Skip to content
Articles by Ian Diner in JoVE
Other articles by Ian Diner on PubMed
-
Neuron Enriched Nuclear Proteome Isolated from Human Brain
Journal of Proteome Research.
Jul, 2013 |
Pubmed ID: 23768213 The brain consists of diverse cell types including neurons, astrocytes, oligodendrocytes, and microglia. The isolation of nuclei from these distinct cell populations provides an opportunity to identify cell-type-specific nuclear proteins, histone modifications, and regulation networks that are altered with normal brain aging or neurodegenerative disease. In this study, we used a method by which intact neuronal and non-neuronal nuclei were purified from human post-mortem brain employing a modification of fluorescence activated cell sorting (FACS) termed fluorescence activated nuclei sorting (FANS). An antibody against NeuN, a neuron specific splicing factor, was used to isolate neuronal nuclei. Utilizing mass spectrometry (MS) based label-free quantitative proteomics, we identified 1755 proteins from sorted NeuN-positive and negative nuclear extracts. Approximately 20% of these proteins were significantly enriched or depleted in neuronal versus non-neuronal populations. Immunoblots of primary cultured rat neuron, astrocyte, and oligodendrocyte extracts confirmed that distinct members of the major nucleocytoplasmic structural linkage complex (LINC), nesprin-1 and nesprin-3, were differentially enriched in neurons and astrocytes, respectively. These comparative proteomic data sets also reveal a number of transcription and splicing factors that are selectively enriched in a cell-type-specific manner in human brain.
-
U1 Small Nuclear Ribonucleoprotein Complex and RNA Splicing Alterations in Alzheimer's Disease
Proceedings of the National Academy of Sciences of the United States of America.
Oct, 2013 |
Pubmed ID: 24023061 Deposition of insoluble protein aggregates is a hallmark of neurodegenerative diseases. The universal presence of β-amyloid and tau in Alzheimer's disease (AD) has facilitated advancement of the amyloid cascade and tau hypotheses that have dominated AD pathogenesis research and therapeutic development. However, the underlying etiology of the disease remains to be fully elucidated. Here we report a comprehensive study of the human brain-insoluble proteome in AD by mass spectrometry. We identify 4,216 proteins, among which 36 proteins accumulate in the disease, including U1-70K and other U1 small nuclear ribonucleoprotein (U1 snRNP) spliceosome components. Similar accumulations in mild cognitive impairment cases indicate that spliceosome changes occur in early stages of AD. Multiple U1 snRNP subunits form cytoplasmic tangle-like structures in AD but not in other examined neurodegenerative disorders, including Parkinson disease and frontotemporal lobar degeneration. Comparison of RNA from AD and control brains reveals dysregulated RNA processing with accumulation of unspliced RNA species in AD, including myc box-dependent-interacting protein 1, clusterin, and presenilin-1. U1-70K knockdown or antisense oligonucleotide inhibition of U1 snRNP increases the protein level of amyloid precursor protein. Thus, our results demonstrate unique U1 snRNP pathology and implicate abnormal RNA splicing in AD pathogenesis.
-
Aggregates of Small Nuclear Ribonucleic Acids (snRNAs) in Alzheimer's Disease
Brain Pathology (Zurich, Switzerland).
Jul, 2014 |
Pubmed ID: 24571648 We recently discovered that protein components of the ribonucleic acid (RNA) spliceosome form cytoplasmic aggregates in Alzheimer's disease (AD) brain, resulting in widespread changes in RNA splicing. However, the involvement of small nuclear RNAs (snRNAs), also key components of the spliceosome complex, in the pathology of AD remains unknown. Using immunohistochemical staining of post-mortem human brain and spinal cord, we identified cytoplasmic tangle-shaped aggregates of snRNA in both sporadic and familial AD cases but not in aged controls or other neurodegenerative disorders. Immunofluorescence using antibodies reactive with the 2,2,7-trimethylguanosine cap of snRNAs and transmission electron microscopy demonstrated snRNA localization with tau and paired helical filaments, the main component of neurofibrillary tangles. Quantitative real-time polymerase chain reaction (PCR) showed U1 snRNA accumulation in the insoluble fraction of AD brains whereas other U snRNAs were not enriched. In combination with our previous results, these findings demonstrate that aggregates of U1 snRNA and U1 small nuclear ribonucleoproteins represent a new pathological hallmark of AD.
-
Aggregation Properties of the Small Nuclear Ribonucleoprotein U1-70K in Alzheimer Disease
The Journal of Biological Chemistry.
Dec, 2014 |
Pubmed ID: 25355317 Recent evidence indicates that U1-70K and other U1 small nuclear ribonucleoproteins are Sarkosyl-insoluble and associate with Tau neurofibrillary tangles selectively in Alzheimer disease (AD). Currently, the mechanisms underlying the conversion of soluble nuclear U1 small nuclear ribonucleoproteins into insoluble cytoplasmic aggregates remain elusive. Based on the biochemical and subcellular distribution properties of U1-70K in AD, we hypothesized that aggregated U1-70K itself or other biopolymers (e.g. proteins or nucleic acids) interact with and sequester natively folded soluble U1-70K into insoluble aggregates. Here, we demonstrate that total homogenates from AD brain induce soluble U1-70K from control brain or recombinant U1-70K to become Sarkosyl-insoluble. This effect was not dependent on RNA and did not correlate with detergent-insoluble Tau levels as AD homogenates with reduced levels of these components were still capable of inducing U1-70K aggregation. In contrast, proteinase K-treated AD homogenates and Sarkosyl-soluble AD fractions were unable to induce U1-70K aggregation, indicating that aggregated proteins in AD brain are responsible for inducing soluble U1-70K aggregation. It was determined that the C terminus of U1-70K, which harbors two disordered low complexity (LC) domains, is necessary for U1-70K aggregation. Moreover, both LC1 and LC2 domains were sufficient for aggregation. Finally, protein cross-linking and mass spectrometry studies demonstrated that a U1-70K fragment harboring the LC1 domain directly interacts with aggregated U1-70K in AD brain. Our results support a hypothesis that aberrant forms of U1-70K in AD can directly sequester soluble forms of U1-70K into insoluble aggregates.
-
Generation of Clickable Pittsburgh Compound B for the Detection and Capture of β-Amyloid in Alzheimer's Disease Brain
Bioconjugate Chemistry.
Oct, 2017 |
Pubmed ID: 28862836 The benzothiazole-aniline derivative Pittsburgh Compound B (PiB) is the prototypical amyloid affinity probe developed for the in vivo positron emission tomography (PET) detection of amyloid beta (Aβ) deposits in Alzheimer's disease (AD). Specific high-affinity binding sites for PiB have been found to vary among AD cases with comparable Aβ load, and they are virtually absent on human-sequence Aβ deposits in animal models, none of which develop the full phenotype of AD. PiB thus could be an informative probe for studying the pathobiology of Aβ, but little is known about the localization of PiB binding at the molecular or structural level. By functionalizing the 6-hydroxy position of PiB with a PEG3 spacer and a terminal alkyne (propargyl) moiety, we have developed a clickable PiB compound that was derivatized with commercially available azide-labeled fluorophores or affinity-tags using copper-catalyzed azide-alkyne cycloaddition reactions, commonly referred to as "click" chemistry. We have determined that both the clickable PiB derivative and its fluorescently labeled conjugate have low nanomolar binding affinities for synthetic Aβ aggregates. Furthermore, the fluorescent-PiB conjugate can effectively bind Aβ aggregates in human AD brain homogenates and tissue sections. By covalently coupling PiB to magnetic beads, Aβ aggregates were also affinity-captured from AD brain extracts. Thus, the clickable PiB derivative described herein can be used to generate a wide variety of covalent conjugates, with applications including the fluorescence detection of Aβ, the ultrastructural localization of PiB binding, and the affinity capture and structural characterization of Aβ and other cofactors from AD brains.
Get cutting-edge science videos from JoVE sent straight to your inbox every month.