In JoVE (1)

Other Publications (2)

Articles by Emma Monte in JoVE

 JoVE Medicine

Quantitative Analysis of Chromatin Proteomes in Disease

1Department of Anesthesiology, David Geffen School of Medicine at UCLA, 2Department of Medicine, David Geffen School of Medicine at UCLA, 3Department of Physiology, David Geffen School of Medicine at UCLA, 4Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah

JoVE 4294

Other articles by Emma Monte on PubMed

Conversion of Proteins into Biofuels by Engineering Nitrogen Flux

Nature Biotechnology. Apr, 2011  |  Pubmed ID: 21378968

Biofuels are currently produced from carbohydrates and lipids in feedstock. Proteins, in contrast, have not been used to synthesize fuels because of the difficulties of deaminating protein hydrolysates. Here we apply metabolic engineering to generate Escherichia coli that can deaminate protein hydrolysates, enabling the cells to convert proteins to C4 and C5 alcohols at 56% of the theoretical yield. We accomplish this by introducing three exogenous transamination and deamination cycles, which provide an irreversible metabolic force that drives deamination reactions to completion. We show that Saccharomyces cerevisiae, E. coli, Bacillus subtilis and microalgae can be used as protein sources, producing up to 4,035 mg/l of alcohols from biomass containing ∼22 g/l of amino acids. These results show the feasibility of using proteins for biorefineries, for which high-protein microalgae could be used as a feedstock with a possibility of maximizing algal growth and total CO(2) fixation.

Structural Considerations for Chromatin State Models with Transcription As a Functional Readout

FEBS Letters. Oct, 2012  |  Pubmed ID: 22940112

Lacking from the rapidly evolving field of chromatin regulation is a discrete model of chromatin states. We propose that each state in such a model should meet two conditions: a structural component and a quantifiable effect on transcription. The practical benefits to the field of a model with greater than two states (including one with six states, as described herein) would be to improve interpretation of data from disparate organ systems, to reflect temporal and developmental dynamics and to integrate the, at present, conceptually and experimentally disparate analyses of individual genetic loci (in vitro or using single gene approaches) and genome-wide features (including ChlP-seq, chromosomal capture and mRNA expression via microarrays/sequencing).

simple hit counter