Skip to content
Articles by Corrado Poggesi in JoVE
-
Aislamiento y caracterización funcional de Human ventricular cardiomiocitos a partir de muestras quirúrgicas recientes
Raffaele Coppini1, Cecila Ferrantini2, Alessandro Aiazzi2, Luca Mazzoni1, Laura Sartiani1, Alessandro Mugelli1, Corrado Poggesi2, Elisabetta Cerbai1
1Department NeuroFarBa, Division of Pharmacology, University of Florence, 2Department of Clinical and Experimental Medicine, Division of Physiology, University of Florence
Los conocimientos actuales sobre las bases celulares de las enfermedades cardiacas se basa principalmente en estudios sobre modelos animales. Aquí describimos y validar un nuevo método para obtener cardiomiocitos viables individuales de pequeñas muestras quirúrgicas de miocardio ventricular humano. Miocitos ventriculares humanos pueden ser utilizados para estudios electrofisiológicos y las pruebas de drogas.
Other articles by Corrado Poggesi on PubMed
-
Relaxation Kinetics Following Sudden Ca(2+) Reduction in Single Myofibrils from Skeletal Muscle
Biophysical Journal.
Oct, 2002 |
Pubmed ID: 12324431 To investigate the roles of cross-bridge dissociation and cross-bridge-induced thin filament activation in the time course of muscle relaxation, we initiated force relaxation in single myofibrils from skeletal muscles by rapidly (approximately 10 ms) switching from high to low [Ca(2+)] solutions. Full force decay from maximal activation occurs in two phases: a slow one followed by a rapid one. The latter is initiated by sarcomere "give" and dominated by inter-sarcomere dynamics (see the companion paper, Stehle, R., M. Krueger, and G. Pfitzer. 2002. Biophys. J. 83:2152-2161), while the former occurs under nearly isometric conditions and is sensitive to mechanical perturbations. Decreasing the Ca(2+)-activated force preceding the start of relaxation does not increase the rate of the slow isometric phase, suggesting that cycling force-generating cross-bridges do not significantly sustain activation during relaxation. This conclusion is strengthened by the finding that the rate of isometric relaxation from maximum force to any given Ca(2+)-activated force level is similar to that of Ca(2+)-activation from rest to that given force. It is likely, therefore, that the slow rate of force decay in full relaxation simply reflects the rate at which cross-bridges leave force-generating states. Because increasing [P(i)] accelerates relaxation while increasing [MgADP] slows relaxation, both forward and backward transitions of cross-bridges from force-generating to non-force-generating states contribute to muscle relaxation.
-
-
Impaired Diastolic Function After Exchange of Endogenous Troponin I with C-terminal Truncated Troponin I in Human Cardiac Muscle
Circulation Research.
Oct, 2006 |
Pubmed ID: 17023673 The specific and selective proteolysis of cardiac troponin I (cTnI) has been proposed to play a key role in human ischemic myocardial disease, including stunning and acute pressure overload. In this study, the functional implications of cTnI proteolysis were investigated in human cardiac tissue for the first time. The predominant human cTnI degradation product (cTnI(1-192)) and full-length cTnI were expressed in Escherichia coli, purified, reconstituted with the other cardiac troponin subunits, troponin T and C, and subsequently exchanged into human cardiac myofibrils and permeabilized cardiomyocytes isolated from healthy donor hearts. Maximal isometric force and kinetic parameters were measured in myofibrils, using rapid solution switching, whereas force development was measured in single cardiomyocytes at various calcium concentrations, at sarcomere lengths of 1.9 and 2.2 mum, and after treatment with the catalytic subunit of protein kinase A (PKA) to mimic beta-adrenergic stimulation. One-dimensional gel electrophoresis, Western immunoblotting, and 3D imaging revealed that approximately 50% of endogenous cTnI had been homogeneously replaced by cTnI(1-192) in both myofibrils and cardiomyocytes. Maximal tension was not affected, whereas the rates of force activation and redevelopment as well as relaxation kinetics were slowed down. Ca(2+) sensitivity of the contractile apparatus was increased in preparations containing cTnI(1-192) (pCa(50): 5.73+/-0.03 versus 5.52+/-0.03 for cTnI(1-192) and full-length cTnI, respectively). The sarcomere length dependency of force development and the desensitizing effect of PKA were preserved in cTnI(1-192)-exchanged cardiomyocytes. These results indicate that degradation of cTnI in human myocardium may impair diastolic function, whereas systolic function is largely preserved.
-
-
-
-
-
Thin Filament Ca2+ Binding Properties and Regulatory Unit Interactions Alter Kinetics of Tension Development and Relaxation in Rabbit Skeletal Muscle
The Journal of Physiology.
Aug, 2008 |
Pubmed ID: 18535094 The influence of Ca(2+) binding properties of individual troponin versus cooperative regulatory unit interactions along thin filaments on the rate tension develops and declines was examined in demembranated rabbit psoas fibres and isolated myofibrils. Native skeletal troponin C (sTnC) was replaced with sTnC mutants having altered Ca(2+) dissociation rates (k(off)) or with mixtures of sTnC and D28A, D64A sTnC, that does not bind Ca(2+) at sites I and II (xxsTnC), to reduce near-neighbour regulatory unit (RU) interactions. At saturating Ca(2+), the rate of tension redevelopment (k(TR)) was not altered for fibres containing sTnC mutants with decreased k(off) or mixtures of sTnC:xxsTnC. We examined the influence of k(off) on maximal activation and relaxation in myofibrils because they allow rapid and large changes in [Ca(2+)]. In myofibrils with M80Q sTnC(F27W) (decreased k(off)), maximal tension, activation rate (k(ACT)), k(TR) and rates of relaxation were not altered. With I60Q sTnC(F27W) (increased k(off)), maximal tension, k(ACT) and k(TR) decreased, with no change in relaxation rates. Surprisingly, the duration of the slow phase of relaxation increased or decreased with decreased or increased k(off), respectively. For all sTnC reconstitution conditions, Ca(2+) dependence of k(TR) in fibres showed Ca(2+) sensitivity of k(TR) (pCa(50)) shifted parallel to tension and low-Ca(2+) k(TR) was elevated. Together the data suggest the Ca(2+)-dependent rate of tension development and the duration (but not rate) of relaxation can be greatly influenced by k(off) of sTnC. This influence of sTnC binding kinetics occurs primarily within individual RUs, with only minor contributions of RU interactions at low Ca(2+).
-
-
-
Developmental Origins of Hypertrophic Cardiomyopathy Phenotypes: a Unifying Hypothesis
Nature Reviews. Cardiology.
Apr, 2009 |
Pubmed ID: 19352336 The majority of genetic mutations associated with hypertrophic cardiomyopathy (HCM) occur in genes encoding sarcomeric proteins, which are expressed only in cardiomyocytes. However, some manifestations of the HCM phenotype, such as myocardial disarray, interstitial fibrosis, mitral valve abnormalities, and microvascular remodeling, indicate the involvement of other cell lineages. The link between sarcomeric gene defects and these 'extended' HCM phenotypes remains elusive. Based on novel insights provided by cardiac developmental biology, we propose that a common lineage ancestry of the diverse HCM phenotypes not involving the cardiomyocyte can be traced to the pluripotent epicardium-derived cells (EPDCs). During cardiac colonization, EPDCs differentiate into interstitial fibroblasts, coronary smooth-muscle cells, and atrioventricular endocardial cushions as mesenchymal cells. We propose that the cross-talk between healthy EPDCs and abnormally contracting cardiomyocytes might account for the diverse manifestations of HCM, by a putative mechanism of mechanotransduction leading to abnormal gene expression and differentiation.
-
-
Susceptibility of Isolated Myofibrils to in Vitro Glutathionylation: Potential Relevance to Muscle Functions
Cytoskeleton (Hoboken, N.J.).
Feb, 2010 |
Pubmed ID: 20169532 In this study we investigated the molecular mechanism of glutathionylation on isolated human cardiac myofibrils using several pro-glutathionylating agents. Total glutathionylated proteins appeared significantly enhanced with all the pro-oxidants used. The increase was completely reversed by the addition of a reducing agent, demonstrating that glutathione binding occurs by a disulfide and that the process is reversible. A sensitive target of glutathionylation was alpha-actin, showing a different reactivity to the several pro-glutathionylating agents by ELISA. Noteworthy, myosin although highly sensitive to the in vitro glutathionylation does not represent the primary glutathionylation target in isolated myofibrils. Light scattering measurements of the glutathionylated alpha-actin showed a slower polymerisation compared to the non-glutathionylated protein and force development was depressed after glutathionylation, when the myofibrils were mounted in a force recording apparatus. Interestingly, confocal laser scanning microscopy of cardiac cryosections indicated, for the first time, the constitutive glutathionylation of alpha-cardiac actin in human heart. Due to the critical location of alpha-actin in the contractile machinery and to its susceptibility to the oxidative modifications, glutathionylation may represent a mechanism for modulating sarcomere assembly and muscle functionality under patho-physiological conditions in vivo.
-
-
-
Calcium Binding Kinetics of Troponin C Strongly Modulate Cooperative Activation and Tension Kinetics in Cardiac Muscle
Journal of Molecular and Cellular Cardiology.
Jan, 2011 |
Pubmed ID: 21035455 Tension development and relaxation in cardiac muscle are regulated at the thin filament via Ca(2+) binding to cardiac troponin C (cTnC) and strong cross-bridge binding. However, the influence of cTnC Ca(2+)-binding properties on these processes in the organized structure of cardiac sarcomeres is not well-understood and likely differs from skeletal muscle. To study this we generated single amino acid variants of cTnC with altered Ca(2+) dissociation rates (k(off)), as measured in whole troponin (cTn) complex by stopped-flow spectroscopy (I61Q cTn>WT cTn>L48Q cTn), and exchanged them into cardiac myofibrils and demembranated trabeculae. In myofibrils at saturating Ca(2+), L48Q cTnC did not affect maximum tension (T(max)), thin filament activation (k(ACT)) and tension development (k(TR)) rates, or the rates of relaxation, but increased duration of slow phase relaxation. In contrast, I61Q cTnC reduced T(max), k(ACT) and k(TR) by 40-65% with little change in relaxation. Interestingly, k(ACT) was less than k(TR) with I61Q cTnC, and this difference increased with addition of inorganic phosphate, suggesting that reduced cTnC Ca(2+)-affinity can limit thin filament activation kinetics. Trabeculae exchanged with I61Q cTn had reduced T(max), Ca(2+) sensitivity of tension (pCa(50)), and slope (n(H)) of tension-pCa, while L48Q cTn increased pCa(50) and reduced n(H). Increased cross-bridge cycling with 2-deoxy-ATP increased pCa(50) with WT or L48Q cTn, but not I61Q cTn. We discuss the implications of these results for understanding the role of cTn Ca(2+)-binding properties on the magnitude and rate of tension development and relaxation in cardiac muscle.
-
-
-
α-Tropomyosin with a D175N or E180G Mutation in Only One Chain Differs from Tropomyosin with Mutations in Both Chains
Biochemistry.
Dec, 2012 |
Pubmed ID: 23170982 α-Tropomyosin (Tm) carrying hypertrophic cardiomyopathy mutation D175N or E180G was expressed in Escherichia coli. We have assembled dimers of two polypeptide chains in vitro that carry one (αα*) or two (α*α*) copies of the mutation. We found that the presence of the mutation has little effect on dimer assembly, thereby predicting that individuals heterozygous for the Tm mutations are likely to express both αα* and α*α* Tm. Depending on the expression level, the heterodimer may be the predominant form in individuals carrying the mutation. Thus, it is important to define differences in the properties of Tm molecules carrying one or two copies of the mutation. We examined the Tm homo- and heterodimer properties: actin affinity, thermal stability, calcium regulation of myosin subfragment 1 binding, and calcium regulation of myofibril force. We report that the properties of the heterodimer may be similar to those of the wild-type homodimer (actin affinity, thermal stability, D175N αα*), similar to those of the mutant homodimer (calcium sensitivity, D175N αα*), intermediate between the two (actin affinity, E180G αα*), or different from both (thermal stability, E180G αα*). Thus, the properties of the homodimer are not a completely reliable guide to the properties of the heterodimer.
-
-
-
-
-
Deleting Exon 55 from the Nebulin Gene Induces Severe Muscle Weakness in a Mouse Model for Nemaline Myopathy
Brain : a Journal of Neurology.
Jun, 2013 |
Pubmed ID: 23715096 Nebulin--a giant sarcomeric protein--plays a pivotal role in skeletal muscle contractility by specifying thin filament length and function. Although mutations in the gene encoding nebulin (NEB) are a frequent cause of nemaline myopathy, the most common non-dystrophic congenital myopathy, the mechanisms by which mutations in NEB cause muscle weakness remain largely unknown. To better understand these mechanisms, we have generated a mouse model in which Neb exon 55 is deleted (Neb(ΔExon55)) to replicate a founder mutation seen frequently in patients with nemaline myopathy with Ashkenazi Jewish heritage. Neb(ΔExon55) mice are born close to Mendelian ratios, but show growth retardation after birth. Electron microscopy studies show nemaline bodies--a hallmark feature of nemaline myopathy--in muscle fibres from Neb(ΔExon55) mice. Western blotting studies with nebulin-specific antibodies reveal reduced nebulin levels in muscle from Neb(ΔExon55) mice, and immunofluorescence confocal microscopy studies with tropomodulin antibodies and phalloidin reveal that thin filament length is significantly reduced. In line with reduced thin filament length, the maximal force generating capacity of permeabilized muscle fibres and single myofibrils is reduced in Neb(ΔExon55) mice with a more pronounced reduction at longer sarcomere lengths. Finally, in Neb(ΔExon55) mice the regulation of contraction is impaired, as evidenced by marked changes in crossbridge cycling kinetics and by a reduction of the calcium sensitivity of force generation. A novel drug that facilitates calcium binding to the thin filament significantly augmented the calcium sensitivity of submaximal force to levels that exceed those observed in untreated control muscle. In conclusion, we have characterized the first nebulin-based nemaline myopathy model, which recapitulates important features of the phenotype observed in patients harbouring this particular mutation, and which has severe muscle weakness caused by thin filament dysfunction.
-
-
-
Clusters of Bound Ca(2+) Initiate Contraction in Fast Skeletal Muscle
Archives of Biochemistry and Biophysics.
Dec, 2013 |
Pubmed ID: 24374032 Ca(2+)-binding to troponin C ultimately controls force in muscle leading to the expectation that the two curves, pCa/force and pCa/Ca(2+) binding, will coincide. Using an improved fluorescence apparatus to measure Ca(2+)-binding, we confirm a displacement between the position and shape of the pCa/Ca(2+)-binding and pCa/force curves. This displacement may be part of a mechanism that reduces the noise inherent in the control process. There must always be some Ca(2+)-binding events even at 10 or 100nM, well below threshold for muscle contraction. To minimize the response to such random binding events we suggest that clusters of adjacent Ca(2+)-binding sites must be filled before contraction is initiated. Clusters promote the reconfiguration of the thin filament to the "On" state; this simultaneously increases thin filaments' affinity for myosin heads and of troponin C for Ca(2+) producing the highly cooperative pCa/force curve. The cluster requirement displaces the Ca(2+)-binding from the force curve as observed. The thin filament conformational changes and the accompanying affinity increases introduce a discontinuity in the pCa/Ca(2+)-binding curve. The curve, therefore, is most appropriately fit by two separate Hill equations, a simple non-cooperative one (midpoint, pK1, n1∼1) for the foot and a second cooperative one (pK2, n2∼2.5) for the upper part. With this fit pK2 is larger than pK1 as our argument requires, in contrast to fitting to the sum of two Hill equations. It also expresses the idea that there may be three states of the thin filament.
-
Regulation of Intracellular Na(+) in Health and Disease: Pathophysiological Mechanisms and Implications for Treatment
Global Cardiology Science & Practice.
2013 |
Pubmed ID: 24689024 Transmembrane sodium (Na(+)) fluxes and intracellular sodium homeostasis are central players in the physiology of the cardiac myocyte, since they are crucial for both cell excitability and for the regulation of the intracellular calcium concentration. Furthermore, Na(+) fluxes across the membrane of mitochondria affect the concentration of protons and calcium in the matrix, regulating mitochondrial function. In this review we first analyze the main molecular determinants of sodium fluxes across the sarcolemma and the mitochondrial membrane and describe their role in the physiology of the healthy myocyte. In particular we focus on the interplay between intracellular Ca(2+) and Na(+). A large part of the review is dedicated to discuss the changes of Na(+) fluxes and intracellular Na(+) concentration([Na(+)]i) occurring in cardiac disease; we specifically focus on heart failure and hypertrophic cardiomyopathy, where increased intracellular [Na(+)]i is an established determinant of myocardial dysfunction. We review experimental evidence attributing the increase of [Na(+)]i to either decreased Na(+) efflux (e.g. via the Na(+)/K(+) pump) or increased Na(+) influx into the myocyte (e.g. via Na(+) channels). In particular, we focus on the role of the "late sodium current" (INaL), a sustained component of the fast Na(+) current of cardiac myocytes, which is abnormally enhanced in cardiac diseases and contributes to both electrical and contractile dysfunction. We analyze the pathophysiological role of INaL enhancement in heart failure and hypertrophic cardiomyopathy and the consequences of its pharmacological modulation, highlighting the clinical implications. The central role of Na(+) fluxes and intracellular Na(+) physiology and pathophysiology of cardiac myocytes has been highlighted by a large number of recent works. The possibility of modulating Na(+) inward fluxes and [Na(+)]i with specific INaL inhibitors, such as ranolazine, has made Na(+)a novel suitable target for cardiac therapy, potentially capable of addressing arrhythmogenesis and diastolic dysfunction in severe conditions such as heart failure and hypertrophic cardiomyopathy.
-
Get cutting-edge science videos from JoVE sent straight to your inbox every month.