In JoVE (1)

Other Publications (18)

Articles by Chia-Chi Ku in JoVE

Other articles by Chia-Chi Ku on PubMed

Tropism of Varicella-zoster Virus for Human Tonsillar CD4(+) T Lymphocytes That Express Activation, Memory, and Skin Homing Markers

Journal of Virology. Nov, 2002  |  Pubmed ID: 12388703

Varicella-zoster virus (VZV) is an alphaherpesvirus with the characteristic neurotropism of this group, but VZV also infects T cells productively and downregulates major histocompatibility complex (MHC) class I expression on infected T cells, as shown in the SCID-hu mouse model. T-cell tropism is likely to be critical for the cell-associated viremia associated with primary VZV infection. In these experiments, we found that VZV infects human tonsillar CD4(+) T cells in culture, with 15 to 25% being positive for VZV proteins as detected by polyclonal anti-VZV immunoglobulin G (IgG) staining and monitored by flow cytometry analysis. RNA transcripts for VZV gE, a late gene product, were detected in T-cell populations that expressed VZV surface proteins, but not in the VZV-negative cell fraction. Exposure to phorbol myristate acetate resulted in an increase in VZV-positive T cells, indicating that viral DNA was present within these cells and that VZV gene expression could be induced by T-cell activation. By immune scanning electron microscopy, VZV virions were detected in abundance on the surfaces of infected tonsillar T cells. The predominant CD4(+) T-lymphocyte subpopulations that became infected were activated CD69(+) T cells with the CD45RA(-) memory phenotype. Subsets of CD4(+) T cells that expressed skin homing markers, cutaneous leukocyte antigen, and chemokine receptor 4 were also infected with VZV. By chemotaxis assay, VZV-infected T cells migrated to SDF-1, demonstrating that skin migratory function was intact despite VZV infection. The susceptibility of tonsil T cells to VZV suggests that these cells may be important targets during the initial VZV infection of upper respiratory tract sites. Viral transfer to migrating T cells in the tonsils may facilitate cell-associated viremia, and preferential infection of CD4 T cells that express skin homing markers may enhance VZV transport to cutaneous sites of replication.

Differentiation of Varicella-zoster Virus ORF47 Protein Kinase and IE62 Protein Binding Domains and Their Contributions to Replication in Human Skin Xenografts in the SCID-hu Mouse

Journal of Virology. May, 2003  |  Pubmed ID: 12719588

To investigate the role of the ORF47 protein kinase of varicella-zoster virus (VZV), we constructed VZV recombinants with targeted mutations in conserved motifs of ORF47 and a truncated ORF47 and characterized these mutants for replication, phosphorylation, and protein-protein interactions in vitro and for infectivity in human skin xenografts in the SCID-hu mouse model in vivo. Previous experiments showed that ROka47S, a null mutant that makes no ORF47 protein, did not replicate in skin in vivo (J. F. Moffat, L. Zerboni, M. H. Sommer, T. C. Heineman, J. I. Cohen, H. Kaneshima, and A. M. Arvin, Proc. Natl. Acad. Sci. USA 95:11969-11974, 1998). The construction of VZV recombinants with targeted ORF47 mutations made it possible to assess the effects on VZV infection of human skin xenografts of selectively abolishing ORF47 protein kinase activity. ORF47 mutations that resulted in a C-terminal truncation or disrupted the DYS kinase motif eliminated ORF47 kinase activity and were associated with extensive nuclear retention of ORF47 and IE62 proteins in vitro. Disrupting ORF47 kinase function also resulted in a marked decrease in VZV replication and cutaneous lesion formation in skin xenografts in vivo. However, infectivity in vivo was not blocked completely as long as the capacity of ORF47 protein to bind IE62 protein was preserved, a function that we identified and mapped to the N-terminal domain of ORF47 protein. These experiments indicate that ORF47 kinase activity is of critical importance for VZV infection and cell-cell spread in human skin in vivo but suggest that it is the formation of complexes between ORF47 and IE62 proteins, both VZV tegument components, that constitutes the essential contribution of ORF47 protein to VZV replication in vivo.

Varicella-zoster Virus Transfer to Skin by T Cells and Modulation of Viral Replication by Epidermal Cell Interferon-alpha

The Journal of Experimental Medicine. Oct, 2004  |  Pubmed ID: 15452178

Primary infection with varicella-zoster virus (VZV) causes the characteristic syndrome of varicella, or chickenpox. Experiments in severe combined immunodeficiency mice with human skin grafts (SCIDhu mice) indicate that VZV infection of T cells can mediate transfer of infectious virus to skin. VZV-infected T cells reached epithelial sites of replication within 24 h after entering the circulation. Memory CD4+ T cells were the predominant population recovered from skin in SCIDhu mice given uninfected or infected mononuclear cells, suggesting that immune surveillance by memory T cells may facilitate VZV transfer. The increased susceptibility of memory T cells to VZV infection may further enhance their role in VZV pathogenesis. During VZV skin infection, viral gene products down-regulated interferon-alpha to permit focal replication, whereas adjacent epidermal cells mounted a potent interferon-alpha response against cell-cell spread. Interleukin-1alpha, although activated in VZV-infected cells, did not trigger expression of endothelial adhesion molecules, thereby avoiding early recruitment of inflammatory cells. The prolonged varicella incubation period appears to represent the time required for VZV to overcome antiviral responses of epidermal cells and generate vesicles at the skin surface. Modulation of VZV replication by cutaneous innate immunity may avoid an incapacitating infection of the host that would limit opportunities for VZV transmission.

Varicella-Zoster Virus Pathogenesis and Immunobiology: New Concepts Emerging from Investigations with the SCIDhu Mouse Model

Journal of Virology. Mar, 2005  |  Pubmed ID: 15708984

Varicella-zoster Virus Infection of Human Dorsal Root Ganglia in Vivo

Proceedings of the National Academy of Sciences of the United States of America. May, 2005  |  Pubmed ID: 15851670

Varicella-zoster virus (VZV) causes varicella and establishes latency in sensory ganglia. VZV reactivation results in herpes zoster. We developed a model using human dorsal root ganglion (DRG) xenografts in severe combined immunodeficient (SCID) mice to investigate VZV infection of differentiated neurons and satellite cells in vivo. DRG engrafted under the kidney capsule and contained neurons and satellite cells within a typical DRG architecture. VZV clinical isolates infected the neurons within DRG. At 14 days postinfection, VZ virions were detected by electron microscopy in neuronal cell nuclei and cytoplasm but not in satellite cells. The VZV genome copy number was 7.1 x 10(7) to 8.0 x 10(8) copies per 10(5) cells, and infectious virus was recovered. This initial phase of viral replication was followed within 4-8 weeks by a transition to VZV latency, characterized by the absence of infectious virus release, the cessation of virion assembly, and a reduction in VZV genome copies to 3.7 x 10(5) to 4.7 x 10(6) per 10(5) cells. VZV persistence in DRG was achieved without any requirement for VZV-specific adaptive immunity and was associated with continued transcription of the ORF63 regulatory gene. The live attenuated varicella vaccine virus exhibited the same pattern of short-term replication, persistence of viral DNA, and prominent ORF63 transcription as the clinical isolates. VZV-infected T cells transferred virus from the circulation into DRG, suggesting that VZV lymphotropism facilitates its neurotropism. DRG xenografts may be useful for investigating neuropathogenic mechanisms of other human viruses.

T-cell Tropism and the Role of ORF66 Protein in Pathogenesis of Varicella-zoster Virus Infection

Journal of Virology. Oct, 2005  |  Pubmed ID: 16188994

The pathogenesis of varicella-zoster virus (VZV) involves a cell-associated viremia during which infectious virus is carried from sites of respiratory mucosal inoculation to the skin. We now demonstrate that VZV infection of T cells is associated with robust virion production and modulation of the apoptosis and interferon pathways within these cells. The VZV serine/threonine protein kinase encoded by ORF66 is essential for the efficient replication of VZV in T cells. Preventing ORF66 protein expression by stop codon insertion (pOka66S) impaired the growth of the parent Oka (pOka) strain in T cells in SCID-hu T-cell xenografts in vivo and reduced formation of VZV virions. The lack of ORF66 protein also increased the susceptibility of infected T cells to apoptosis and reduced the capacity of the virus to interfere with induction of the interferon (IFN) signaling pathway following exposure to IFN-gamma. However, preventing ORF66 protein expression only slightly reduced growth in melanoma cells in culture and did not diminish virion formation in these cells. The pOka66S virus showed only a slight defect in growth in SCID-hu skin implants compared with intact pOka. These observations suggest that the ORF66 kinase plays a unique role during infection of T cells and supports VZV T-cell tropism by contributing to immune evasion and enhancing survival of infected T cells.

Endonuclease G: a Role for the Enzyme in Recombination and Cellular Proliferation

Proceedings of the National Academy of Sciences of the United States of America. Jun, 2006  |  Pubmed ID: 16754849

Our earlier studies had suggested that endonuclease G (EndoG), a member of the evolutionarily conserved DNA/RNA nonspecific betabetaalpha-Me-finger nuclease family, functioned in the a sequence-mediated segment inversion observed during herpes simplex virus 1 replication. To test this hypothesis, we used RNA interference to reduce the level of EndoG in mammalian cells in culture. Reduction of EndoG produced a small but statistically significant decrease in a sequence-mediated recombination, suggesting that EndoG does play a role in this process. We also observed that reduction in the level of EndoG resulted in a deficiency in cell proliferation. Cells with a reduced level of EndoG also showed changes in cell distribution in the cell cycle, producing a pattern characteristic of cells that have been arrested in the G(2) phase. These findings suggest that EndoG is required for normal cellular proliferation.

Vascular Endothelial Growth Factor-C (VEGF-C) Promotes Angiogenesis by Induction of COX-2 in Leukemic Cells Via the VEGF-R3/JNK/AP-1 Pathway

Carcinogenesis. Dec, 2009  |  Pubmed ID: 19825968

Vascular endothelial growth factor (VEGF)-C is recognized as a tumor lymphangiogenic factor based on the effects of activated VEGF-R3 on lymphatic endothelial cells. Many tumor cells express VEGF-R3 but the function of this receptor in tumor cells is largely unknown. It has been reported that the VEGF-C/VEGF-R3 axis is activated in subsets of leukemia patients. Herein, we have shown that VEGF-C induces angiogenic activity in the tube formation assay invitro and Matrigel plug assay in vivo by upregulating an angiogenic factor, cyclooxygenase-2 (COX-2), through VEGF-R3 in the human acute myeloid leukemia (AML) cell line, THP-1. COX-2 induction by VEGF-C was also observed in other VEGF-R3(+) human AML cell lines (U937 and HL60). Moreover, immunohistochemical analysis of bone marrow specimens of 37 patients diagnosed with AML revealed that VEGF-C expression in specimens was associated with the expression of COX-2 (P < 0.001). The manner by which signaling pathways transduced by VEGF-C is responsible for COX-2 upregulation was further investigated. Blocking the p42/44 mitogen-activated protein kinase (MAPK) pathway with the MAPK kinase inhibitor, PD 98059, failed to inhibit VEGF-C-mediated COX-2 expression. However, VEGF-C-induced COX-2 upregulation was effectively abolished by overexpression of dominant-negative c-Jun N-terminal kinase (JNK) or treatment with the JNK inhibitor, SP 600125. VEGF-C induced JNK-dependent nuclear translocation of c-Jun. Furthermore, chromatin immunoprecipitation and reporter assays revealed that VEGF-C enhanced c-Jun binding to the cyclic adenosine 3',5'-monophosphate-response element of the COX-2 promoter and induced COX-2 expression. In sum, the data herein highlight the pathogenic role of VEGF-C in leukemia via regulation of angiogenesis through upregulation of COX-2.

Varicella-zoster Virus T Cell Tropism and the Pathogenesis of Skin Infection

Current Topics in Microbiology and Immunology. 2010  |  Pubmed ID: 20397071

Varicella-zoster virus (VZV) is a medically important human alphaherpesvirus that causes varicella and zoster. VZV initiates primary infection by inoculation of the respiratory mucosa. In the course of primary infection, VZV establishes a life-long persistence in sensory ganglia; VZV reactivation from latency may result in zoster in healthy and immunocompromised patients. The VZV genome has at least 70 known or predicted open reading frames (ORFs), but understanding how these gene products function in virulence is difficult because VZV is a highly human-specific pathogen. We have addressed this obstacle by investigating VZV infection of human tissue xenografts in the severe combined immunodeficiency mouse model. In studies relevant to the pathogenesis of primary VZV infection, we have examined VZV infection of human T cell (thymus/liver) and skin xenografts. This work supports a new paradigm for VZV pathogenesis in which VZV T cell tropism provides a mechanism for delivering the virus to skin. We have also shown that VZV-infected T cells transfer VZV to neurons in sensory ganglia. The construction of infectious VZV recombinants that have deletions or targeted mutations of viral genes or their promoters and the evaluation of VZV mutants in T cell and skin xenografts has revealed determinants of VZV virulence that are important for T cell and skin tropism in vivo.

Herpes Simplex Virus-1 Induces Expression of a Novel MxA Isoform That Enhances Viral Replication

Immunology and Cell Biology. Feb, 2011  |  Pubmed ID: 20603636

MxA is an antiviral protein induced by interferon (IFN)-α/β that is known to inhibit the replication of many RNA viruses. In these experiments, the 76-kDa MxA protein expressed in IFN-α-treated cells was shown to have antiviral activity against herpes simplex virus-1 (HSV-1), a human DNA virus. However, MxA was expressed as a 56-kDa protein in HSV-1-infected cells in the absence of IFN-α. This previously unrecognized MxA isoform was produced from an alternatively spliced MxA transcript that had a deletion of Exons 14-16 and a frame shift altering the C-terminus. The variant MxA (varMxA) isoform was associated with HSV-1 regulatory proteins and virions in nuclear replication compartments. varMxA expression enhanced HSV-1 infection as shown by a reduction in infectious virus titers from cells in which MxA had been inhibited by RNA interference and by an increase in HSV-1 titers when the 56-kDa varMxA was expressed constitutively. Thus, the human MxA gene encodes two MxA isoforms, which are expressed differentially depending on whether the stimulus is IFN-α or HSV-1. These findings show that alternative splicing of cellular mRNA can result in expression of a novel isoform of a host defense gene that supports instead of restricting viral infection.

Varicella-zoster Virus Infection Triggers Formation of an Interleukin-1β (IL-1β)-processing Inflammasome Complex

The Journal of Biological Chemistry. May, 2011  |  Pubmed ID: 21385879

Innate cellular immunity is the immediate host response against pathogens, and activation of innate immunity also modulates the induction of adaptive immunity. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular receptors that recognize conserved patterns associated with intracellular pathogens, but information about their role in the host defense against DNA viruses is limited. Here we report that varicella-zoster virus (VZV), an alphaherpesvirus that is the causative agent of varicella and herpes zoster, induces formation of the NLRP3 inflammasome and the associated processing of the proinflammatory cytokine IL-1β by activated caspase-1 in infected cells. NLRP3 inflammasome formation was induced in VZV-infected human THP-1 cells, which are a transformed monocyte cell line, primary lung fibroblasts, and melanoma cells. Absent in melanoma gene-2 (AIM2) is an interferon-inducible protein that can form an alternative inflammasome complex with caspase-1 in virus-infected cells. Experiments in VZV-infected melanoma cells showed that NLRP3 protein recruits the adaptor protein ASC and caspase-1 to form an NLRP3 inflammasome complex independent of AIM2 protein and in the absence of free radical reactive oxygen species release. NLRP3 was also expressed extensively in infected skin xenografts in the severe combined immunodeficiency mouse model of VZV pathogenesis in vivo. We conclude that NLRP3 inflammasome formation is an innate cellular response to infection with this common pathogenic human herpesvirus.

Systemic Human Orbital Fat-derived Stem/stromal Cell Transplantation Ameliorates Acute Inflammation in Lipopolysaccharide-induced Acute Lung Injury

Critical Care Medicine. Apr, 2012  |  Pubmed ID: 22202710

Acute lung injury results in acute respiratory distress syndrome. There is no standard therapy for acute respiratory distress syndrome but supportive care. Stem cells offer a new therapeutic potential for tissue regeneration as a result of their self-renewal, multipotency, and paracrine capabilities. The objective of this study is to investigate the effects and the mechanisms of systemic human orbital fat-derived stem/stromal cell transplantation on lipopolysaccharide-induced acute lung injury.

Vascular Endothelial Growth Factor-C Modulates Proliferation and Chemoresistance in Acute Myeloid Leukemic Cells Through an Endothelin-1-dependent Induction of Cyclooxygenase-2

Biochimica Et Biophysica Acta. Feb, 2014  |  Pubmed ID: 24184161

High-level expression of vascular endothelial growth factor (VEGF)-C is associated with chemoresistance and adverse prognosis in acute myeloid leukemia (AML). Our previous study has found that VEGF-C induces cyclooxygenase-2 (COX-2) expression in AML cell lines and significant correlation of VEGF-C and COX-2 in bone marrow specimens. COX-2 has been reported to mediate the proliferation and drug resistance in several solid tumors. Herein, we demonstrated that the VEGF-C-induced proliferation of AML cells is effectively abolished by the depletion or inhibition of COX-2. The expression of endothelin-1 (ET-1) rapidly increased following treatment with VEGF-C. We found that ET-1 was also involved in the VEGF-C-mediated proliferation of AML cells, and that recombinant ET-1 induced COX-2 mRNA and protein expressions in AML cells. Treatment with the endothelin receptor A (ETRA) antagonist, BQ 123, or ET-1 shRNAs inhibited VEGF-C-induced COX-2 expression. Flow cytometry and immunoblotting revealed that VEGF-C induces S phase accumulation through the inhibition of p27 and the upregulation of cyclin E and cyclin-dependent kinase-2 expressions. The cell-cycle-related effects of VEGF-C were reversed by the depletion of COX-2 or ET-1. The depletion of COX-2 or ET-1 also suppressed VEGF-C-induced increases in the bcl-2/bax ratio and chemoresistance against etoposide and cytosine arabinoside in AML cells. We also demonstrated VEGF-C/ET-1/COX-2 axis-mediated chemoresistance in an AML xenograft mouse model. Our findings suggest that VEGF-C induces COX-2-mediated resistance to chemotherapy through the induction of ET-1 expression. Acting as a key regulator in the VEGF-C/COX-2 axis, ET-1 represents a potential target for ameliorating resistance to chemotherapy in AML patients.

Association of Pocket Epithelial Cell Proliferation in Periodontitis with TLR9 Expression and Inflammatory Response

Journal of the Formosan Medical Association = Taiwan Yi Zhi. Aug, 2014  |  Pubmed ID: 25037760

Inflammatory response is triggered after recognition of microbial ligands by innate receptors such as Toll-like receptors (TLRs) and Nucleotide oligomerization domain (NOD)-like receptors (NLRs). In this study, we examined serial frozen sections of gingival biopsies from patients with gingivitis or periodontitis by immunohistochemical analysis for the topographic expression patterns of selected innate receptors and their association with cell proliferation in clinically healthy and diseased gingival tissues.

The Ability to Suppress Macrophage-mediated Inflammation in Orbital Fat Stem Cells is Controlled by MiR-671-5p

Stem Cell Research & Therapy. Aug, 2014  |  Pubmed ID: 25124290

Our previous works demonstrated that systemic orbital fat-derived stem cell (OFSC) transplantation was effective in ameliorating lipopolysaccharide (LPS)-induced extensive acute lung injury (ALI) in vivo mainly through paracrine regulation of macrophage-mediated cytokine-storm. In this study, we explore the molecular mechanism(s) of OFSCs regulating macrophage activity in a cytokine-inducible fashion.

An Alternatively Spliced IL-15 Isoform Modulates Abrasion-induced Keratinocyte Activation

The Journal of Investigative Dermatology. May, 2015  |  Pubmed ID: 25615554

In a routine phenotype-driven screen, we identified a point mutation in exon 7 of the IL-15 gene in Pedigree 191 (deficient memory (DM)) of N-ethyl-N-nitrosourea mutagenized mice. The DM epidermis expressed an alternatively spliced IL-15 mRNA isoform, IL-15ΔE7, and a wild-type (WT) IL-15 isoform at comparable levels. Mechanical stimulation of DM skin or DM skin graft transplanted onto the WT host resulted in reduced keratinocyte activation and inhibition of neutrophil infiltration into the dermis, demonstrating that DM keratinocytes produced less inflammatory response to external stimulation. Ectopic expression of IL-15ΔE7 in WT skin prevented abrasion-induced epidermal thickening, blocked the accumulation of nuclear antigen Ki67(+) cells in the basal and the suprabasal cell layers, increased loricrin expression, and also increased keratinocyte CXCL1 and G-CSF production. IL-15ΔE7 also profoundly blocked neutrophil infiltration in SDS- or immiquimod (IMQ)-treated WT skin. Recombinant IL-15ΔE7 failed to activate STAT-5 and its downstream target bcl-2 expression. Our study points to IL-15ΔE7 as a potential therapeutic agent for treating neutrophilia-associated inflammatory skin disorders.

Type I Interferon Inhibits Varicella-zoster Virus Replication by Interfering with the Dynamic Interaction Between Mediator and IE62 Within Replication Compartments

Cell & Bioscience. 2016  |  Pubmed ID: 26985360

Varicella-zoster virus (VZV) is the causative agent of varicella and zoster. The immediate-early protein, IE62 is the predominant VZ virion tegument protein, transactivating the expression of all kinetic classes of VZV genes. IE62 is localized to punctae that form DNA replication compartments in the nuclei of VZV infected cells. The morphological changes and the increase in the size of replication compartments that express IE62 are correlated with production of VZ virions. Mammalian Mediator serves as a coactivator of IE62 and functions by bridging DNA-binding transcription factors¸ RNA polymerase II (RNAP II) and their target DNAs for VZV replication. While VZV is highly sensitive to type I interferons (IFNs), how IFN-α inhibits early events during VZV replication is poorly understood.

The Critical Role of Early Dengue Surveillance and Limitations of Clinical Reporting - Implications for Non-Endemic Countries

PloS One. 2016  |  Pubmed ID: 27501302

The increasing dengue burden and epidemic severity worldwide have highlighted the need to improve surveillance. In non-endemic areas such as Taiwan, where outbreaks start mostly with imported cases from Southeast Asia, a closer examination of surveillance dynamics to detect cases early is necessary. To evaluate problems with dengue surveillance and investigate the involvement of different factors at various epidemic stages, we investigated 632 laboratory-confirmed indigenous dengue cases in Kaohsiung City, Taiwan during 2009-2010. The estimated sensitivity of clinical surveillance was 82.4% (521/632). Initially, the modified serological surveillance (targeting only the contacts of laboratory-confirmed dengue cases) identified clinically unrecognized afebrile cases in younger patients who visited private clinics and accounted for 30.4% (35/115) of the early-stage cases. Multivariate regression indicated that hospital/medical center visits [Adjusted Odds Ratio (aOR): 11.6, 95% confidence interval (CI): 6.3-21.4], middle epidemic stage [aOR: 2.4 (1.2-4.7)], fever [aOR: 2.3 (2.3-12.9)], and musculo-articular pain [aOR: 1.9 (1.05-3.3)] were significantly associated with clinical reporting. However, cases with pruritus/rash [aOR: 0.47 (0.26-0.83)] and diarrhea [aOR: 0.47 (0.26-0.85)] were underreported. In conclusion, multiple factors contributed to dengue surveillance problems. To prevent a large-scale epidemic and minimize severe dengue cases, there is a need for integrated surveillance incorporating entomological, clinical, serological, and virological surveillance systems to detect early cases, followed by immediate prevention and control measures and continuous evaluation to ensure effectiveness. This effort will be particularly important for an arbovirus, such as Zika virus, with a high asymptomatic infection ratio. For dengue- non-endemic countries, we recommend serological surveillance be implemented in areas with high Aedes mosquito indices or many breeding sites. Syndromic surveillance, spatial analysis and monitoring changes in epidemiological characteristics using a geographical information system, as well as epidemic prediction models involving epidemiological, meteorological and environmental variables will be helpful for early risk communication to increase awareness.

simple hit counter