In JoVE (1)

Other Publications (4)

Articles by Kevin H. Lin in JoVE

 JoVE Bioengineering

An In Vitro Organ Culture Model of the Murine Intervertebral Disc

1Department of Biomedical Engineering, Washington University in St. Louis, 2Department of Biology, Washington University in St. Louis, 3Department of Orthopaedic Surgery, Washington University in St. Louis, 4Department of Materials Science and Mechanical Engineering, Washington University in St. Louis


JoVE 55437

Other articles by Kevin H. Lin on PubMed

RAS Signaling Promotes Resistance to JAK Inhibitors by Suppressing BAD-mediated Apoptosis

Science Signaling. Dec, 2014  |  Pubmed ID: 25538080

Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2(V617F) mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2(V617F) hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal-regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2(V617F) cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2(V617F) mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.

Vertical Suppression of the EGFR Pathway Prevents Onset of Resistance in Colorectal Cancers

Nature Communications. Sep, 2015  |  Pubmed ID: 26392303

Molecular targeted drugs are clinically effective anti-cancer therapies. However, tumours treated with single agents usually develop resistance. Here we use colorectal cancer (CRC) as a model to study how the acquisition of resistance to EGFR-targeted therapies can be restrained. Pathway-oriented genetic screens reveal that CRC cells escape from EGFR blockade by downstream activation of RAS-MEK signalling. Following treatment of CRC cells with anti-EGFR, anti-MEK or the combination of the two drugs, we find that EGFR blockade alone triggers acquired resistance in weeks, while combinatorial treatment does not induce resistance. In patient-derived xenografts, EGFR-MEK combination prevents the development of resistance. We employ mathematical modelling to provide a quantitative understanding of the dynamics of response and resistance to these single and combination therapies. Mechanistically, we find that the EGFR-MEK Combo blockade triggers Bcl-2 and Mcl-1 downregulation and initiates apoptosis. These results provide the rationale for clinical trials aimed at preventing rather than intercepting resistance.

Targeting MCL-1/BCL-XL Forestalls the Acquisition of Resistance to ABT-199 in Acute Myeloid Leukemia

Scientific Reports. Jun, 2016  |  Pubmed ID: 27283158

ABT-199, a potent and selective small-molecule antagonist of BCL-2, is being clinically vetted as pharmacotherapy for the treatment of acute myeloid leukemia (AML). However, given that prolonged monotherapy tends to beget resistance, we sought to investigate the means by which resistance to ABT-199 might arise in AML and the extent to which those mechanisms might be preempted. Here we used a pathway-activating genetic screen to nominate MCL-1 and BCL-XL as potential nodes of resistance. We then characterized a panel of ABT-199-resistant myeloid leukemia cell lines derived through chronic exposure to ABT-199 and found that acquired drug resistance is indeed driven by the upregulation of MCL-1 and BCL-XL. By targeting MCL-1 and BCL-XL, resistant AML cell lines could be resensitized to ABT-199. Further, preemptively targeting MCL-1 and/or BCL-XL alongside administration of ABT-199 was capable of delaying or forestalling the acquisition of drug resistance. Collectively, these data suggest that in AML, (1) the selection of initial therapy dynamically templates the landscape of acquired resistance via modulation of MCL-1/BCL-XL and (2) appropriate selection of initial therapy may delay or altogether forestall the acquisition of resistance to ABT-199.

A Novel Technique for the Contrast-enhanced MicroCT Imaging of Murine Intervertebral Discs

Journal of the Mechanical Behavior of Biomedical Materials. Oct, 2016  |  Pubmed ID: 27341292

Disc degeneration is one of the leading factors that contribute to low back pain. Thus, the further understanding of the mechanisms contributing to degeneration of the intervertebral disc degeneration is critical for the development of therapies and strategies for treating low back pain. Rodent models are attractive for conducting mechanistic studies particularly because of the availability of genetically modified animals. However, current imaging technologies such as magnetic resonance imaging, do not have the ability to resolve spatial features at the tens- to single- micrometer scale. We propose here a contrast-enhanced microCT technique to conduct high-resolution imaging of the rodent intervertebral discs at 10┬Ám spatial resolution. Based on the iodinated-hydrophilic contrast agent Ioversol, we are able to conduct high resolution imaging on rat and mouse intervertebral discs. Leveraging the hydrophilic characteristic of the contrast agent, we are able to discriminate the annulus fibrosus from the water-rich nucleus pulposus. Moreover, this technique allows for the quantitative measurement of disc morphologies and volumes, and we demonstrate the versatility of this technique on cultured live intervertebral discs. Coupled with our semi-automated segmentation technique, we are able to quantify the intervertebral disc volumes with a high degree of reproducibility. The contrast-enhanced microCT images were qualitatively and quantitatively indistinguishable from the traditional histological assessment of the same sample. Furthermore, stereological measures compared well between histology and microCT images. Taken together, the results reveal that rat and mouse intervertebral discs can be imaged longitudinally in vitro at high resolutions, with no adverse effects on viability and features of the intervertebral disc.

Waiting
simple hit counter