffusion coefficient was 5.18 +/- 0.16 x 10(-7) (SE) cm2/s (n = 22) in rat somatosensory cortex and the free diffusion coefficient, determined in dilute agarose gel, was 16.6 +/- 0.12 x 10(-7) cm2/s (n = 27). Tortuosity (lambda), a parameter representing the hindrance imposed on EGF by the convoluted brain extracellular space (ECS), was 1.8, the lowest yet measured by IOI for a protein in brain. Control experiments with fluorescent dextran of similar molecular weight and tetramethylammonium confirmed EGF did not affect local ECS structure. We conclude that transport of smaller growth factors such as EGF through brain ECS is less hindered than that of larger proteins (>10,000 Mr, e.g., nerve growth factor) where typically lambda > 2.1. Modeling was used to predict that low lambda will allow EGF sources in the brain to be further from target cells and still elicit a biological response. High lambda values for larger growth factors imply more constrained local biological effects than with smaller proteins such as EGF.
-
Optical Current Source Density Analysis in Hippocampal Organotypic Culture Shows That Spreading Depression Occurs with Uniquely Reversing Currents
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience.
Apr, 2005 |
Pubmed ID: 15829647 Spreading depression (SD) involves current flow through principal neurons, but the pattern of current flow over the expanse of susceptible tissues or individual principal neurons remains undefined. Accordingly, tissue and single cell maps made from digital imaging of voltage-sensitive dye changes in hippocampal organotypic cultures undergoing SD were processed via optical current source density analysis to reveal the currents associated with pyramidal neurons. Two distinctive current flow patterns were seen. The first was a trilaminar pattern (420 microm2) that developed with the onset of SD in CA3 pyramidal neurons, in which SD most often began. This initial pattern comprised a somatic current sink with current sources to either side in the dendrites that lasted for seconds extending into the first aspect of the classical "inverted saddle" interstitial direct current waveform of SD. Next, the somatic sink backpropagated at a speed of millimeters per minute into the proximal dendrites, resulting in a reversal of the initial current flow pattern to its second orientation, namely dendritic sinks associated with a somatic source. The latter persisted for the remainder of SD in CA3 and was the only pattern seen in CA1, in which SD was rarely initiated. This backpropagating SD current flow resembles that of activity-dependent synaptic activation. Retrograde and associative signaling via principal neuron current flow is a key means to affect tissue function, including synaptic activation and, by extension, perhaps SD. Such current-related postsynaptic signaling might not only help explain SD but also neuroprotection and migraine, two phenomena increasingly recognized as being related to SD.
-
-
-
Diffusion of Flexible Random-coil Dextran Polymers Measured in Anisotropic Brain Extracellular Space by Integrative Optical Imaging
Biophysical Journal.
Aug, 2008 |
Pubmed ID: 18456831 There are a limited number of methods available to quantify the extracellular diffusion of macromolecules in an anisotropic brain region, e.g., an area containing numerous aligned fibers where diffusion is faster along the fibers than across. We applied the integrative optical imaging method to measure diffusion of the fluorophore Alexa Fluor 488 (molecular weight (MW) 547) and fluorophore-labeled flexible random-coil dextran polymers (dex3, MW 3000; dex75, MW 75,000; dex282, MW 282,000; dex525, MW 525,000) in the extracellular space (ECS) of the anisotropic molecular layer of the isolated turtle cerebellum. For all molecules, two-dimensional images acquired an elliptical shape with major and minor axes oriented along and across, respectively, the unmyelinated parallel fibers. The effective diffusion coefficients, D*(major) and D*(minor), decreased with molecular size. The diffusion anisotropy ratio (DAR = D*(major)/D*(minor)) increased for Alexa Fluor 488 through dex75 but then unexpectedly reached a plateau. We argue that dex282 and dex525 approach the ECS width and deform to diffuse. In support of this concept, scaling theory shows the diffusion behavior of dex282 and dex525 to be consistent with transition to a reptation regime, and estimates the average ECS width at approximately 31 nm. These findings have implications for the interstitial transport of molecules and drugs, and for modeling neurotransmitter diffusion during ectopic release and spillover.
-
Characterizing Molecular Probes for Diffusion Measurements in the Brain
Journal of Neuroscience Methods.
Jun, 2008 |
Pubmed ID: 18466980 Brain diffusion properties are at present most commonly evaluated by magnetic resonance (MR) diffusion imaging. MR cannot easily distinguish between the extracellular and intracellular signal components, but the older technique of real-time iontophoresis (RTI) detects exclusively extracellular diffusion. Interpretation of the MR results would therefore benefit from auxiliary RTI measurements. This requires a molecular probe detectable by both techniques. Our aim was to specify a minimum set of requirements that such a diffusion probe should fulfill and apply it to two candidate probes: the cation tetramethylammonium (TMA(+)), used routinely in the RTI experiments, and the anion hexafluoroantimonate (SbF(6)(-)). Desirable characteristics of a molecular diffusion probe include predictable diffusion properties, stability, minimum interaction with cellular physiology, very slow penetration into the cells, and sufficiently strong and selective MR and RTI signals. These properties were evaluated using preparations of rat neocortical slices under normal and ischemic conditions, as well as solutions and agarose gel. While both molecules can be detected by MR and RTI, neither proved an ideal candidate. TMA(+) was very stable but it penetrated into the cells and accumulated there within tens of minutes. SbF(6)(-) did not enter the cells as readily but it was not stable, particularly in ischemic tissue and at higher temperatures. Its presence also resulted in a decreased extracellular volume. These probe properties help to interpret previously published MR data on TMA(+) diffusion and might play a role in other diffusion experiments obtained with them.
-
-
In Vivo Diffusion of Lactoferrin in Brain Extracellular Space is Regulated by Interactions with Heparan Sulfate
Proceedings of the National Academy of Sciences of the United States of America.
Jun, 2008 |
Pubmed ID: 18541909 The intercellular spaces between neurons and glia contain an amorphous, negatively charged extracellular matrix (ECM) with the potential to shape and regulate the distribution of many diffusing ions, proteins and drugs. However, little evidence exists for direct regulation of extracellular diffusion by the ECM in living tissue. Here, we demonstrate macromolecule sequestration by an ECM component in vivo, using quantitative diffusion measurements from integrative optical imaging. Diffusion measurements in free solution, supported by confocal imaging and binding assays with cultured cells, were used to characterize the properties of a fluorescently labeled protein, lactoferrin (Lf), and its association with heparin and heparan sulfate in vitro. In vivo diffusion measurements were then performed through an open cranial window over rat somatosensory cortex to measure effective diffusion coefficients (D*) under different conditions, revealing that D* for Lf was reduced approximately 60% by binding to heparan sulfate proteoglycans, a prominent component of the ECM and cell surfaces in brain. Finally, we describe a method for quantifying heparan sulfate binding site density from data for Lf and the structurally similar protein transferrin, allowing us to predict a low micromolar concentration of these binding sites in neocortex, the first estimate in living tissue. Our results have significance for many tissues, because heparan sulfate is synthesized by almost every type of cell in the body. Quantifying ECM effects on diffusion will also aid in the modeling and design of drug delivery strategies for growth factors and viral vectors, some of which are likely to interact with heparan sulfate.
-
Diffusion in Brain Extracellular Space
Physiological Reviews.
Oct, 2008 |
Pubmed ID: 18923183 Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding, or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix, and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is approximately 20% and the tortuosity is approximately 1.6 (i.e., free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge, and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases, and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties is valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain.
-
-
-
-
-
-
-
Limitations and Potentials of Dual-purpose Cow Herds in Central Coastal Veracruz, Mexico
Tropical Animal Health and Production.
Aug, 2012 |
Pubmed ID: 22201012 Feed chemical and kinetic composition and animal performance information was used to evaluate productivity limitations and potentials of dual-purpose member herds of the Genesis farmer organization of central coastal Veracruz, Mexico. The Cornell Net Carbohydrate and Protein System model (Version 6.0) was systematically applied to specific groups of cows in structured simulations to establish probable input-output relationships for typical management, and to estimate probable outcomes from alternative management based on forage-based dietary improvements. Key herd vulnerabilities were pinpointed: chronic energy deficits among dry cows of all ages in late gestation and impeded growth for immature cows. Regardless of the forage season of calving, most cows, if not all, incur energy deficits in the final trimester of gestation; thus reducing the pool of tissue energy and constraining milking performance. Under typical management, cows are smaller and underweight for their age, which limits feed intake capacity, milk production and the probability of early postpartum return to ovarian cyclicity. The substitution of good-quality harvested forage for grazing increased predicted yields by about one-third over typical scenarios for underweight cows. When diets from first parturition properly supported growth and tissue repletion, milk production in second and third lactations was predicted to improve about 60%. Judiciously supplemented diets based on good quality grass and legume forages from first calving were predicted to further increase productivity by about 80% across a three-lactation cow lifetime. These dual-purpose herd owners have large incentives to increase sales income by implementing nutritional strategies like those considered in this study.
-
Generation and Dynamics of an Endogenous, Self-generated Signaling Gradient Across a Migrating Tissue
Cell.
Oct, 2013 |
Pubmed ID: 24119842 In animals, many cells reach their destinations by migrating toward higher concentrations of an attractant. However, the nature, generation, and interpretation of attractant gradients are poorly understood. Using a GFP fusion and a signaling sensor, we analyzed the distribution of the attractant chemokine Sdf1 during migration of the zebrafish posterior lateral line primordium, a cohort of about 200 cells that migrates over a stripe of cells uniformly expressing sdf1. We find that a small fraction of the total Sdf1 pool is available to signal and induces a linear Sdf1-signaling gradient across the primordium. This signaling gradient is initiated at the rear of the primordium, equilibrates across the primordium within 200 min, and operates near steady state. The rear of the primordium generates this gradient through continuous sequestration of Sdf1 protein by the alternate Sdf1-receptor Cxcr7. Modeling shows that this is a physically plausible scenario.
-
-
-
-
-
Clearance Systems in the Brain-implications for Alzheimer Disease
Nature Reviews. Neurology.
Aug, 2015 |
Pubmed ID: 26195256 Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.
-
-
-
-
Disaggregating the Evidence Linking Biodiversity and Ecosystem Services
Nature Communications.
Oct, 2016 |
Pubmed ID: 27713429 Ecosystem services (ES) are an increasingly popular policy framework for connecting biodiversity with human well-being. These efforts typically assume that biodiversity and ES covary, but the relationship between them remains remarkably unclear. Here we analyse >500 recent papers and show that reported relationships differ among ES, methods of measuring biodiversity and ES, and three different approaches to linking them (spatial correlations, management comparisons and functional experiments). For spatial correlations, biodiversity relates more strongly to measures of ES supply than to resulting human benefits. For management comparisons, biodiversity of 'service providers' predicts ES more often than biodiversity of functionally unrelated taxa, but the opposite is true for spatial correlations. Functional experiments occur at smaller spatial scales than management and spatial studies, which show contrasting responses to scale. Our results illuminate the varying dynamics relating biodiversity to ES, and show the importance of matching management efforts to the most relevant scientific evidence.
-
Get cutting-edge science videos from JoVE sent straight to your inbox every month.