In JoVE (2)

Other Publications (10)

Articles by Fabian Kloosterman in JoVE

Other articles by Fabian Kloosterman on PubMed

Recording and Marking with Silicon Multichannel Electrodes

Brain Research. Brain Research Protocols. Apr, 2002  |  Pubmed ID: 12034331

This protocol describes an implementation of recording and analysis of evoked potentials in the hippocampal cortex, combined with lesioning using multichannel silicon probes. Multichannel recording offers the advantage of capturing a potential field at one instant in time. The potentials are then subjected to current source density (CSD) analysis, to reveal the layer-by-layer current sources and sinks. Signals from each channel of a silicon probe (maximum 16 channels in this study) were amplified and digitized at up to 40 kHz after sample-and-hold circuits. A modular lesion circuit board could be inserted between the input preamplifiers and the silicon probe, such that any one of the 16 electrodes could be connected to a DC lesion current. By making a lesion at the electrode showing a physiological event of interest, the anatomical location of the event can be precisely identified, as shown for the distal dendritic current sink in CA1 following medial perforant path stimulation. Making two discrete lesions through the silicon probe is useful to indicate the degree of tissue shrinkage during histological procedures. In addition, potential/CSD profiles were stable following small movements of the silicon probe, suggesting that the probe did not cause excessive damage to the brain.

Topographical and Laminar Organization of Subicular Projections to the Parahippocampal Region of the Rat

The Journal of Comparative Neurology. Jan, 2003  |  Pubmed ID: 12454982

In this study, we analyzed in detail the topographic organization of the subiculoparahippocampal projection in the rat. The anterograde tracers Phaseolus vulgaris leucoagglutinin-L and biotinylated dextran amine were injected into the subiculum at different septotemporal and transverse levels. Deep layers of the ento-, peri-, and postrhinal cortices are the main recipients of subicular projections, but in all cases we noted that a small fraction of the projections also terminates in the superficial layers II and III. Analysis of the fiber patterns in the parahippocampal region revealed a topographic organization, depending on the location of the cells of origin along both the transverse and the septotemporal axes of the subiculum. Projections originating from subicular cells close to CA1, i.e., proximal part of subiculum, terminate exclusively in the lateral entorhinal cortex and in the perirhinal cortex. In contrast, projections from cells closer to the subiculum-presubiculum border, i.e., distal part of subiculum, terminate in the medial entorhinal cortex and in the postrhinal cortex. In addition, cells in septal portions of the subiculum project to a lateral band of entorhinal cortex parallel to the rhinal sulcus and to peri- or postrhinal cortices, whereas cells in more temporal portions project to more medial parts of the entorhinal cortex. These results indicate that subicular projections to the parahippocampal region precisely reciprocate the known inputs from this region to the hippocampal formation. We thus suggest that the reciprocal connectivity between the subiculum and the parahippocampal region is organized as parallel pathways that serve to segregate information flow and thus maintain the identity of processed information. Although this parallel organization is comparable to that of the CA1-parahippocampal projections, differences exist with respect to the degree of collateralization.

Electrophysiological Characterization of Interlaminar Entorhinal Connections: an Essential Link for Re-entrance in the Hippocampal-entorhinal System

The European Journal of Neuroscience. Dec, 2003  |  Pubmed ID: 14656299

The hippocampal formation communicates with the neocortex mainly through the adjacent entorhinal cortex. Neurons projecting to the hippocampal formation are found in the superficial layers of the entorhinal cortex and are largely segregated from the neurons receiving hippocampal output, which are located in deep entorhinal layers. We studied the communication between deep and superficial entorhinal layers in the anaesthetized rat using field potential recordings, current source density analysis and single unit measurements. We found that subiculum stimulation was able to excite entorhinal neurons in deep layers. This response was followed by current sinks in superficial layers. Both responses were subject to frequency dependent facilitation, but not depression. Selective blockade of deep layer responses also abolished subsequent superficial layer responses. This clearly demonstrates a functional deep-to-superficial layer communication in the entorhinal cortex, which can be triggered by hippocampal output. This pathway may provide a means by which processed hippocampal output is integrated or compared with new incoming information in superficial entorhinal layers, and it constitutes an important link in the process of re-entrance of activity in the hippocampal-entorhinal network, which may be important for consolidation of memories or retaining information for short periods.

Two Reentrant Pathways in the Hippocampal-entorhinal System

Hippocampus. 2004  |  Pubmed ID: 15390170

The entorhinal cortex has long been recognized as an important interface between the hippocampal formation and the neocortex. The notion of bidirectional connections between the entorhinal cortex and the hippocampal formation have led to the suggestion that hippocampal output originating in CA1 and subiculum may reenter hippocampal subfields via the entorhinal cortex. To investigate this, we used simultaneous multi-site field potential recordings and current source density analysis in the entorhinal cortex and hippocampal formation of the rat in vivo. Under ketamine/xylazine anesthesia, we found that repetitive stimulation of subiculum or Schaffer collaterals facilitated entorhinal responses, such that a population spike appeared in layer III. In addition, a current sink in stratum lacunosum-moleculare of area CA1 was found, that followed responses in the entorhinal cortex, indicating reentrance into this area. Responses indicating reentrance in the dentate gyrus were not found under ketamine/xylazine anesthesia, but were readily evoked under urethane anesthesia. Reentrance into CA1 was also encountered under urethane anesthesia. These results suggest that parallel, but possibly functionally distinct, connections are present between the output of the hippocampal formation and cells in layers III and II of the entorhinal cortex that project to area CA1 and the dentate gyrus, respectively.

Physiological Changes in Chronic Epileptic Rats Are Prominent in Superficial Layers of the Medial Entorhinal Area

Epilepsia. 2005  |  Pubmed ID: 15987257

We investigated whether the functional network properties of the medial entorhinal area (MEA) of the entorhinal cortex were altered in a rat model of chronic epilepsy that is characterized by extensive cell loss in MEA layer III.

Presubiculum Stimulation in Vivo Evokes Distinct Oscillations in Superficial and Deep Entorhinal Cortex Layers in Chronic Epileptic Rats

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Sep, 2005  |  Pubmed ID: 16177045

The characteristic cell loss in layer III of the medial entorhinal area (MEA-III) in human mesial temporal lobe epilepsy is reproduced in the rat kainate model of the disease. To understand how this cell loss affects the functional properties of the MEA, we investigated whether projections from the presubiculum (prS), providing a main input to the MEA-III, are altered in this epileptic rat model. Injections of an anterograde tracer in the prS revealed bilateral projection fibers mainly to the MEA-III in both control and chronic epileptic rats. We further examined the prS-MEA circuitry using a 16-channel electrode probe covering the MEA in anesthetized control and chronic epileptic rats. With a second 16-channel probe, we recorded signals in the hippocampus. Current source density analysis indicated that, after prS double-pulse stimulation, afterdischarges in the form of oscillations (20-45 Hz) occurred that were confined to the superficial layers of the MEA in all epileptic rats displaying MEA-III neuronal loss. Slower oscillations (theta range) were occasionally observed in the deep MEA layers and the dentate gyrus. This kind of oscillation was never observed in control rats. We conclude that dynamical changes occur in an extensive network within the temporal lobe in epileptic rats, manifested as different kinds of oscillations, the characteristics of which depend on local properties of particular subareas. These findings emphasize the significance of the entorhinal cortex in temporal lobe epilepsy and suggest that the superficial cell layers could play an important role in distributing oscillatory activity.

Presynaptic GABA(B) Receptors on Glutamatergic Terminals of CA1 Pyramidal Cells Decrease in Efficacy After Partial Hippocampal Kindling

Synapse (New York, N.Y.). Mar, 2006  |  Pubmed ID: 16342056

We tested the hypothesis that presynaptic GABA(B) receptors on glutamatergic terminals (GABA(B) heterosynaptic receptors) decreased in efficacy after partial hippocampal kindling. Rats were implanted with chronically indwelling electrodes and 15 hippocampal afterdischarges were evoked by high-frequency electrical stimulation of hippocampal CA1. Control rats were implanted with electrodes but not given high-frequency stimulations. One to 21 days after the last afterdischarge, excitatory postsynaptic potentials (EPSPs) were recorded in CA1 of hippocampal slices in vitro, following stimulation of the stratum radiatum. Field EPSPs (fEPSPs) were recorded in CA1 stratum radiatum and intracellular EPSPs (iEPSPs) were recorded from CA1 pyramidal cells. GABA(B) receptor agonist +/- baclofen (10 microM) in the bath suppressed the fEPSPs significantly more in control than kindled rats, at 1 or 21 days after kindling. Similarly, baclofen (10 microM) suppressed iEPSPs more in the control than the kindled group of neurons recorded at 1 day after kindling. Suppression of the fEPSPs by 1 microM N(6)-cyclopentyladenosine, which acted on presynaptic A1 receptors, was not different between kindled and control rats. Activation of the GABA(B) heteroreceptors by a conditioning burst stimulation of CA3 afferents suppressed the iEPSPs evoked by a test pulse. The suppression of the iEPSPs at 250-500 ms condition-test interval was larger in control than kindled groups of neurons. It was concluded that the efficacy of presynaptic GABA(B) receptors on the glutamatergic terminals was reduced after partial hippocampal kindling. The reduction in heterosynaptic presynaptic GABA(B) receptor efficacy will increase glutamate release and seizure susceptibility, particularly during repeated neural activity.

Characterizing the Dynamic Frequency Structure of Fast Oscillations in the Rodent Hippocampus

Frontiers in Integrative Neuroscience. 2009  |  Pubmed ID: 19562084

Fast oscillations or "ripples" are found in the local field potential (LFP) of the rodent hippocampus during awake and sleep states. Ripples have been found to correlate with memory related neural processing, however, the functional role of the ripple has yet to be fully established. We applied a Kalman smoother based estimator of instantaneous frequency (iFreq) and frequency modulation (FM) to ripple oscillations recorded in-vivo from region CA1 of the rat and mouse hippocampus during slow wave sleep. We found that (1) ripples exhibit stereotypical frequency dynamics that are consistent in the rat and mouse, (2) instantaneous frequency information may be used as an additional dimension in the classification of ripple events, and (3) the instantaneous frequency structure of ripples may be used to improve the detection of ripple events by reducing Type I and Type II errors. Based on our results, we propose that high temporal and spectral resolution estimates of frequency dynamics may be used to help elucidate the mechanisms of ripple generation and memory related processing.

Hippocampal Replay of Extended Experience

Neuron. Aug, 2009  |  Pubmed ID: 19709631

During pauses in exploration, ensembles of place cells in the rat hippocampus re-express firing sequences corresponding to recent spatial experience. Such "replay" co-occurs with ripple events: short-lasting (approximately 50-120 ms), high-frequency (approximately 200 Hz) oscillations that are associated with increased hippocampal-cortical communication. In previous studies, rats exploring small environments showed replay anchored to the rat's current location and compressed in time into a single ripple event. Here, we show, using a neural decoding approach, that firing sequences corresponding to long runs through a large environment are replayed with high fidelity and that such replay can begin at remote locations on the track. Extended replay proceeds at a characteristic virtual speed of approximately 8 m/s and remains coherent across trains of ripple events. These results suggest that extended replay is composed of chains of shorter subsequences, which may reflect a strategy for the storage and flexible expression of memories of prolonged experience.

Uncovering Spatial Topology Represented by Rat Hippocampal Population Neuronal Codes

Journal of Computational Neuroscience. Feb, 2012  |  Pubmed ID: 22307459

Hippocampal population codes play an important role in representation of spatial environment and spatial navigation. Uncovering the internal representation of hippocampal population codes will help understand neural mechanisms of the hippocampus. For instance, uncovering the patterns represented by rat hippocampus (CA1) pyramidal cells during periods of either navigation or sleep has been an active research topic over the past decades. However, previous approaches to analyze or decode firing patterns of population neurons all assume the knowledge of the place fields, which are estimated from training data a priori. The question still remains unclear how can we extract information from population neuronal responses either without a priori knowledge or in the presence of finite sampling constraint. Finding the answer to this question would leverage our ability to examine the population neuronal codes under different experimental conditions. Using rat hippocampus as a model system, we attempt to uncover the hidden "spatial topology" represented by the hippocampal population codes. We develop a hidden Markov model (HMM) and a variational Bayesian (VB) inference algorithm to achieve this computational goal, and we apply the analysis to extensive simulation and experimental data. Our empirical results show promising direction for discovering structural patterns of ensemble spike activity during periods of active navigation. This study would also provide useful insights for future exploratory data analysis of population neuronal codes during periods of sleep.

simple hit counter