In JoVE (1)

Other Publications (6)

Articles by Joanna C. Chiu in JoVE

Other articles by Joanna C. Chiu on PubMed

Phylogenetic and Expression Analysis of the Glutamate-receptor-like Gene Family in Arabidopsis Thaliana

Molecular Biology and Evolution. Jul, 2002  |  Pubmed ID: 12082126

The ionotropic glutamate receptor (iGluR) gene family has been widely studied in animals and is determined to be important in excitatory neurotransmission and other neuronal processes. We have previously identified ionotropic glutamate receptor-like genes (GLRs) in Arabidopsis thaliana, an organism that lacks a nervous system. Upon the completion of the Arabidopsis genome sequencing project, a large family of GLR genes has been uncovered. A preliminary phylogenetic analysis divides the AtGLR gene family into three clades and is used as the basis for the recently established nomenclature for the AtGLR gene family. We performed a phylogenetic analysis with extensive annotations of the iGluR gene family, which includes all 20 Arabidopsis GLR genes, the entire iGluR family from rat (except NR3), and two prokaryotic iGluRs, Synechocystis GluR0 and Anabaena GluR. Our analysis supports the division of the AtGLR gene family into three clades and identifies potential functionally important amino acid residues that are conserved in both prokaryotic and eukaryotic iGluRs as well as those that are only conserved in AtGLRs. To begin to investigate whether the three AtGLR clades represent different functional classes, we performed the first comprehensive mRNA expression analysis of the entire AtGLR gene family. On the basis of RT-PCR, all AtGLRs are expressed genes. The three AtGLR clades do not show distinct clade-specific organ expression patterns. All 20 AtGLR genes are expressed in the root. Among them, five of the nine clade-II genes are root-specific in 8-week-old Arabidopsis plants.

OrthologID: Automation of Genome-scale Ortholog Identification Within a Parsimony Framework

Bioinformatics (Oxford, England). Mar, 2006  |  Pubmed ID: 16410324

The determination of gene orthology is a prerequisite for mining and utilizing the rapidly increasing amount of sequence data for genome-scale phylogenetics and comparative genomic studies. Until now, most researchers use pairwise distance comparisons algorithms, such as BLAST, COG, RBH, RSD and INPARANOID, to determine gene orthology. In contrast, orthology determination within a character-based phylogenetic framework has not been utilized on a genomic scale owing to the lack of efficiency and automation.

The Phospho-occupancy of an Atypical SLIMB-binding Site on PERIOD That is Phosphorylated by DOUBLETIME Controls the Pace of the Clock

Genes & Development. Jul, 2008  |  Pubmed ID: 18593878

A common feature of animal circadian clocks is the progressive phosphorylation of PERIOD (PER) proteins, which is highly dependent on casein kinase Idelta/epsilon (CKIdelta/epsilon; termed DOUBLETIME [DBT] in Drosophila) and ultimately leads to the rapid degradation of hyperphosphorylated isoforms via a mechanism involving the F-box protein, beta-TrCP (SLIMB in Drosophila). Here we use the Drosophila melanogaster model system, and show that a key step in controlling the speed of the clock is phosphorylation of an N-terminal Ser (S47) by DBT, which collaborates with other nearby phosphorylated residues to generate a high-affinity atypical SLIMB-binding site on PER. DBT-dependent increases in the phospho-occupancy of S47 are temporally gated, dependent on the centrally located DBT docking site on PER and partially counterbalanced by protein phosphatase activity. We propose that the gradual DBT-mediated phosphorylation of a nonconsensus SLIMB-binding site establishes a temporal threshold for when in a daily cycle the majority of PER proteins are tagged for rapid degradation. Surprisingly, most of the hyperphosphorylation is unrelated to direct effects on PER stability. We also use mass spectrometry to map phosphorylation sites on PER, leading to the identification of a number of "phospho-clusters" that explain several of the classic per mutants.

Gene Orthology Assessment with OrthologID

Methods in Molecular Biology (Clifton, N.J.). 2009  |  Pubmed ID: 19378138

OrthologID ( allows for the rapid and accurate identification of gene orthology within a character-based phylogenetic framework. The Web application has two functions - an orthologous group search and a query orthology classification. The former determines orthologous gene sets for complete genomes and identifies diagnostic characters that define each orthologous gene set; and the latter allows for the classification of unknown query sequences to orthology groups. The first module of the Web application, the gene family generator, uses an E-value based approach to sort genes into gene families. An alignment constructor then aligns members of gene families and the resulting gene family alignments are submitted to the tree builder to obtain gene family guide trees. Finally, the diagnostics generator extracts diagnostic characters from guide trees and these diagnostics are used to determine gene orthology for query sequences.

NEMO/NLK Phosphorylates PERIOD to Initiate a Time-delay Phosphorylation Circuit That Sets Circadian Clock Speed

Cell. Apr, 2011  |  Pubmed ID: 21514639

The speed of circadian clocks in animals is tightly linked to complex phosphorylation programs that drive daily cycles in the levels of PERIOD (PER) proteins. Using Drosophila, we identify a time-delay circuit based on hierarchical phosphorylation that controls the daily downswing in PER abundance. Phosphorylation by the NEMO/NLK kinase at the "per-short" domain on PER stimulates phosphorylation by DOUBLETIME (DBT/CK1δ/ɛ) at several nearby sites. This multisite phosphorylation operates in a spatially oriented and graded manner to delay progressive phosphorylation by DBT at other more distal sites on PER, including those required for recognition by the F box protein SLIMB/β-TrCP and proteasomal degradation. Highly phosphorylated PER has a more open structure, suggesting that progressive increases in global phosphorylation contribute to the timing mechanism by slowly increasing PER susceptibility to degradation. Our findings identify NEMO as a clock kinase and demonstrate that long-range interactions between functionally distinct phospho-clusters collaborate to set clock speed.

A Functional Phylogenomic View of the Seed Plants

PLoS Genetics. Dec, 2011  |  Pubmed ID: 22194700

A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.

simple hit counter