Skip to content
Articles by Jennifer L. Cashdollar in JoVE
Other articles by Jennifer L. Cashdollar on PubMed
-
-
-
-
-
-
Development and Evaluation of EPA Method 1615 for Detection of Enterovirus and Norovirus in Water
Applied and Environmental Microbiology.
Jan, 2013 |
Pubmed ID: 23087037 The U.S. EPA developed a sample concentration and preparation assay in conjunction with the total culturable virus assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule (ICR) promulgated in 1996. In an effort to improve upon this method, the U.S. EPA recently developed Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Method 1615 uses a culturable virus assay with reduced equipment and labor costs compared to the costs associated with the ICR virus method and introduces a new molecular assay for the detection of enteroviruses and noroviruses by reverse transcription-quantitative PCR. In this study, we describe the optimization of several new components of the molecular assay and examine virus recovery from ground, reagent-grade, and surface water samples seeded with poliovirus type 3 and murine norovirus. For the culturable virus and molecular assays, mean poliovirus recovery using the complete method was 58% and 20% in groundwater samples, 122% and 39% using low-titer spikes in reagent-grade water, 42% and 48% using high-titer spikes in reagent-grade water, and 11% and 10% in surface water with high turbidity, respectively. Murine norovirus recovery by the molecular assay was 30% in groundwater samples, less than 8% in both low- and high-titer spikes in reagent-grade water, and 6% in surface water with high turbidity. This study demonstrates the effectiveness of Method 1615 for use with groundwater samples and highlights the need for further research into its effectiveness with surface water.
-
Evaluation of Methods Using Celite to Concentrate Norovirus, Adenovirus and Enterovirus from Wastewater
Journal of Virological Methods.
Oct, 2013 |
Pubmed ID: 23727118 Enteroviruses, noroviruses and adenoviruses are among the most common viruses infecting humans worldwide. These viruses are shed in the feces of infected individuals and can accumulate in wastewater, making wastewater a source of a potentially diverse group of enteric viruses. In this study, two procedures were evaluated to concentrate noroviruses, adenoviruses and enteroviruses from primary effluent of wastewater. In the first procedure, indigenous enteroviruses, noroviruses and adenoviruses were concentrated using celite (diatomaceous earth) followed by centrifugation through a 30K MWCO filter and nucleic acid extraction. The second procedure used celite concentration followed by nucleic acid extraction only. Virus quantities were measured using qPCR. A second set of primary effluent samples were seeded with Coxsackievirus A7, Coxsackievirus B1, poliovirus 1 or enterovirus 70 before concentration and processed through both procedures for recovery evaluation of enterovirus species representatives. The pairing of the single step extraction procedure with the celite concentration process resulted in 47-98% recovery of examined viruses, while the celite concentration process plus additional centrifugal concentration before nucleic acid extraction showed reduced recovery (14-47%). The celite concentration process followed by a large volume nucleic acid extraction technique proved to be an effective procedure for recovering these important human pathogens from wastewater.
-
-
-
The Influence of Incubation Time on Adenovirus Quantitation in A549 Cells by Most Probable Number
Journal of Virological Methods.
Sep, 2016 |
Pubmed ID: 27596270 Cell culture based assays used to detect waterborne viruses typically call for incubating the sample for at least two weeks in order to ensure that all the culturable virus present is detected. Historically, this estimate was based, at least in part, on the length of time used for detecting poliovirus. In this study, we have examined A549 cells infected with human adenovirus type 2, and have found that a three week incubation of virus infected cells results in a higher number of detected viruses by quantal assay than what is seen after two weeks of incubation, with an average 955% increase in Most Probable Number (MPN) from 2 weeks to 3 weeks. This increase suggests that the extended incubation time is essential for accurately estimating viral titer, particularly for slow-growing viruses, UV treated samples, or samples with low titers of virus. In addition, we found that for some UV-treated samples, there was no detectable MPN at 2 weeks, but after 3 weeks, MPN values were obtained. For UV-treated samples, the average increase in MPN from 2 weeks to 3 weeks was 1401%, while untreated samples averaged a change in MPN of 674%, leading us to believe that the UV-damaged viral DNA may be able to be repaired such that viral replication then occurs.
Get cutting-edge science videos from JoVE sent straight to your inbox every month.