In JoVE (1)

Other Publications (5)

Articles by Daniel P. Heruth in JoVE

Other articles by Daniel P. Heruth on PubMed

Hematologic Characterization and Chromosomal Localization of the Novel Dominantly Inherited Mouse Hemolytic Anemia, Neonatal Anemia (Nan)

Blood Cells, Molecules & Diseases. Sep-Oct, 2009  |  Pubmed ID: 19409822

One of the most commonly inherited anemias in man is Hereditary Spherocytosis (HS) with an incidence of 1 in 2000 for persons of Northern European descent. Mouse models of HS include spontaneous inherited hemolytic anemias and those generated by gene targeting. The Neonatal anemia (Nan) mouse is a novel model of HS generated by N-ethyl-N-nitrosurea mutagenesis and suffers from a severe neonatal anemia. Adult Nan mice have a lifelong hemolytic anemia with decreased red blood cell numbers, hematocrit, and hemoglobin, but elevated zinc protoporphyrin levels. Blood smears taken from Nan mice show a hypochromic anemia characterized by poikilocytosis, anisocytosis and polychromasia. The Nan phenotype can be transferred by bone marrow transplantation indicating that the defect is intrinsic to bone marrow. The hemolytic anemia in adult Nan mice can be identified by osmotic fragility testing. Examination of the erythrocyte membrane skeleton proteins (EMS) reveals a global deficiency of these proteins with protein 4.1a being completely absent. The Nan locus maps to mouse Chromosome 8 and does not co-localize with any known EMS genes. The identification of the Nan gene will likely uncover a novel protein that contributes to the stability of the EMS and may identify a new mutation for HS.

Mutation in Erythroid Specific Transcription Factor KLF1 Causes Hereditary Spherocytosis in the Nan Hemolytic Anemia Mouse Model

Genomics. Nov, 2010  |  Pubmed ID: 20691777

KLF1 regulates definitive erythropoiesis of red blood cells by facilitating transcription through high affinity binding to CACCC elements within its erythroid specific target genes including those encoding erythrocyte membrane skeleton (EMS) proteins. Deficiencies of EMS proteins in humans lead to the hemolytic anemia Hereditary Spherocytosis (HS) which includes a subpopulation with no known genetic defect. Here we report that a mutation, E339D, in the second zinc finger domain of KLF1 is responsible for HS in the mouse model Nan. The causative nature of this mutation was verified with an allelic test cross between Nan/+ and heterozygous Klf1(+/-) knockout mice. Homology modeling predicted Nan KLF1 binds CACCC elements more tightly, suggesting that Nan KLF1 is a competitive inhibitor of wild-type KLF1. This is the first association of a KLF1 mutation with a disease state in adult mammals and also presents the possibility of being another causative gene for HS in humans.

Nicotinamide Phosphoribosyltransferase in Human Diseases

Journal of Bioanalysis & Biomedicine. Jan, 2011  |  Pubmed ID: 22140607

Nicotinamide phosphoribosyltransferase (NAMPT) was first reported as a pre-B-cell colony enhancing factor in 1994 with little notice, but it has received increasing attention in recent years due to accumulating evidence indicating that NAMPT is a pleiotropic protein such as a growth factor, a cytokine, an enzyme and a visfatin. Now, NAMPT has been accepted as an official name of this protein. Because of NAMPT's multiple functions in a variety of physiological processes, their dysregulations have been implicated in the pathogenesis of a number of human diseases or conditions such as acute lung injury, aging, atherosclerosis, cancer, diabetes, rheumatoid arthritis and sepsis. This review will cover the current understanding of NAMPT's structure and functions with an emphasis on recent progress of nicotinamide phosphoribosyltransferase's pathological roles in various human diseases and conditions. Future directions on exploring its Terra incognita will be offered in the end.

RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin

PloS One. 2012  |  Pubmed ID: 22359579

The dysregulation of vascular endothelial cells by thrombin has been implicated in the development of a number of pathologic disorders such as inflammatory conditions, cancer, diabetes, coronary heart disease. However, transcriptional regulation of vascular endothelial cells by thrombin is not completely understood. In the present study, Illumina RNA-seq was used to profile the transcriptome in human pulmonary microvascular endothelial cells (HMVEC-L) treated with thrombin for 6 h to gain insight into thrombin's direct effects on the endothelial function. Out of 100 million total reads from a paired end sequencing assay, 91-94% of the reads were aligned to over 16,000 genes in the reference human genome. Thrombin upregulated 150 known genes and 480 known isoforms, and downregulated 2,190 known genes and 3,574 known isoforms by at least 2 fold. Of note, thrombin upregulated 1,775 previously unknown isoforms and downregulated 12,202 previously unknown isoforms by at least 2 fold. Many genes displayed isoform specific differential expression levels and different usage of transcriptional start sites after the thrombin treatment. The cross comparisons between our RNA-seq data and those of DNA microarray analysis of either 6 h thrombin treated HUVEC or 5 h TNFα treated HMVEC have provided a significant overlapping list of differentially expressed genes, supporting the robust utility of our dataset. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on molecular pathogenic mechanisms underlying thrombin mediated endothelial dysfunction in various diseases and provide new leads of potential therapeutic targets.

RNA-seq Analysis of Synovial Fibroblasts Brings New Insights into Rheumatoid Arthritis

Cell & Bioscience. 2012  |  Pubmed ID: 23259760


simple hit counter