Skip to content
Other Publications (176)
- Biochemical and Biophysical Research Communications
- Science's STKE : Signal Transduction Knowledge Environment
- Experimental Cell Research
- The Journal of Surgical Research
- Cell Motility and the Cytoskeleton
- The EMBO Journal
- FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology
- Circulation Research
- Differentiation; Research in Biological Diversity
- Nature Genetics
- Proceedings of the National Academy of Sciences of the United States of America
- Journal of Cell Science
- Chemistry & Biology
- Journal of Cell Science
- American Journal of Physiology. Cell Physiology
- BMC Cell Biology
- Biochemical and Biophysical Research Communications
- Angiogenesis
- Bioinformatics (Oxford, England)
- Langmuir : the ACS Journal of Surfaces and Colloids
- Annals of Medicine
- Biochemical and Biophysical Research Communications
- American Journal of Physiology. Cell Physiology
- The Journal of Biological Chemistry
- Annals of Biomedical Engineering
- Experimental Cell Research
- Mechanics & Chemistry of Biosystems : MCB
- IEEE Transactions on Magnetics
- Developmental Dynamics : an Official Publication of the American Association of Anatomists
- The Journal of Cell Biology
- Physical Review Letters
- Journal of Biomedicine & Biotechnology
- Proceedings of the National Academy of Sciences of the United States of America
- Cancer Cell
- The Journal of Cell Biology
- Proceedings of the National Academy of Sciences of the United States of America
- Acta Biomaterialia
- Mechanics & Chemistry of Biosystems : MCB
- American Journal of Physiology. Lung Cellular and Molecular Physiology
- Biophysical Chemistry
- Journal of Cellular Physiology
- Journal of Cellular Biochemistry
- Journal of Cell Science
- The International Journal of Developmental Biology
- Biophysical Journal
- BMC Cell Biology
- Journal of the American Society of Nephrology : JASN
- FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology
- The Journal of Cell Biology
- Journal of Cellular Biochemistry
- Arteriosclerosis, Thrombosis, and Vascular Biology
- Journal of Cell Science
- Biomedical Microdevices
- Journal of Biomedicine & Biotechnology
- Tissue Engineering
- Tissue Engineering
- Breast Disease
- The Journal of Biological Chemistry
- Journal of Cell Science
- Biomaterials
- Development (Cambridge, England)
- The Journal of Biological Chemistry
- Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
- Methods in Cell Biology
- Biophysical Journal
- Advanced Drug Delivery Reviews
- Annals of Surgery
- The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
- FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology
- Circulation
- Biochemical and Biophysical Research Communications
- Circulation
- Current Opinion in Hematology
- Progress in Biophysics and Molecular Biology
- Seminars in Cancer Biology
- Nature
- Journal of Biomechanics
- Nature Nanotechnology
- The Journal of Biological Chemistry
- Proceedings of the National Academy of Sciences of the United States of America
- PloS One
- Methods in Enzymology
- PloS One
- Journal of Bodywork and Movement Therapies
- Journal of Cellular Biochemistry
- Nature Reviews. Molecular Cell Biology
- Nature
- Methods in Molecular Biology (Clifton, N.J.)
- Circulation Research
- Lab on a Chip
- Journal of the American Chemical Society
- Current Opinion in Cell Biology
- Proceedings of the National Academy of Sciences of the United States of America
- FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology
- Nature Chemical Biology
- Annals of Biomedical Engineering
- Development (Cambridge, England)
- Nature Nanotechnology
- Science (New York, N.Y.)
- Integrative Biology : Quantitative Biosciences from Nano to Macro
- The Journal of Experimental Medicine
- PloS One
- IEEE Pulse
- Developmental Cell
- Trends in Cell Biology
- Science Translational Medicine
- PloS One
- Advanced Materials (Deerfield Beach, Fla.)
- The Journal of Clinical Investigation
- Nano Letters
- Science Signaling
- Lab on a Chip
- Lab on a Chip
- Nano Letters
- Lab on a Chip
- Lab on a Chip
- Science (New York, N.Y.)
- Journal of Cell Science
- PloS One
- Lab on a Chip
- Cell Adhesion & Migration
- Science Translational Medicine
- Nature Communications
- Proceedings of the National Academy of Sciences of the United States of America
- Integrative Biology : Quantitative Biosciences from Nano to Macro
- Neonatology
- The Journal of Biological Chemistry
- Integrative Biology : Quantitative Biosciences from Nano to Macro
- Integrative Biology : Quantitative Biosciences from Nano to Macro
- Proceedings of the National Academy of Sciences of the United States of America
- Lab on a Chip
- Analytical Chemistry
- Lab on a Chip
- PloS One
- Annual Review of Cell and Developmental Biology
- Nature Protocols
- Lab on a Chip
- Neonatology
- Nature Methods
- Science Translational Medicine
- Scientific Reports
- Journal of Cell Science
- Advanced Materials (Deerfield Beach, Fla.)
- Proceedings of the National Academy of Sciences of the United States of America
- Reports on Progress in Physics. Physical Society (Great Britain)
- Nature Methods
- Advanced Drug Delivery Reviews
- Stem Cells (Dayton, Ohio)
- Nanomedicine (London, England)
- Proceedings of the National Academy of Sciences of the United States of America
- ALTEX
- Nature Biotechnology
- Nature Medicine
- Nature Biotechnology
- JAMA Neurology
- Lab on a Chip
- Annual Review of Pathology
- Methods in Cell Biology
- Developmental Dynamics : an Official Publication of the American Association of Anatomists
- The Journal of Experimental Medicine
- Nature Reviews. Cancer
- Physical Review Letters
- Biomaterials
- Nature Materials
- Small (Weinheim an Der Bergstrasse, Germany)
- Stroke; a Journal of Cerebral Circulation
- American Journal of Respiratory Cell and Molecular Biology
- Proceedings of the National Academy of Sciences of the United States of America
- Nature Methods
- Nature Communications
- Molecular Medicine (Cambridge, Mass.)
- PloS One
- Cell
- Tissue Engineering. Part C, Methods
- EBioMedicine
- Biomedical Microdevices
Articles by Donald E. Ingber in JoVE
-
Co-culture of Living Microbiome with Microengineered Human Intestinal Villi in a Gut-on-a-Chip Microfluidic Device
Hyun Jung Kim1, Jaewon Lee1, Jin-Ha Choi1, Anthony Bahinski2, Donald E. Ingber2,3,4
1Department of Biomedical Engineering, The University of Texas at Austin, 2Wyss Institute for Biologically Inspired Engineering at Harvard University, 3Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 4John A. Paulson School of Engineering and Applied Sciences, Harvard University
We describe an in vitro protocol to co-culture gut microbiome and intestinal villi for an extended period using a human gut-on-a-chip microphysiological system.
Other articles by Donald E. Ingber on PubMed
-
Intact Vinculin Protein is Required for Control of Cell Shape, Cell Mechanics, and Rac-dependent Lamellipodia Formation
Biochemical and Biophysical Research Communications.
Jan, 2002 |
Pubmed ID: 11785963 Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.
-
Mechanotransduction: All Signals Point to Cytoskeleton, Matrix, and Integrins
Science's STKE : Signal Transduction Knowledge Environment.
Feb, 2002 |
Pubmed ID: 11842240 Mechanical stresses modulate cell function by either activating or tuning signal transduction pathways. Mechanotransduction, the process by which cells convert mechanical stimuli into a chemical response, occurs both in cells specialized for sensing mechanical cues and in parenchymal cells whose primary function is not mechanosensory. However, common among the various responses to mechanical stress is the importance of direct or indirect connections between the internal cytoskeleton, the extracellular matrix (ECM), and traditional signal transducing molecules. In many instances, these elements converge at focal adhesions, sites of structural attachment between the cytoskeleton and ECM that are anchored by cell surface integrin receptors. Alenghat and Ingber discuss the accumulating evidence for the central role of cytoskeleton, ECM, and integrin-anchored focal adhesions in several mechanotransduction pathways.
-
A Discrete Cell Cycle Checkpoint in Late G(1) That is Cytoskeleton-dependent and MAP Kinase (Erk)-independent
Experimental Cell Research.
May, 2002 |
Pubmed ID: 11969294 Cell spreading on extracellular matrix and associated changes in the actin cytoskeleton (CSK) are necessary for progression through G(1) and entry into S phase of the cell cycle. Pharmacological disruption of CSK integrity inhibits early mitogenic signaling to the extracellular signal-regulated kinase (Erk) subfamily of the mitogen-activated protein kinases (MAPKs) and arrests the cell cycle in G(1). Here we show that this block of G(1) progression is not simply a consequence of inhibition of the MAPK/Erk pathway but instead it reveals the existence of a discrete CSK-sensitive checkpoint. Use of PD98059 to inhibit MAPK/Erk and cytochalasin D (Cyto D) to disrupt the actin CSK at progressive time points in G(1) revealed that the requirement for MAPK/Erk activation lasts only to mid-G(1), while the actin CSK must remain intact up to late G(1) restriction point, R, in order for capillary endothelial cells to enter S phase. Additional analysis using Cyto D pulses defined a narrow time window of 3 h just prior to R in which CSK integrity was shown to be critical for the G(1)/S transition. Cyto D treatment led to down-regulation of cyclin D1 protein and accumulation of the cdk inhibitor, p27(Kip1), independent of cell cycle phase, suggesting that these changes resulted directly from CSK disruption rather than from a general cell cycle block. Together, these data indicate the existence of a distinct time window in late G(1) in which signals elicited by the CSK act independently of early MAPK/Erk signals to drive the cell cycle machinery through the G(1)/S boundary and, hence, promote cell growth.
-
-
-
Sequential Involvement of Cdk1, MTOR and P53 in Apoptosis Induced by the HIV-1 Envelope
The EMBO Journal.
Aug, 2002 |
Pubmed ID: 12145207 Syncytia arising from the fusion of cells expressing the HIV-1-encoded Env gene with cells expressing the CD4/CXCR4 complex undergo apoptosis following the nuclear translocation of mammalian target of rapamycin (mTOR), mTOR-mediated phosphorylation of p53 on Ser15 (p53(S15)), p53-dependent upregulation of Bax and activation of the mitochondrial death pathway. p53(S15) phosphorylation is only detected in syncytia in which nuclear fusion (karyogamy) has occurred. Karyogamy is secondary to a transient upregulation of cyclin B and a mitotic prophase-like dismantling of the nuclear envelope. Inhibition of cyclin-dependent kinase-1 (Cdk1) prevents karyogamy, mTOR activation, p53(S15) phosphorylation and apoptosis. Neutralization of p53 fails to prevent karyogamy, yet suppresses apoptosis. Peripheral blood mononuclear cells from HIV-1-infected patients exhibit an increase in cyclin B and mTOR expression, correlating with p53(S15) phosphorylation and viral load. Cdk1 inhibition prevents the death of syncytia elicited by HIV-1 infection of primary CD4 lymphoblasts. Thus, HIV-1 elicits a pro-apoptotic signal transduction pathway relying on the sequential action of cyclin B-Cdk1, mTOR and p53.
-
-
Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology
Circulation Research.
Nov, 2002 |
Pubmed ID: 12433832 Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.
-
-
Polycystins 1 and 2 Mediate Mechanosensation in the Primary Cilium of Kidney Cells
Nature Genetics.
Feb, 2003 |
Pubmed ID: 12514735 Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in PKD. Here, we show that polycystin-1 (PC1) and polycystin-2 (PC2), proteins respectively encoded by Pkd1 and Pkd2, mouse orthologs of genes mutated in human autosomal dominant PKD, co-distribute in the primary cilia of kidney epithelium. Cells isolated from transgenic mice that lack functional PC1 formed cilia but did not increase Ca(2+) influx in response to physiological fluid flow. Blocking antibodies directed against PC2 similarly abolished the flow response in wild-type cells as did inhibitors of the ryanodine receptor, whereas inhibitors of G-proteins, phospholipase C and InsP(3) receptors had no effect. These data suggest that PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway. Loss or dysfunction of PC1 or PC2 may therefore lead to PKD owing to the inability of cells to sense mechanical cues that normally regulate tissue morphogenesis.
-
-
Tensegrity I. Cell Structure and Hierarchical Systems Biology
Journal of Cell Science.
Apr, 2003 |
Pubmed ID: 12615960 In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.
-
Selective Chemical Treatment of Cellular Microdomains Using Multiple Laminar Streams
Chemistry & Biology.
Feb, 2003 |
Pubmed ID: 12618184 There are many experiments in which it would be useful to treat a part of the surface or interior of a cell with a biochemical reagent. It is difficult, however, to achieve subcellular specificity, because small molecules diffuse distances equal to the extent of the cell in seconds. This paper demonstrates experimentally, and analyzes theoretically, the use of multiple laminar fluid streams in microfluidic channels to deliver reagents to, and remove them from, cells with subcellular spatial selectivity. The technique made it possible to label different subpopulations of mitochondria fluorescently, to disrupt selected regions of the cytoskeleton chemically, to dislodge limited areas of cell-substrate adhesions enzymatically, and to observe microcompartmental endocytosis within individual cells. This technique does not require microinjection or immobilization of reagents onto nondiffusive objects; it opens a new window into cell biology.
-
-
-
-
-
Caldesmon-dependent Switching Between Capillary Endothelial Cell Growth and Apoptosis Through Modulation of Cell Shape and Contractility
Angiogenesis.
2003 |
Pubmed ID: 14517405 Caldesmon (CaD), a protein component of the actomyosin filament apparatus, modulates cell shape and cytoskeletal structure when overexpressed. When capillary endothelial cells were infected with an adenoviral vector encoding GFP-CaD under Tet-Off control, progressive inhibition of contractility, loss of actin stress fibers, disassembly of focal adhesions, and cell retraction resulted. This was accompanied by a cell shape (rounding)-dependent increase in apoptosis and concomitant inhibition of cell cycle progression. Cell growth also was inhibited in low expressor cells in which cell tension was suppressed independently of significant changes in cell shape, cytoskeletal structure, or focal adhesions. Thus, changes in both cytoskeletal structure and contractility appear to be central to the mechanism by which extracellular matrix-dependent changes in capillary cell shape influence growth and apoptosis during angiogenesis, and hence the cytoskeleton may represent a potential target for anti-angiogenesis therapy.
-
-
Geometric Determinants of Directional Cell Motility Revealed Using Microcontact Printing
Langmuir : the ACS Journal of Surfaces and Colloids.
Mar, 2003 |
Pubmed ID: 14674434 Mammalian cells redirect their movement in response to changes in the physical properties of their extracellular matrix (ECM) adhesive scaffolds, including changes in available substrate area, shape, or flexibility. Yet, little is known about the cell's ability to discriminate between different types of spatial signals. Here we utilize a soft-lithography-based, microcontact printing technology in combination with automated computerized image analysis to explore the relationship between ECM geometry and directional motility. When fibroblast cells were cultured on fibronectin-coated adhesive islands with the same area (900 micrometers2) but different geometric forms (square, triangle, pentagon, hexagon, trapezoid, various parallelograms) and aspect ratios, cells preferentially extended new lamellipodia from their corners. In addition, by imposing these simple geometric constraints through ECM, cells were directed to deposit new fibronectin fibrils in these same corner regions. These data indicate that mammalian cells can sense edges within ECM patterns that exhibit a wide range of angularity and that they use these spatial cues to guide where they will deposit ECM and extend new motile processes during the process of directional migration.
-
Mechanobiology and Diseases of Mechanotransduction
Annals of Medicine.
2003 |
Pubmed ID: 14708967 The current focus of medicine on molecular genetics ignores the physical basis of disease even though many of the problems that lead to pain and morbidity, and bring patients to the doctor's office, result from changes in tissue structure or mechanics. The main goal of this article is therefore to help integrate mechanics into our understanding of the molecular basis of disease. This article first reviews the key roles that physical forces, extracellular matrix and cell structure play in the control of normal development, as well as in the maintenance of tissue form and function. Recent insights into cellular mechanotransduction--the molecular mechanism by which cells sense and respond to mechanical stress--also are described. Re-evaluation of human pathophysiology in this context reveals that a wide range of diseases included within virtually all fields of medicine and surgery share a common feature: their etiology or clinical presentation results from abnormal mechanotransduction. This process may be altered by changes in cell mechanics, variations in extracellular matrix structure, or by deregulation of the molecular mechanisms by which cells sense mechanical signals and convert them into a chemical or electrical response. Molecules that mediate mechanotransduction, including extracellular matrix molecules, transmembrane integrin receptors, cytoskeletal structures and associated signal transduction components, may therefore represent targets for therapeutic intervention in a variety of diseases. Insights into the mechanical basis of tissue regulation also may lead to development of improved medical devices, engineered tissues, and biologically-inspired materials for tissue repair and reconstruction.
-
-
-
Role of RhoA, MDia, and ROCK in Cell Shape-dependent Control of the Skp2-p27kip1 Pathway and the G1/S Transition
The Journal of Biological Chemistry.
Jun, 2004 |
Pubmed ID: 15096506 Cell shape-dependent control of cell-cycle progression underlies the spatial differentials of growth that drive tissue morphogenesis, yet little is known about how cell distortion impacts the biochemical signaling machinery that is responsible for growth control. Here we show that the Rho family GTPase, RhoA, conveys the "cell shape signal" to the cell-cycle machinery in human capillary endothelial cells. Cells accumulating p27(kip1) and arrested in mid G(1) phase when spreading were inhibited by restricted extracellular matrix adhesion, whereas constitutively active RhoA increased expression of the F-box protein Skp2 required for ubiquitination-dependent degradation of p27(kip1) and restored G(1) progression in these cells. Studies with dominant-negative and constitutively active forms of mDia1, a downstream effector of RhoA, and with a pharmacological inhibitor of ROCK, another RhoA target, revealed that RhoA promoted G(1) progression by altering the balance of activities between these two downstream effectors. These data indicate that signaling proteins such as mDia1 and ROCK, which are thought to be involved primarily in cytoskeletal remodeling, also mediate cell growth regulation by coupling cell shape to the cell-cycle machinery at the level of signal transduction.
-
A Computational Tensegrity Model Predicts Dynamic Rheological Behaviors in Living Cells
Annals of Biomedical Engineering.
Apr, 2004 |
Pubmed ID: 15117025 Rheological properties of living cells play a key role in the control of cell shape, growth, movement, and contractility, yet little is known about how these properties are governed. Past approaches to understanding cell mechanics focused on the contributions of membranes, the viscous cytoplasm, and the individual filamentous biopolymers that are found within the cytoskeleton. In contrast, recent work has revealed that the dynamic mechanical behavior of cells depends on generic system properties, rather than on a single molecular property of the cell. In this paper, we show that a mathematical model of cell mechanics that depicts the intracellular cytoskeleton as a tensegrity structure composed of a prestressed network of interconnected microfilaments, microtubules, and intermediate filaments, and that has previously explained static cellular properties, also can predict fundamental dynamic behaviors of living cells.
-
Global Cytoskeletal Control of Mechanotransduction in Kidney Epithelial Cells
Experimental Cell Research.
Nov, 2004 |
Pubmed ID: 15501441 Studies of mechanotransduction mediated by stress-sensitive ion channels generally focus on the site of force application to the cell. Here we show that global, cell-wide changes in cytoskeletal structure and mechanics can regulate mechanotransduction previously shown to be triggered by activation of the mechanosensitive calcium channel, polycystin-2, in the apical primary cilium of renal epithelial cells [S.M. Nauli, F.J. Alenghat, Y. Luo, E. Williams, P. Vassilev, X. Li, A.E. Elia, W. Lu, E.M. Brown, S.J. Quinn, D.E. Ingber, J. Zhou, Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33 (2003) 129-37]. Disrupting cytoplasmic microfilaments or microtubules in these cells eliminated fluid shear stress-induced increase of intracellular calcium. Altering the cytoskeletal force balance by inhibiting actomyosin-based tension generation (using 2,3-butanedione monoxime), interfering with microtubule polymerization (using nocodazole, cochicine, or taxol), or disrupting basal integrin-dependent extracellular matrix adhesions (using soluble GRGDSP peptide or anti-beta1 integrin antibody), also inhibited the calcium spike in response to fluid stress. These data indicate that although fluid stress-induced displacement of the primary cilium may be transduced into a calcium spike through activation of polycystin-2 and associated calcium-induced calcium release from intracellular stores, this mechanotransduction response is governed by global mechanical cues, including isometric tension (prestress) within the entire cytoskeleton and intact adhesions to extracellular matrix.
-
-
-
Control of Basement Membrane Remodeling and Epithelial Branching Morphogenesis in Embryonic Lung by Rho and Cytoskeletal Tension
Developmental Dynamics : an Official Publication of the American Association of Anatomists.
Feb, 2005 |
Pubmed ID: 15614768 Local alterations in the mechanical compliance of the basement membrane that alter the level of isometric tension in the cell have been postulated to influence tissue morphogenesis. To explore whether cell tension contributes to tissue pattern formation in vivo, we modulated cytoskeletal force generation in embryonic mouse lung (embryonic days 12-14) rudiments using inhibitors of Rho-associated kinase (ROCK), myosin light chain kinase, myosin ATPase, and microfilament integrity, or a Rho stimulator (cytotoxic necrotizing factor-1). Tension inhibition resulted in loss of normal differentials in basement membrane thickness, inhibition of new terminal bud formation, and disorganization of epithelial growth patterns as well as disruption of capillary blood vessels. In contrast, increasing cell tension through Rho activation, as confirmed by quantitation of myosin light chain phosphorylation and immunohistocytochemical analysis of actin organization, accelerated lung branching and increase capillary elongation. These data suggest that changes in cytoskeletal tension mediated by Rho signaling through ROCK may play an important role in the establishment of the spatial differentials in cell growth and extracellular matrix remodeling that drive embryonic lung development.
-
-
-
-
-
-
Alpha4beta1-dependent Adhesion Strengthening Under Mechanical Strain is Regulated by Paxillin Association with the Alpha4-cytoplasmic Domain
The Journal of Cell Biology.
Dec, 2005 |
Pubmed ID: 16365170 The capacity of integrins to mediate adhesiveness is modulated by their cytoplasmic associations. In this study, we describe a novel mechanism by which alpha4-integrin adhesiveness is regulated by the cytoskeletal adaptor paxillin. A mutation of the alpha4 tail that disrupts paxillin binding, alpha4(Y991A), reduced talin association to the alpha4beta1 heterodimer, impaired integrin anchorage to the cytoskeleton, and suppressed alpha4beta1-dependent capture and adhesion strengthening of Jurkat T cells to VCAM-1 under shear stress. The mutant retained intrinsic avidity to soluble or bead-immobilized VCAM-1, supported normal cell spreading at short-lived contacts, had normal alpha4-microvillar distribution, and responded to inside-out signals. This is the first demonstration that cytoskeletal anchorage of an integrin enhances the mechanical stability of its adhesive bonds under strain and, thereby, promotes its ability to mediate leukocyte adhesion under physiological shear stress conditions.
-
Evidence by Molecular Profiling for a Placental Origin of Infantile Hemangioma
Proceedings of the National Academy of Sciences of the United States of America.
Dec, 2005 |
Pubmed ID: 16365311 The origin of the pathogenic endothelial cells in common infantile hemangioma is unknown. We show here that the transcriptomes of human placenta and infantile hemangioma are sufficiently similar to suggest a placental origin for this tumor, expanding on recent immunophenotypical studies that have suggested this possibility [North, P. E., et al. (2001) Arch. Dermatol. 137, 559-570]. The transcriptomes of placenta, hemangioma, and eight normal and diseased tissues were compared by hierarchical and nonhierarchical clustering analysis of >7,800 genes. We found that the level of transcriptome similarity between placenta and hemangioma exceeded that of any other tissue compared and paralleled that observed between a given tissue and its derived tumor, such as normal and cancerous lung. The degree of similarity was even greater when a subset of endothelial cell-specific genes was analyzed. Genes preferentially expressed in both placenta and hemangiomas were identified, including 17-beta hydroxysteroid dehydrogenase type 2 and tissue factor pathway inhibitor 2. These data demonstrate the value of global molecular profiling of tissues as a tool for hypothesis-driven research. Furthermore, it suggests that the unique self-limited growth of infantile hemangioma may, in fact, mirror the lifetime of placental endothelium.
-
-
-
Integrins Beta1, Alpha6, and Alpha3 Contribute to Mechanical Strain-induced Differentiation of Fetal Lung Type II Epithelial Cells Via Distinct Mechanisms
American Journal of Physiology. Lung Cellular and Molecular Physiology.
Feb, 2006 |
Pubmed ID: 16169900 Mechanical forces regulate lung maturation in the fetus by promoting type II epithelial differentiation. However, the cell surface receptors that transduce these mechanical cues into cellular responses remain largely unknown. When distal lung type II epithelial cells isolated from embryonic day 19 rat fetuses were cultured on flexible plates coated with laminin, fibronectin, vitronectin, collagen, or elastin and exposed to a level of mechanical strain (5%) similar to that observed in utero, transmembrane signaling responses were induced under all conditions, as measured by ERK activation. However, mechanical stress maximally increased expression of the type II cell differentiation marker surfactant protein C when cells were cultured on laminin substrates. Strain-induced alveolar epithelial differentiation was inhibited by interfering with cell binding to laminin using soluble laminin peptides (IKVIV or YIGSR) or blocking antibodies against integrin beta1, alpha3, or alpha6. Additional studies were carried out with substrates coated directly with different nonactivating anti-integrin antibodies. Blocking integrin beta1 and alpha6 binding sites inhibited both cell adhesion and differentiation, whereas inhibition of alpha3 prevented differentiation without altering cell attachment. These data demonstrate that various integrins contribute to mechanical control of type II lung epithelial cell differentiation on laminin substrates. However, they may act via distinct mechanisms, including some that are independent of their cell anchoring role.
-
-
Mechanical Forces Alter Zyxin Unbinding Kinetics Within Focal Adhesions of Living Cells
Journal of Cellular Physiology.
Apr, 2006 |
Pubmed ID: 16288479 The formation of focal adhesions that mediate alterations of cell shape and movement is controlled by a mechanochemical mechanism in which cytoskeletal tensional forces drive changes in molecular assembly; however, little is known about the molecular biophysical basis of this response. Here, we describe a method to measure the unbinding rate constant k(OFF) of individual GFP-labeled focal adhesion molecules in living cells by modifying the fluorescence recovery after photobleaching (FRAP) technique and combining it with mathematical modeling. Using this method, we show that decreasing cellular traction forces on focal adhesions by three different techniques--chemical inhibition of cytoskeletal tension generation, laser incision of an associated actin stress fiber, or use of compliant extracellular matrices--increases the k(OFF) of the focal adhesion protein zyxin. In contrast, the k(OFF) of another adhesion protein, vinculin, remains unchanged after tension dissipation. Mathematical models also demonstrate that these force-dependent increases in zyxin's k(OFF) that occur over seconds are sufficient to quantitatively predict large-scale focal adhesion disassembly that occurs physiologically over many minutes. These findings demonstrate that the molecular binding kinetics of some, but not all, focal adhesion proteins are sensitive to mechanical force, and suggest that force-dependent changes in this biophysical parameter may govern the supramolecular events that underlie focal adhesion remodeling in living cells.
-
-
-
Mechanical Control of Tissue Morphogenesis During Embryological Development
The International Journal of Developmental Biology.
2006 |
Pubmed ID: 16479493 Twenty years ago, we proposed a model of developmental control based on tensegrity architecture, in which tissue pattern formation in the embryo is controlled through mechanical interactions between cells and extracellular matrix (ECM) which place the tissue in a state of isometric tension (prestress). The model proposed that local changes in the mechanical compliance of the ECM, for example, due to regional variations in basement membrane degradation beneath growing epithelium, may result in local stretching of the ECM and associated adherent cells, much like a "run-in-a-stocking". Cell growth and function would be controlled locally though physical distortion of the associated cells, or changes in cytoskeletal tension. Importantly, experimental studies have demonstrated that cultured cells can be switched between different fates, including growth, differentiation, apoptosis, directional motility and different stem cell lineages, by modulating cell shape. Experiments in whole embryonic organ rudiments also have confirmed the tight correlation between basement membrane thinning, cell tension generation and new bud and branch formation during tissue morphogenesis and that this process can be inhibited or accelerated by dissipating or enhancing cytoskeletal tension, respectively. Taken together, this work confirms that mechanical forces generated in the cytoskeleton of individual cells and exerted on ECM scaffolds, play a critical role in the sculpting of the embryo.
-
Viscoelastic Retraction of Single Living Stress Fibers and Its Impact on Cell Shape, Cytoskeletal Organization, and Extracellular Matrix Mechanics
Biophysical Journal.
May, 2006 |
Pubmed ID: 16500961 Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale.
-
-
-
Cellular Mechanotransduction: Putting All the Pieces Together Again
FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology.
May, 2006 |
Pubmed ID: 16675838 Analysis of cellular mechanotransduction, the mechanism by which cells convert mechanical signals into biochemical responses, has focused on identification of critical mechanosensitive molecules and cellular components. Stretch-activated ion channels, caveolae, integrins, cadherins, growth factor receptors, myosin motors, cytoskeletal filaments, nuclei, extracellular matrix, and numerous other structures and signaling molecules have all been shown to contribute to the mechanotransduction response. However, little is known about how these different molecules function within the structural context of living cells, tissues, and organs to produce the orchestrated cellular behaviors required for mechanosensation, embryogenesis, and physiological control. Recent work from a wide range of fields reveals that organ, tissue, and cell anatomy are as important for mechanotransduction as individual mechanosensitive proteins and that our bodies use structural hierarchies (systems within systems) composed of interconnected networks that span from the macroscale to the nanoscale in order to focus stresses on specific mechanotransducer molecules. The presence of isometric tension (prestress) at all levels of these multiscale networks ensures that various molecular scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. Future research in this area will therefore require analysis, understanding, and modeling of tensionally integrated (tensegrity) systems of mechanochemical control.
-
-
-
-
-
Combined Microfluidic-micromagnetic Separation of Living Cells in Continuous Flow
Biomedical Microdevices.
Dec, 2006 |
Pubmed ID: 17003962 This paper describes a miniaturized, integrated, microfluidic device that can pull molecules and living cells bound to magnetic particles from one laminar flow path to another by applying a local magnetic field gradient, and thus selectively remove them from flowing biological fluids without any wash steps. To accomplish this, a microfabricated high-gradient magnetic field concentrator (HGMC) was integrated at one side of a microfluidic channel with two inlets and outlets. When magnetic micro- or nano-particles were introduced into one flow path, they remained limited to that flow stream. In contrast, when the HGMC was magnetized, the magnetic beads were efficiently pulled from the initial flow path into the collection stream, thereby cleansing the original fluid. Using this microdevice, living E. coli bacteria bound to magnetic nanoparticles were efficiently removed from flowing solutions containing densities of red blood cells similar to that found in blood. Because this microdevice allows large numbers of beads and cells to be sorted simultaneously, has no capacity limit, and does not lose separation efficiency as particles are removed, it may be especially useful for separations from blood or other clinical samples. This on-chip HGMC-microfluidic separator technology may potentially allow cell separations to be carried out in the field outside of hospitals and clinical laboratories.
-
-
-
-
-
-
-
-
What Lies at the Interface of Regenerative Medicine and Developmental Biology?
Development (Cambridge, England).
Jul, 2007 |
Pubmed ID: 17553905 At a recent Keystone Symposium on 'Developmental Biology and Tissue Engineering', new findings in areas ranging from stem cell differentiation, embryonic pattern formation and organ regeneration to engineered cell microenvironments, synthetic biomaterials and artificial tissue fabrication were described. Although these new advances were exciting, this symposium clarified that biologists and engineers often view the challenge of tissue formation from different, and sometimes conflicting, perspectives. These dichotomies raise questions regarding the definition of regenerative medicine, but offer the promise of exciting new interdisciplinary approaches to tissue and organ regeneration, if effective alliances can be established.
-
Angiopoietin-1 Requires P190 RhoGAP to Protect Against Vascular Leakage in Vivo
The Journal of Biological Chemistry.
Aug, 2007 |
Pubmed ID: 17562701 Angiopoietin-1 (Ang-1), a ligand of the endothelium-specific receptor Tie-2, inhibits permeability in the mature vasculature, but the mechanism remains unknown. Here we show that Ang-1 signals Rho family GTPases to organize the cytoskeleton into a junction-fortifying arrangement that enhances the permeability barrier function of the endothelium. Ang-1 phosphorylates Tie-2 and its downstream effector phosphatidylinositol 3-kinase. This induces activation of one endogenous GTPase, Rac1, and inhibition of another, RhoA. Loss of either part of this dual effect abrogates the cytoskeletal and anti-permeability actions of Ang-1, suggesting that coordinated GTPase regulation is necessary for the vessel-sealing effects of Ang-1. p190 RhoGAP, a GTPase regulatory protein, provides this coordinating function as it is phosphorylated by Ang-1 treatment, requires Rac1 activation, and is necessary for RhoA inhibition. Ang-1 prevents the cytoskeletal and pro-permeability effects of endotoxin but requires p190 RhoGAP to do so. Treatment with p190 RhoGAP small interfering RNA completely abolishes the ability of Ang-1 to rescue endotoxemia-induced pulmonary vascular leak and inflammation in mice. We conclude that Ang-1 prevents vascular permeability by regulating the endothelial cytoskeleton through coordinated and opposite effects on the Rho GTPases Rac1 and RhoA. By linking Rac1 activation and RhoA inhibition, p190 RhoGAP is critical to the protective effects of Ang-1 against endotoxin. These results provide mechanistic evidence that targeting the endothelium through Tie-2 may offer specific therapeutic strategies in life-threatening endotoxemic conditions such as sepsis and acute respiratory distress syndrome.
-
Extracellular Matrix, Mechanotransduction and Structural Hierarchies in Heart Tissue Engineering
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.
Aug, 2007 |
Pubmed ID: 17588874 The spatial and temporal scales of cardiac organogenesis and pathogenesis make engineering of artificial heart tissue a daunting challenge. The temporal scales range from nanosecond conformational changes responsible for ion channel opening to fibrillation which occurs over seconds and can lead to death. Spatial scales range from nanometre pore sizes in membrane channels and gap junctions to the metre length scale of the whole cardiovascular system in a living patient. Synchrony over these scales requires a hierarchy of control mechanisms that are governed by a single common principle: integration of structure and function. To ensure that the function of ion channels and contraction of muscle cells lead to changes in heart chamber volume, an elegant choreography of metabolic, electrical and mechanical events are executed by protein networks composed of extracellular matrix, transmembrane integrin receptors and cytoskeleton which are functionally connected across all size scales. These structural control networks are mechanoresponsive, and they process mechanical and chemical signals in a massively parallel fashion, while also serving as a bidirectional circuit for information flow. This review explores how these hierarchical structural networks regulate the form and function of living cells and tissues, as well as how microfabrication techniques can be used to probe this structural control mechanism that maintains metabolic supply, electrical activation and mechanical pumping of heart muscle. Through this process, we delineate various design principles that may be useful for engineering artificial heart tissue in the future.
-
-
-
-
-
Synaptic Reorganization in Scaled Networks of Controlled Size
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience.
Dec, 2007 |
Pubmed ID: 18077670 Neurons in plastic regions of the brain undergo fundamental changes in the number of cells connecting to them as a result of development, plasticity and disease. Across these same time periods, functional changes in cellular and synaptic physiology are known to occur and are often characterized as developmental features of these periods. However, it remains possible that many such changes are direct consequences of the modified degree of partnering, and that neurons intrinsically scale their physiological parameters with network size. To systematically vary a recurrent network's number of neurons while measuring its synaptic properties, we used microfabricated extracellular matrix adhesive islands created with soft lithography to culture neuronal clusters of precise sizes, and assessed their intrinsic connectivity using intracellular recordings and confocal microscopy. Both large and small clusters supported constant densities of excitatory and inhibitory neurons. However, neurons that were provided with more potential partners (larger clusters) formed more connections per cell via an expanded dendritic surface than cocultured smaller clusters. Electrophysiologically, firing rate was preserved across clusters even as size and synapse number increased, due in part to synapses in larger networks having reduced unitary strengths, and sparser paired connectivity. Larger networks also featured a particular increase in the number of excitatory connections onto inhibitory dendrites. We suggest that these specific homeostatic mechanisms, which match the number, strength, and architecture of connections to the number of total available cellular partners in the network, could account for several known phenomena implicated in the formation, organization and degeneration of neuronal circuits.
-
Directional Control of Cell Motility Through Focal Adhesion Positioning and Spatial Control of Rac Activation
FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology.
Jun, 2008 |
Pubmed ID: 18180334 Local physical interactions between cells and extracellular matrix (ECM) influence directional cell motility that is critical for tissue development, wound repair, and cancer metastasis. Here we test the possibility that the precise spatial positioning of focal adhesions governs the direction in which cells spread and move. NIH 3T3 cells were cultured on circular or linear ECM islands, which were created using a microcontact printing technique and were 1 microm wide and of various lengths (1 to 8 microm) and separated by 1 to 4.5 microm wide nonadhesive barrier regions. Cells could be driven proactively to spread and move in particular directions by altering either the interisland spacing or the shape of similar-sized ECM islands. Immunofluorescence microscopy confirmed that focal adhesions assembled preferentially above the ECM islands, with the greatest staining intensity being observed at adhesion sites along the cell periphery. Rac-FRET analysis of living cells revealed that Rac became activated within 2 min after peripheral membrane extensions adhered to new ECM islands, and this activation wave propagated outward in an oriented manner as the cells spread from island to island. A computational model, which incorporates that cells preferentially protrude membrane processes from regions near newly formed focal adhesion contacts, could predict with high accuracy the effects of six different arrangements of micropatterned ECM islands on directional cell spreading. Taken together, these results suggest that physical properties of the ECM may influence directional cell movement by dictating where cells will form new focal adhesions and activate Rac and, hence, govern where new membrane protrusions will form.
-
-
-
-
-
Tensegrity-based Mechanosensing from Macro to Micro
Progress in Biophysics and Molecular Biology.
Jun-Jul, 2008 |
Pubmed ID: 18406455 This article is a summary of a lecture on cellular mechanotransduction that was presented at a symposium on "Cardiac Mechano-Electric Feedback and Arrhythmias" that convened at Oxford, England in April 2007. Although critical mechanosensitive molecules and cellular components, such as integrins, stretch-activated ion channels, and cytoskeletal filaments, have been shown to contribute to the response by which cells convert mechanical signals into a biochemical response, little is known about how they function in the structural context of living cells, tissues and organs to produce orchestrated changes in cell behavior in response to stress. Here, studies are reviewed that suggest our bodies use structural hierarchies (systems within systems) composed of interconnected extracellular matrix and cytoskeletal networks that span from the macroscale to the nanoscale to focus stresses on specific mechanotransducer molecules. A key feature of these networks is that they are in a state of isometric tension (i.e., experience a tensile prestress), which ensures that various molecular-scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. These features of living architecture are the same principles that govern tensegrity (tensional integrity) architecture, and mathematical models based on tensegrity are beginning to provide new and useful descriptions of living materials, including mammalian cells. This article reviews how the use of tensegrity at multiple size scales in our bodies guides mechanical force transfer from the macro to the micro, as well as how it facilitates conversion of mechanical signals into changes in ion flux, molecular binding kinetics, signal transduction, gene transcription, cell fate switching and developmental patterning.
-
Can Cancer Be Reversed by Engineering the Tumor Microenvironment?
Seminars in Cancer Biology.
Oct, 2008 |
Pubmed ID: 18472275 To advance cancer research in a transformative way, we must redefine the problem. Although epithelial cancers, such as breast cancer, may be caused by random somatic gene mutations, the reality is that this is only one of many ways to induce tumor formation. Cancers also can be produced in experimental systems in vitro and in vivo, for example, by inducing sustained alterations of extracellular matrix (ECM) structure. Moreover, certain epithelial cancers can be induced to 'reboot' and regenerate normal tissue morphology when combined with embryonic mesenchyme or exogenous ECM scaffolds that are produced through epithelial-stromal interactions. At the same time, work in the field of Mechanical Biology has revealed that many cell behaviors critical for cancer formation (e.g., growth, differentiation, motility, apoptosis) can be controlled by physical interactions between cells and their ECM adhesions that alter the mechanical force balance in the ECM, cell and cytoskeleton. Epithelial tumor progression also can be induced in vitro by changing ECM mechanics or altering cytoskeletal tension generation through manipulation of the Rho GTPase signaling pathway. Mechanical interactions between capillary cells and ECM that are mediated by Rho signaling similarly mediate control of capillary cell growth and angiogenesis, which are equally critical for cancer progression and metastasis. These findings question basic assumptions in the cancer field, and raise the intriguing possibility that cancer may be a reversible disease that results from progressive deregulation of tissue architecture, which leads to physical changes in cells and altered mechanical signaling. This perspective raises the possibility of developing a tissue engineering approach to cancer therapy in which biologically inspired materials that mimic the embryonic microenvironment are used to induce cancers to revert into normal tissues.
-
Transcriptome-wide Noise Controls Lineage Choice in Mammalian Progenitor Cells
Nature.
May, 2008 |
Pubmed ID: 18497826 Phenotypic cell-to-cell variability within clonal populations may be a manifestation of 'gene expression noise', or it may reflect stable phenotypic variants. Such 'non-genetic cell individuality' can arise from the slow fluctuations of protein levels in mammalian cells. These fluctuations produce persistent cell individuality, thereby rendering a clonal population heterogeneous. However, it remains unknown whether this heterogeneity may account for the stochasticity of cell fate decisions in stem cells. Here we show that in clonal populations of mouse haematopoietic progenitor cells, spontaneous 'outlier' cells with either extremely high or low expression levels of the stem cell marker Sca-1 (also known as Ly6a; ref. 9) reconstitute the parental distribution of Sca-1 but do so only after more than one week. This slow relaxation is described by a gaussian mixture model that incorporates noise-driven transitions between discrete subpopulations, suggesting hidden multi-stability within one cell type. Despite clonality, the Sca-1 outliers had distinct transcriptomes. Although their unique gene expression profiles eventually reverted to that of the median cells, revealing an attractor state, they lasted long enough to confer a greatly different proclivity for choosing either the erythroid or the myeloid lineage. Preference in lineage choice was associated with increased expression of lineage-specific transcription factors, such as a >200-fold increase in Gata1 (ref. 10) among the erythroid-prone cells, or a >15-fold increased PU.1 (Sfpi1) (ref. 11) expression among myeloid-prone cells. Thus, clonal heterogeneity of gene expression level is not due to independent noise in the expression of individual genes, but reflects metastable states of a slowly fluctuating transcriptome that is distinct in individual cells and may govern the reversible, stochastic priming of multipotent progenitor cells in cell fate decision.
-
A Multi-modular Tensegrity Model of an Actin Stress Fiber
Journal of Biomechanics.
Aug, 2008 |
Pubmed ID: 18632107 Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on the extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model can also explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors and represent a new handle on multi-scale modeling of living materials.
-
-
ABL2/ARG Tyrosine Kinase Mediates SEMA3F-induced RhoA Inactivation and Cytoskeleton Collapse in Human Glioma Cells
The Journal of Biological Chemistry.
Oct, 2008 |
Pubmed ID: 18660502 Class three semaphorins (SEMAs) were originally shown to be mediators of axon guidance that repelled axons and collapsed growth cones, but it is now evident that SEMA3F, for example, has similar effects on tumor cells and endothelial cells (EC). In both human U87MG glioma cells and human umbilical vein EC, SEMA3F induced rapid cytoskeletal collapse, suppressed cell contractility, decreased phosphorylation of cofilin, and inhibited cell migration in culture. Analysis of the signaling pathways showed that SEMA3F formed a complex with NRP2 (neuropilin-2) and plexin A1. These interactions eventually led to inactivation of the small GTPase, RhoA, which is necessary for stress fiber formation and cytoskeleton integrity. A novel upstream RhoA mediator was shown to be ABL2, also known as ARG, a membrane-anchored nonreceptor tyrosine kinase. Within minutes after the addition of SEMA3F, ABL2 directly bound plexin A1 but not to a plexin A1 mutant lacking the cytoplasmic domain. In addition, ABL2 phosphorylated and thereby activated p190RhoGAP, which inactivated RhoA (GTP to GDP), resulting in cytoskeleton collapse and inhibition of cell migration. On the other hand, cells overexpressing an ABL2 inactive kinase mutant or treated with ABL2 small interfering RNA did not inactivate RhoA. Cells treated with p190RhoGAP small interfering RNA also did not inactivate RhoA. Together, these results suggested that ABL2/ARG is a novel mediator of SEMA3F-induced RhoA inactivation and collapsing activity.
-
Tumor-derived Endothelial Cells Exhibit Aberrant Rho-mediated Mechanosensing and Abnormal Angiogenesis in Vitro
Proceedings of the National Academy of Sciences of the United States of America.
Aug, 2008 |
Pubmed ID: 18685096 Tumor blood vessels exhibit abnormal structure and function that cause disturbed blood flow and high interstitial pressure, which impair delivery of anti-cancer agents. Past efforts to normalize the tumor vasculature have focused on inhibition of soluble angiogenic factors, such as VEGF; however, capillary endothelial (CE) cell growth and differentiation during angiogenesis are also influenced by mechanical forces conveyed by the extracellular matrix (ECM). Here, we explored the possibility that tumor CE cells form abnormal vessels because they lose their ability to sense and respond to these physical cues. These studies reveal that, in contrast to normal CE cells, tumor-derived CE cells fail to reorient their actin cytoskeleton when exposed to uniaxial cyclic strain, exhibit distinct shape sensitivity to variations in ECM elasticity, exert greater traction force, and display an enhanced ability to retract flexible ECM substrates and reorganize into tubular networks in vitro. These behaviors correlate with a constitutively high level of baseline activity of the small GTPase Rho and its downstream effector, Rho-associated kinase (ROCK). Moreover, decreasing Rho-mediated tension by using the ROCK inhibitor, Y27632, can reprogram the tumor CE cells so that they normalize their reorientation response to uniaxial cyclic strain and their ability to form tubular networks on ECM gels. Abnormal Rho-mediated sensing of mechanical cues in the tumor microenvironment may therefore contribute to the aberrant behaviors of tumor CE cells that result in the development of structural abnormalities in the cancer microvasculature.
-
-
-
-
Tensegrity and Mechanotransduction
Journal of Bodywork and Movement Therapies.
Jul, 2008 |
Pubmed ID: 19083675 Anyone who is skilled in the art of physical therapy knows that the mechanical properties, behavior and movement of our bodies are as important for human health as chemicals and genes. However, only recently have scientists and physicians begun to appreciate the key role which mechanical forces play in biological control at the molecular and cellular levels. This article provides a brief overview of a lecture presented at the First International Fascia Research Congress that convened at Harvard Medical School in Boston, MA on October 4, 2007. In this lecture, I described what we have learned over the past 30 years as a result of our research focused on the molecular mechanisms by which cells sense mechanical forces and convert them into changes in intracellular biochemistry and gene expression-a process called "mechanotransduction". This work has revealed that molecules, cells, tissues, organs, and our entire bodies use "tensegrity" architecture to mechanically stabilize their shape, and to seamlessly integrate structure and function at all size scales. Through the use of this tension-dependent building system, mechanical forces applied at the macroscale produce changes in biochemistry and gene expression within individual living cells. This structure-based system provides a mechanistic basis to explain how application of physical therapies might influence cell and tissue physiology.
-
-
-
A Mechanosensitive Transcriptional Mechanism That Controls Angiogenesis
Nature.
Feb, 2009 |
Pubmed ID: 19242469 Angiogenesis is controlled by physical interactions between cells and extracellular matrix as well as soluble angiogenic factors, such as VEGF. However, the mechanism by which mechanical signals integrate with other microenvironmental cues to regulate neovascularization remains unknown. Here we show that the Rho inhibitor, p190RhoGAP (also known as GRLF1), controls capillary network formation in vitro in human microvascular endothelial cells and retinal angiogenesis in vivo by modulating the balance of activities between two antagonistic transcription factors, TFII-I (also known as GTF2I) and GATA2, that govern gene expression of the VEGF receptor VEGFR2 (also known as KDR). Moreover, this new angiogenesis signalling pathway is sensitive to extracellular matrix elasticity as well as soluble VEGF. This is, to our knowledge, the first known functional cross-antagonism between transcription factors that controls tissue morphogenesis, and that responds to both mechanical and chemical cues.
-
-
-
-
-
-
Paper-supported 3D Cell Culture for Tissue-based Bioassays
Proceedings of the National Academy of Sciences of the United States of America.
Nov, 2009 |
Pubmed ID: 19846768 Fundamental investigations of human biology, and the development of therapeutics, commonly rely on 2D cell-culture systems that do not accurately recapitulate the structure, function, or physiology of living tissues. Systems for 3D cultures exist but do not replicate the spatial distributions of oxygen, metabolites, and signaling molecules found in tissues. Microfabrication can create architecturally complex scaffolds for 3D cell cultures that circumvent some of these limitations; unfortunately, these approaches require instrumentation not commonly available in biology laboratories. Here we report that stacking and destacking layers of paper impregnated with suspensions of cells in extracellular matrix hydrogel makes it possible to control oxygen and nutrient gradients in 3D and to analyze molecular and genetic responses. Stacking assembles the "tissue", whereas destacking disassembles it, and allows its analysis. Breast cancer cells cultured within stacks of layered paper recapitulate behaviors observed both in 3D tumor spheroids in vitro and in tumors in vivo: Proliferating cells in the stacks localize in an outer layer a few hundreds of microns thick, and growth-arrested, apoptotic, and necrotic cells concentrate in the hypoxic core where hypoxia-sensitive genes are overexpressed. Altering gas permeability at the ends of stacks controlled the gradient in the concentration of the O(2) and was sufficient by itself to determine the distribution of viable cells in 3D. Cell cultures in stacked, paper-supported gels offer a uniquely flexible approach to study cell responses to 3D molecular gradients and to mimic tissue- and organ-level functions.
-
Tumor Growth and Angiogenesis Are Dependent on the Presence of Immature Dendritic Cells
FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology.
May, 2010 |
Pubmed ID: 20008545 Dendritic cells (DCs)--immunomodulatory cells that initiate adaptive immune responses--have recently been shown to exert proangiogenic effects when infiltrating the tumor microenvironment. As tumors that escape immune surveillance inhibit DC maturation, we explored whether maturation status determines their ability to promote angiogenesis and whether angiogenesis depends on the presence of DCs. Using mouse xenograft models of human tumors, we show that fast-growing "angiogenic" tumors are infiltrated by a more immature DC population than respective dormant avascular tumors. Accordingly, supplementation of immature DCs, but not mature DCs, enhanced tumor growth. When DCs were mixed with Matrigel and injected subcutaneously into mice, only immature DCs promoted the ingrowth of patent blood vessels. Notably, depletion of DCs in a transgenic mouse model that allows for their conditional ablation completely abrogated basic fibroblast growth factor-induced angiogenesis in Matrigel plugs, and significantly inhibited tumor growth in these mice. Because immature DCs actively promote angiogenesis and tumor growth, whereas DC maturation or ablation suppresses this response, we conclude that angiogenesis is dependent on the presence of immature DCs. Thus, cancer immunotherapies that promote DC maturation may act by both augmenting the host immune response to the tumor and by suppressing tumor angiogenesis.
-
-
From Cellular Mechanotransduction to Biologically Inspired Engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009
Annals of Biomedical Engineering.
Mar, 2010 |
Pubmed ID: 20140519 This article is based on a lecture I presented as the recipient of the 2009 Pritzker Distinguished Lecturer Award at the Biomedical Engineering Society annual meeting in October 2009. Here, I review more than thirty years of research from my laboratory, beginning with studies designed to test the theory that cells use tensegrity (tensional integrity) architecture to stabilize their shape and sense mechanical signals, which I believed to be critical for control of cell function and tissue development. Although I was trained as a cell biologist, I found that the tools I had at my disposal were insufficient to experimentally test these theories, and thus I ventured into engineering to find critical solutions. This path has been extremely fruitful as it has led to confirmation of the critical role that physical forces play in developmental control, as well as how cells sense and respond to mechanical signals at the molecular level through a process known as cellular mechanotransduction. Many of the predictions of the cellular tensegrity model relating to cell mechanical behaviors have been shown to be valid, and this vision of cell structure led to discovery of the central role that transmembrane adhesion receptors, such as integrins, and the cytoskeleton play in mechanosensing and mechanochemical conversion. In addition, these fundamental studies have led to significant unexpected technology fallout, including development of micromagnetic actuators for non-invasive control of cellular signaling, microfluidic systems as therapeutic extracorporeal devices for sepsis therapy, and new DNA-based nanobiotechnology approaches that permit construction of artificial tensegrities that mimic properties of living materials for applications in tissue engineering and regenerative medicine.
-
-
Self-assembly of Three-dimensional Prestressed Tensegrity Structures from DNA
Nature Nanotechnology.
Jul, 2010 |
Pubmed ID: 20562873 Tensegrity, or tensional integrity, is a property of a structure indicating a reliance on a balance between components that are either in pure compression or pure tension for stability. Tensegrity structures exhibit extremely high strength-to-weight ratios and great resilience, and are therefore widely used in engineering, robotics and architecture. Here, we report nanoscale, prestressed, three-dimensional tensegrity structures in which rigid bundles of DNA double helices resist compressive forces exerted by segments of single-stranded DNA that act as tension-bearing cables. Our DNA tensegrity structures can self-assemble against forces up to 14 pN, which is twice the stall force of powerful molecular motors such as kinesin or myosin. The forces generated by this molecular prestressing mechanism can be used to bend the DNA bundles or to actuate the entire structure through enzymatic cleavage at specific sites. In addition to being building blocks for nanostructures, tensile structural elements made of single-stranded DNA could be used to study molecular forces, cellular mechanotransduction and other fundamental biological processes.
-
-
-
-
Multizone Paper Platform for 3D Cell Cultures
PloS One.
2011 |
Pubmed ID: 21573103 In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously ("cells-in-gels-in-paper" or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, "sections" all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures.
-
-
Mechanochemical Control of Mesenchymal Condensation and Embryonic Tooth Organ Formation
Developmental Cell.
Oct, 2011 |
Pubmed ID: 21924961 Mesenchymal condensation is critical for organogenesis, yet little is known about how this process is controlled. Here we show that Fgf8 and Sema3f, produced by early dental epithelium, respectively, attract and repulse mesenchymal cells, which cause them to pack tightly together during mouse tooth development. Resulting mechanical compaction-induced changes in cell shape induce odontogenic transcription factors (Pax9, Msx1) and a chemical cue (BMP4), and mechanical compression of mesenchyme is sufficient to induce tooth-specific cell fate switching. The inductive effects of cell compaction are mediated by suppression of the mechanical signaling molecule RhoA, and its overexpression prevents odontogenic induction. Thus, the mesenchymal condensation that drives tooth formation is induced by antagonistic epithelial morphogens that manifest their pattern-generating actions mechanically via changes in mesenchymal cell shape and altered mechanotransduction.
-
-
-
Paxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning
PloS One.
2011 |
Pubmed ID: 22194823 Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5-10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax-/- and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax-/- cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax-/- and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices.
-
-
Epoxyeicosanoids Stimulate Multiorgan Metastasis and Tumor Dormancy Escape in Mice
The Journal of Clinical Investigation.
Jan, 2012 |
Pubmed ID: 22182838 Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.
-
-
-
Human Gut-on-a-chip Inhabited by Microbial Flora That Experiences Intestinal Peristalsis-like Motions and Flow
Lab on a Chip.
Jun, 2012 |
Pubmed ID: 22434367 Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic 'human gut-on-a-chip' microdevice composed of two microfluidic channels separated by a porous flexible membrane coated with extracellular matrix (ECM) and lined by human intestinal epithelial (Caco-2) cells that mimics the complex structure and physiology of living intestine. The gut microenvironment is recreated by flowing fluid at a low rate (30 μL h(-1)) producing low shear stress (0.02 dyne cm(-2)) over the microchannels, and by exerting cyclic strain (10%; 0.15 Hz) that mimics physiological peristaltic motions. Under these conditions, a columnar epithelium develops that polarizes rapidly, spontaneously grows into folds that recapitulate the structure of intestinal villi, and forms a high integrity barrier to small molecules that better mimics whole intestine than cells in cultured in static Transwell models. In addition, a normal intestinal microbe (Lactobacillus rhamnosus GG) can be successfully co-cultured for extended periods (>1 week) on the luminal surface of the cultured epithelium without compromising epithelial cell viability, and this actually improves barrier function as previously observed in humans. Thus, this gut-on-a-chip recapitulates multiple dynamic physical and functional features of human intestine that are critical for its function within a controlled microfluidic environment that is amenable for transport, absorption, and toxicity studies, and hence it should have great value for drug testing as well as development of novel intestinal disease models.
-
A Combined Micromagnetic-microfluidic Device for Rapid Capture and Culture of Rare Circulating Tumor Cells
Lab on a Chip.
Jun, 2012 |
Pubmed ID: 22453808 Here we describe a combined microfluidic-micromagnetic cell separation device that has been developed to isolate, detect and culture circulating tumor cells (CTCs) from whole blood, and demonstrate its utility using blood from mammary cancer-bearing mice. The device was fabricated from polydimethylsiloxane and contains a microfluidic architecture with a main channel and redundant 'double collection' channel lined by two rows of dead-end side chambers for tumor cell collection. The microdevice design was optimized using computational simulation to determine dimensions, magnetic forces and flow rates for cell isolation using epithelial cell adhesion molecule (EpCAM) antibody-coated magnetic microbeads (2.8 μm diameter). Using this device, isolation efficiencies increased in a linear manner and reached efficiencies close to 90% when only 2 to 80 breast cancer cells were spiked into a small volume (1.0 mL) of blood taken from wild type mice. The high sensitivity visualization capabilities of the device also allowed detection of a single cell within one of its dead-end side chambers. When blood was removed from FVB C3(1)-SV40 T-antigen mammary tumor-bearing transgenic mice at different stages of tumor progression, cells isolated in the device using anti-EpCAM-beads and magnetically collected within the dead-end side chambers, also stained positive for pan-cytokeratin-FITC and DAPI, negative for CD45-PerCP, and expressed SV40 large T antigen, thus confirming their identity as CTCs. Using this isolation approach, we detected a time-dependent rise in the number of CTCs in blood of female transgenic mice, with a dramatic increase in the numbers of metastatic tumor cells appearing in the blood after 20 weeks when tumors transition to invasive carcinoma and exhibit increased growth of metastases in this model. Importantly, in contrast to previously described CTC isolation methods, breast tumor cells collected from a small volume of blood removed from a breast tumor-bearing animal remain viable and they can be easily removed from these devices and expanded in culture for additional analytical studies or potential drug sensitivity testing.
-
-
-
-
-
Mechanosensitive Mechanisms in Transcriptional Regulation
Journal of Cell Science.
Jul, 2012 |
Pubmed ID: 22797927 Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.
-
LRP5 Regulates Development of Lung Microvessels and Alveoli Through the Angiopoietin-Tie2 Pathway
PloS One.
2012 |
Pubmed ID: 22848540 Angiogenesis is crucial for lung development. Although there has been considerable exploration, the mechanism by which lung vascular and alveolar formation is controlled is still not completely understood. Here we show that low-density lipoprotein receptor-related protein 5 (LRP5), a component of the Wnt ligand-receptor complex, regulates angiogenesis and alveolar formation in the lung by modulating expression of the angiopoietin (Ang) receptor, Tie2, in vascular endothelial cells (ECs). Vascular development in whole mouse lungs and in cultured ECs is controlled by LRP5 signaling, which is, in turn, governed by a balance between the activities of the antagonistic Tie2 ligands, Ang1 and Ang2. Under physiological conditions when Ang1 is dominant, LRP5 knockdown decreases Tie2 expression and thereby, inhibits vascular and alveolar development in the lung. Conversely, when Ang2 dominates under hyperoxia treatment in neonatal mice, high LRP5 and Tie2 expression suppress angiogenesis and lung development. These findings suggest that the LRP5-Tie2-Ang signaling axis plays a central role in control of both angiogenesis and alveolarization during postnatal lung development, and that deregulation of this signaling mechanism might lead to developmental abnormalities of the lung, such as are observed in bronchopulmonary dysplasia (BPD).
-
A Mini-microscope for in Situ Monitoring of Cells
Lab on a Chip.
Oct, 2012 |
Pubmed ID: 22911426 A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.
-
-
-
-
Nogo-A is a Negative Regulator of CNS Angiogenesis
Proceedings of the National Academy of Sciences of the United States of America.
May, 2013 |
Pubmed ID: 23625008 Nogo-A is an important axonal growth inhibitor in the adult and developing CNS. In vitro, Nogo-A has been shown to inhibit migration and cell spreading of neuronal and nonneuronal cell types. Here, we studied in vivo and in vitro effects of Nogo-A on vascular endothelial cells during angiogenesis of the early postnatal brain and retina in which Nogo-A is expressed by many types of neurons. Genetic ablation or virus-mediated knock down of Nogo-A or neutralization of Nogo-A with an antibody caused a marked increase in the blood vessel density in vivo. In culture, Nogo-A inhibited spreading, migration, and sprouting of primary brain microvascular endothelial cells (MVECs) in a dose-dependent manner and induced the retraction of MVEC lamellipodia and filopodia. Mechanistically, we show that only the Nogo-A-specific Delta 20 domain exerts inhibitory effects on MVECs, but the Nogo-66 fragment, an inhibitory domain common to Nogo-A, -B, and -C, does not. Furthermore, the action of Nogo-A Delta 20 on MVECs required the intracellular activation of the Ras homolog gene family, member A (Rho-A)-associated, coiled-coil containing protein kinase (ROCK)-Myosin II pathway. The inhibitory effects of early postnatal brain membranes or cultured neurons on MVECs were relieved significantly by anti-Nogo-A antibodies. These findings identify Nogo-A as an important negative regulator of developmental angiogenesis in the CNS. They may have important implications in CNS pathologies involving angiogenesis such as stroke, brain tumors, and retinopathies.
-
-
-
-
Breast Cancer Normalization Induced by Embryonic Mesenchyme is Mediated by Extracellular Matrix Biglycan
Integrative Biology : Quantitative Biosciences from Nano to Macro.
Aug, 2013 |
Pubmed ID: 23817524 Some epithelial cancers can be induced to revert to quiescent differentiated tissue when combined with embryonic mesenchyme; however, the mechanism of this induction is unknown. Here we combine tissue engineering, developmental biology, biochemistry and proteomics approaches to attack this problem. Using a synthetic reconstitution system, we show that co-culture of breast cancer cells with embryonic mesenchyme from early stage (E12.5-13.5) mammary glands decreases tumor cell proliferation while stimulating acinus differentiation, whereas cancer-associated fibroblasts (CAFs) fail to produce these normalizing effects. When insoluble extracellular matrices (ECMs) were isolated from cultured early stage (E12.5-13.5) embryonic mammary mesenchyme cells or E10 tooth mesenchyme and recombined with mammary tumor cells, they were found to be sufficient to induce breast cancer normalization including enhanced expression of estrogen receptor-α (ER-α). In contrast, ECM from later stage (E14.5) mammary mesenchyme and conditioned medium isolated from mesenchymal cell cultures were ineffective. Importantly, when the inductive ECMs produced by early stage embryonic mammary mesenchyme were scraped from dishes and injected into fast-growing breast tumors in mice, they significantly inhibited cancer expansion. Proteomics analysis of the detergent insoluble ECM material revealed several matrix components that were preferentially expressed in the embryonic ECMs. Analysis of two of these molecules previously implicated in cancer regulation--biglycan and tenascin C--revealed that addition of biglyan can mimic the tumor normalization response, and that siRNA knockdown of its expression in cultured embryonic mesenchyme results in loss of the ECM's inductive activity. These studies confirm that embryonic mesenchyme retains the ability to induce partial breast cancer reversion, and that its inductive capability resides at least in part in the ECM protein biglycan that it produces.
-
Gut-on-a-Chip Microenvironment Induces Human Intestinal Cells to Undergo Villus Differentiation
Integrative Biology : Quantitative Biosciences from Nano to Macro.
Aug, 2013 |
Pubmed ID: 23817533 Existing in vitro models of human intestinal function commonly rely on use of established epithelial cell lines, such as Caco-2 cells, which form polarized epithelial monolayers but fail to mimic more complex intestinal functions that are required for drug development and disease research. We show here that a microfluidic 'Gut-on-a-Chip' technology that exposes cultured cells to physiological peristalsis-like motions and liquid flow can be used to induce human Caco-2 cells to spontaneously undergo robust morphogenesis of three-dimensional (3D) intestinal villi. The cells of that line these villus structures are linked by tight junctions, and covered by brush borders and mucus. They also reconstitute basal proliferative crypts that populate the villi along the crypt-villus axis, and form four different types of differentiated epithelial cells (absorptive, mucus-secretory, enteroendocrine, and Paneth) that take characteristic positions similar to those observed in living human small intestine. Formation of these intestinal villi also results in exposure of increased intestinal surface area that mimics the absorptive efficiency of human intestine, as well enhanced cytochrome P450 3A4 isoform-based drug metabolizing activity compared to conventional Caco-2 cell monolayers cultured in a static Transwell system. The ability of the human Gut-on-a-Chip to recapitulate the 3D structures, differentiated cell types, and multiple physiological functions of normal human intestinal villi may provide a powerful alternative in vitro model for studies on intestinal physiology and digestive diseases, as well as drug development.
-
Epoxyeicosanoids Promote Organ and Tissue Regeneration
Proceedings of the National Academy of Sciences of the United States of America.
Aug, 2013 |
Pubmed ID: 23898174 Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.
-
-
Platform for High-Throughput Testing of the Effect of Soluble Compounds on 3D Cell Cultures
Analytical Chemistry.
Sep, 2013 |
Pubmed ID: 23952342 In vitro 3D culture could provide an important model of tissues in vivo, but assessing the effects of chemical compounds on cells in specific regions of 3D culture requires physical isolation of cells and thus currently relies mostly on delicate and low-throughput methods. This paper describes a technique ("cells-in-gels-in-paper", CiGiP) that permits rapid assembly of arrays of 3D cell cultures and convenient isolation of cells from specific regions of these cultures. The 3D cultures were generated by stacking sheets of 200-μm-thick paper, each sheet supporting 96 individual "spots" (thin circular slabs) of hydrogels containing cells, separated by hydrophobic material (wax, PDMS) impermeable to aqueous solutions, and hydrophilic and most hydrophobic solutes. A custom-made 96-well holder isolated the cell-containing zones from each other. Each well contained media to which a different compound could be added. After culture and disassembly of the holder, peeling the layers apart "sectioned" the individual 3D cultures into 200-μm-thick sections which were easy to analyze using 2D imaging (e.g., with a commercial gel scanner). This 96-well holder brings new utilities to high-throughput, cell-based screening, by combining the simplicity of CiGiP with the convenience of a microtiter plate. This work demonstrated the potential of this type of assays by examining the cytotoxic effects of phenylarsine oxide (PAO) and cyclophosphamide (CPA) on human breast cancer cells positioned at different separations from culture media in 3D cultures.
-
-
-
-
Microfabrication of Human Organs-on-chips
Nature Protocols.
Nov, 2013 |
Pubmed ID: 24113786 'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.
-
-
-
-
-
-
-
-
Mechanotransduction of Fluid Stresses Governs 3D Cell Migration
Proceedings of the National Academy of Sciences of the United States of America.
Feb, 2014 |
Pubmed ID: 24550267 Solid tumors are characterized by high interstitial fluid pressure, which drives fluid efflux from the tumor core. Tumor-associated interstitial flow (IF) at a rate of ∼3 µm/s has been shown to induce cell migration in the upstream direction (rheotaxis). However, the molecular biophysical mechanism that underlies upstream cell polarization and rheotaxis remains unclear. We developed a microfluidic platform to investigate the effects of IF fluid stresses imparted on cells embedded within a collagen type I hydrogel, and we demonstrate that IF stresses result in a transcellular gradient in β1-integrin activation with vinculin, focal adhesion kinase (FAK), FAK(PY397), F actin, and paxillin-dependent protrusion formation localizing to the upstream side of the cell, where matrix adhesions are under maximum tension. This previously unknown mechanism is the result of a force balance between fluid drag on the cell and matrix adhesion tension and is therefore a fundamental, but previously unknown, stimulus for directing cell movement within porous extracellular matrix.
-
Tensegrity, Cellular Biophysics, and the Mechanics of Living Systems
Reports on Progress in Physics. Physical Society (Great Britain).
Apr, 2014 |
Pubmed ID: 24695087 The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life—from individual molecules to whole living organisms—to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level.
-
-
-
Mononuclear Cells from Dedifferentiation of Mouse Myotubes Display Remarkable Regenerative Capability
Stem Cells (Dayton, Ohio).
Sep, 2014 |
Pubmed ID: 24916688 Certain lower organisms achieve organ regeneration by reverting differentiated cells into tissue-specific progenitors that re-enter embryonic programs. During muscle regeneration in the urodele amphibian, postmitotic multinucleated skeletal myofibers transform into mononucleated proliferating cells upon injury, and a transcription factor-msx1 plays a role in their reprograming. Whether this powerful regeneration strategy can be leveraged in mammals remains unknown, as it has not been demonstrated that the dedifferentiated progenitor cells arising from muscle cells overexpressing Msx1 are lineage-specific and possess the same potent regenerative capability as their amphibian counterparts. Here, we show that ectopic expression of Msx1 reprograms postmitotic, multinucleated, primary mouse myotubes to become proliferating mononuclear cells. These dedifferentiated cells reactivate genes expressed by embryonic muscle progenitor cells and generate only muscle tissue in vivo both in an ectopic location and inside existing muscle. More importantly, distinct from adult muscle satellite cells, these cells appear both to fuse with existing fibers and to regenerate myofibers in a robust and time-dependent manner. Upon transplantation into a degenerating muscle, these dedifferentiated cells generated a large number of myofibers that increased over time and replenished almost half of the cross-sectional area of the muscle in only 12 weeks. Our study demonstrates that mammals can harness a muscle regeneration strategy used by lower organisms when the same molecular pathway is activated.
-
-
Stationary Nanoliter Droplet Array with a Substrate of Choice for Single Adherent/nonadherent Cell Incubation and Analysis
Proceedings of the National Academy of Sciences of the United States of America.
Aug, 2014 |
Pubmed ID: 25053808 Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required.
-
-
Microfluidic Organs-on-chips
Nature Biotechnology.
Aug, 2014 |
Pubmed ID: 25093883 An organ-on-a-chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. In the context of drug discovery and development, it should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing and biomarker identification.
-
-
-
-
Measuring Direct Current Trans-epithelial Electrical Resistance in Organ-on-a-chip Microsystems
Lab on a Chip.
Feb, 2015 |
Pubmed ID: 25427650 Trans-epithelial electrical resistance (TEER) measurements are widely used as real-time, non-destructive, and label-free measurements of epithelial and endothelial barrier function. TEER measurements are ideal for characterizing tissue barrier function in organs-on-chip studies for drug testing and investigation of human disease models; however, published reports using this technique have reported highly conflicting results even with identical cell lines and experimental setups. The differences are even more dramatic when comparing measurements in conventional Transwell systems with those obtained in microfluidic systems. Our goal in this work was therefore to enhance the fidelity of TEER measurements in microfluidic organs-on-chips, specifically using direct current (DC) measurements of TEER, as this is the most widely used method reported in the literature. Here we present a mathematical model that accounts for differences measured in TEER between microfluidic chips and Transwell systems, which arise from differences in device geometry. The model is validated by comparing TEER measurements obtained in a microfluidic gut-on-a-chip device versus in a Transwell culture system. Moreover, we show that even small gaps in cell coverage (e.g., 0.4%) are sufficient to cause a significant (~80%) drop in TEER. Importantly, these findings demonstrate that TEER measurements obtained in microfluidic systems, such as organs-on-chips, require special consideration, specifically when results are to be compared with measurements obtained from Transwell systems.
-
Engineered in Vitro Disease Models
Annual Review of Pathology.
2015 |
Pubmed ID: 25621660 The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
-
Generation of Biocompatible Droplets for in Vivo and in Vitro Measurement of Cell-generated Mechanical Stresses
Methods in Cell Biology.
2015 |
Pubmed ID: 25640439 Here we describe a detailed protocol to produce biocompatible droplets that permit the measurement of mechanical stresses at cell and tissue scales. The droplets can be used as force transducers in vivo, ex vivo, and in vitro, to measure mechanical stresses in situ, in three dimensions and time. Versatile and modular droplet coatings using biotinylated molecules, such as ligands for specific adhesion receptors, enable the targeting of specific tissues or cells. Droplet sizes can be varied to measure forces at different scales (tissue and cell scales) and the range of measurable mechanical stresses ranges within approximately 0.3-100 kPa. The protocol described in this chapter is divided in three sections. First, we describe the generation and stabilization of biocompatible droplets. Next, we explain the steps necessary to functionalize the droplet surface. Finally, we describe how to characterize the mechanical properties of the droplets, so that they can be used as calibrated mechanical probes. The procedure to generate, stabilize, and functionalize the droplets is straightforward and can be completed in about 3h with basic laboratory resources. The calibration of the droplet's mechanical properties to perform quantitative stress measurements is also straightforward, but requires the proper equipment to measure interfacial tension (such as a tensiometer). Calibrated droplets can be used to quantify cell-generated mechanical stresses by analyzing the tridimensional shape of the droplet.
-
-
-
-
-
Improved Treatment of Systemic Blood Infections Using Antibiotics with Extracorporeal Opsonin Hemoadsorption
Biomaterials.
Oct, 2015 |
Pubmed ID: 26253638 Here we describe development of an extracorporeal hemoadsorption device for sepsis therapy that employs commercially available polysulfone or polyethersulfone hollow fiber filters similar to those used clinically for hemodialysis, covalently coated with a genetically engineered form of the human opsonin Mannose Binding Lectin linked to an Fc domain (FcMBL) that can cleanse a broad range of pathogens and endotoxin from flowing blood without having to first determine their identity. When tested with human whole blood in vitro, the FcMBL hemoadsorption filter (FcMBL-HF) produced efficient (90-99%) removal of Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria, fungi (Candida albicans) and lipopolysaccharide (LPS)-endotoxin. When tested in rats, extracorporeal therapy with the FcMBL-HF device reduced circulating pathogen and endotoxin levels by more than 99%, and prevented pathogen engraftment and inflammatory cell recruitment in the spleen, lung, liver and kidney when compared to controls. Studies in rats revealed that treatment with bacteriocidal antibiotics resulted in a major increase in the release of microbial fragments or 'pathogen-associated molecular patterns' (PAMPs) in vivo, and that these PAMPs were efficiently removed from blood within 2 h using the FcMBL-HF; in contrast, they remained at high levels in animals treated with antibiotics alone. Importantly, cleansing of PAMPs from the blood of antibiotic-treated animals with the FcMBL-hemoadsorbent device resulted in reduced organ pathogen and endotoxin loads, suppressed inflammatory responses, and resulted in more stable vital signs compared to treatment with antibiotics alone. As PAMPs trigger the cytokine cascades that lead to development of systemic inflammatory response syndrome and contribute to septic shock and death, co-administration of FcMBL-hemoadsorption with antibiotics could offer a more effective approach to sepsis therapy.
-
Matrix Elasticity of Void-forming Hydrogels Controls Transplanted-stem-cell-mediated Bone formation
Nature Materials.
Dec, 2015 |
Pubmed ID: 26366848 The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.
-
-
-
Acceleration of Lung Regeneration by Platelet-Rich Plasma Extract Through the Low-Density Lipoprotein Receptor-Related Protein 5-Tie2 Pathway
American Journal of Respiratory Cell and Molecular Biology.
Jan, 2016 |
Pubmed ID: 26091161 Angiogenesis, the growth of new blood vessels, plays a key role in organ development, homeostasis, and regeneration. The cooperation of multiple angiogenic factors, rather than a single factor, is required for physiological angiogenesis. Recently, we have reported that soluble platelet-rich plasma (PRP) extract, which contains abundant angiopoietin-1 and multiple other angiogenic factors, stimulates angiogenesis and maintains vascular integrity in vitro and in vivo. In this report, we have demonstrated that mouse PRP extract increases phosphorylation levels of the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) and thereby activates angiogenic factor receptor Tie2 in endothelial cells (ECs) and accelerates EC sprouting and lung epithelial cell budding in vitro. PRP extract also increases phosphorylation levels of Tie2 in the mouse lungs and accelerates compensatory lung growth and recovery of exercise capacity after unilateral pneumonectomy in mice, whereas soluble Tie2 receptor or Lrp5 knockdown attenuates the effects of PRP extract. Because human PRP extract is generated from autologous peripheral blood and can be stored at -80°C, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related lung diseases and to the improvement of strategies for lung regeneration.
-
-
-
-
-
Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip
PloS One.
2016 |
Pubmed ID: 26930059 Neurovascular inflammation is a major contributor to many neurological disorders, but modeling these processes in vitro has proven to be difficult. Here, we microengineered a three-dimensional (3D) model of the human blood-brain barrier (BBB) within a microfluidic chip by creating a cylindrical collagen gel containing a central hollow lumen inside a microchannel, culturing primary human brain microvascular endothelial cells on the gel's inner surface, and flowing medium through the lumen. Studies were carried out with the engineered microvessel containing endothelium in the presence or absence of either primary human brain pericytes beneath the endothelium or primary human brain astrocytes within the surrounding collagen gel to explore the ability of this simplified model to identify distinct contributions of these supporting cells to the neuroinflammatory response. This human 3D BBB-on-a-chip exhibited barrier permeability similar to that observed in other in vitro BBB models created with non-human cells, and when stimulated with the inflammatory trigger, tumor necrosis factor-alpha (TNF-α), different secretion profiles for granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed depending on the presence of astrocytes or pericytes. Importantly, the levels of these responses detected in the 3D BBB chip were significantly greater than when the same cells were co-cultured in static Transwell plates. Thus, as G-CSF and IL-6 have been reported to play important roles in neuroprotection and neuroactivation in vivo, this 3D BBB chip potentially offers a new method to study human neurovascular function and inflammation in vitro, and to identify physiological contributions of individual cell types.
-
-
Modeling Hematopoiesis and Responses to Radiation Countermeasures in a Bone Marrow-on-a-Chip
Tissue Engineering. Part C, Methods.
May, 2016 |
Pubmed ID: 26993746 Studies on hematopoiesis currently rely on animal models because in vitro culture methods do not accurately recapitulate complex bone marrow physiology. We recently described a bone marrow-on-a-chip microfluidic device that enables the culture of living hematopoietic bone marrow and mimics radiation toxicity in vitro. In the present study, we used this microdevice to demonstrate continuous blood cell production in vitro and model bone marrow responses to potential radiation countermeasure drugs. The device maintained mouse hematopoietic stem and progenitor cells in normal proportions for at least 2 weeks in culture. Increases in the number of leukocytes and red blood cells into the microfluidic circulation also could be detected over time, and addition of erythropoietin induced a significant increase in erythrocyte production. Exposure of the bone marrow chip to gamma radiation resulted in reduction of leukocyte production, and treatment of the chips with two potential therapeutics, granulocyte-colony stimulating factor or bactericidal/permeability-increasing protein (BPI), induced significant increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow. In contrast, BPI was not found to have any effect when analyzed using static marrow cultures, even though it has been previously shown to accelerate recovery from radiation-induced toxicity in vivo. These findings demonstrate the potential value of the bone marrow-on-a-chip for modeling blood cell production, monitoring responses to hematopoiesis-modulating drugs, and testing radiation countermeasures in vitro.
-
-
Get cutting-edge science videos from JoVE sent straight to your inbox every month.