In JoVE (1)

Other Publications (7)

Articles by Kristin A. Knouse in JoVE

 JoVE Genetics

Detection of Copy Number Alterations Using Single Cell Sequencing

1Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, 2Howard Hughes Medical Institute, 3Division of Health Sciences and Technology, Harvard Medical School, 4The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 5BioMicro Center, Department of Biology, Massachusetts Institute of Technology


JoVE 55143

Other articles by Kristin A. Knouse on PubMed

TGFbeta-stimulated Smad1/5 Phosphorylation Requires the ALK5 L45 Loop and Mediates the Pro-migratory TGFbeta Switch

The EMBO Journal. Jan, 2009  |  Pubmed ID: 19096363

During the course of breast cancer progression, normally dormant tumour-promoting effects of transforming growth factor beta (TGFbeta), including migration, invasion, and metastasis are unmasked. In an effort to identify mechanisms that regulate the pro-migratory TGFbeta 'switch' in mammary epithelial cells in vitro, we found that TGFbeta stimulates the phosphorylation of Smad1 and Smad5, which are typically associated with bone morphogenetic protein signalling. Mechanistically, this phosphorylation event requires the kinase activity and, unexpectedly, the L45 loop motif of the type I TGFbeta receptor, ALK5, as evidenced by studies using short hairpin RNA-resistant ALK5 mutants in ALK5-depleted cells and in vitro kinase assays. Functionally, Smad1/5 co-depletion studies demonstrate that this phosphorylation event is essential to the initiation and promotion of TGFbeta-stimulated migration. Moreover, this phosphorylation event is preferentially detected in permissive environments such as those created by tumorigenic cells or oncogene activation. Taken together, our data provide evidence that TGFbeta-stimulated Smad1/5 phosphorylation, which occurs through a non-canonical mechanism that challenges the notion of selective Smad phosphorylation by ALK5, mediates the pro-migratory TGFbeta switch in mammary epithelial cells.

The Many Sides of CIN

Nature Reviews. Molecular Cell Biology. Oct, 2013  |  Pubmed ID: 24061225

Single Cell Sequencing Reveals Low Levels of Aneuploidy Across Mammalian Tissues

Proceedings of the National Academy of Sciences of the United States of America. Sep, 2014  |  Pubmed ID: 25197050

Whole-chromosome copy number alterations, also known as aneuploidy, are associated with adverse consequences in most cells and organisms. However, high frequencies of aneuploidy have been reported to occur naturally in the mammalian liver and brain, fueling speculation that aneuploidy provides a selective advantage in these organs. To explore this paradox, we used single cell sequencing to obtain a genome-wide, high-resolution assessment of chromosome copy number alterations in mouse and human tissues. We find that aneuploidy occurs much less frequently in the liver and brain than previously reported and is no more prevalent in these tissues than in skin. Our results highlight the rarity of chromosome copy number alterations across mammalian tissues and argue against a positive role for aneuploidy in organ function. Cancer is therefore the only known example, in mammals, of altering karyotype for functional adaptation.

Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

G3 (Bethesda, Md.). Mar, 2015  |  Pubmed ID: 25740935

The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have higher transposon density (25%-50%) than euchromatic reference regions (3%-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% versus 11%-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 versus 8.4-8.8 genes per block), indicating higher rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.

Cell Biology: the Micronucleus Gets Its Big Break

Nature. Jun, 2015  |  Pubmed ID: 26017308

Assessment of Megabase-scale Somatic Copy Number Variation Using Single-cell Sequencing

Genome Research. Mar, 2016  |  Pubmed ID: 26772196

Megabase-scale copy number variants (CNVs) can have profound phenotypic consequences. Germline CNVs of this magnitude are associated with disease and experience negative selection. However, it is unknown whether organismal function requires that every cell maintain a balanced genome. It is possible that large somatic CNVs are tolerated or even positively selected. Single-cell sequencing is a useful tool for assessing somatic genomic heterogeneity, but its performance in CNV detection has not been rigorously tested. Here, we develop an approach that allows for reliable detection of megabase-scale CNVs in single somatic cells. We discover large CNVs in 8%-9% of cells across tissues and identify two recurrent CNVs. We conclude that large CNVs can be tolerated in subpopulations of cells, and particular CNVs are relatively prevalent within and across individuals.

Aneuploidy Impairs Hematopoietic Stem Cell Fitness and is Selected Against in Regenerating Tissues in Vivo

Genes & Development. Jun, 2016  |  Pubmed ID: 27313317

Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells.

Waiting
simple hit counter