In JoVE (1)

Other Publications (7)

Articles by Lena J. Heung in JoVE

Other articles by Lena J. Heung on PubMed

The Sphingolipid Pathway Regulates Pkc1 Through the Formation of Diacylglycerol in Cryptococcus Neoformans

The Journal of Biological Chemistry. May, 2004  |  Pubmed ID: 15014071

The sphingolipid biosynthetic pathway generates bioactive molecules crucial to the regulation of mammalian and fungal physiological and pathobiological processes. In previous studies (Luberto, C., Toffaletti, D. L., Wills, E. A., Tucker, S. C., Casadevall, A., Perfect, J. R., Hannun, Y. A., and Del Poeta, M. (2001) Genes Dev. 15, 201-212), we demonstrated that an enzyme of the fungal sphingolipid pathway, Ipc1 (inositol-phosphorylceramide synthase-1), regulates melanin, a pigment required for the pathogenic fungus Cryptococcus neoformans to cause disease. In this study, we investigated the mechanism by which Ipc1 regulates melanin production. Because Ipc1 also catalyzes the production of diacylglycerol (DAG), a physiological activator of the classical and novel isoforms of mammalian protein kinase C (PKC), and because it has been suggested that PKC is required for melanogenesis in mammalian cells, we investigated whether Ipc1 regulates melanin in C. neoformans through the production of DAG and the subsequent activation of Pkc1, the fungal homolog of mammalian PKC. The results show that modulation of Ipc1 regulates the levels of DAG in C. neoformans cells. Next, we demonstrated that C. neoformans Pkc1 is a DAG-activated serine/threonine kinase and that the C1 domain of Pkc1 is necessary for this activation. Finally, through both pharmacological and genetic approaches, we found that inhibition of Pkc1 abolishes melanin formation in C. neoformans. This study identifies a novel signaling pathway in which C. neoformans Ipc1 plays a key role in the activation of Pkc1 through the formation of DAG. Importantly, this pathway is essential for melanin production with implications for the pathogenicity of C. neoformans.

Unlocking the DEAD-box: a Key to Cryptococcal Virulence?

The Journal of Clinical Investigation. Mar, 2005  |  Pubmed ID: 15765144

The DEAD-box RNA helicases are enzymes involved in many critical aspects of RNA metabolism within both eukaryotic and prokaryotic organisms. Several studies have shown that these proteins may have important functions in mediating microbial pathogenesis. A new study in this issue of the JCI identifies the first DEAD-box RNA helicase in the pathogenic fungus Cryptococcus neoformans and proposes novel roles for this family of proteins in the development and progression of cryptococcosis.

The Role and Mechanism of Diacylglycerol-protein Kinase C1 Signaling in Melanogenesis by Cryptococcus Neoformans

The Journal of Biological Chemistry. Aug, 2005  |  Pubmed ID: 15946943

The fungus Cryptococcus neoformans is an opportunistic human pathogen that causes a life-threatening meningoencephalitis by expression of virulence factors such as melanin, a black pigment produced by the cell wall-associated enzyme laccase. In previous studies (Heung, L. J., Luberto, C., Plowden, A., Hannun, Y. A., and Del Poeta, M. (2004) J. Biol. Chem. 279, 21144-21153) we proposed that the sphingolipid enzyme inositol-phosphoryl ceramide synthase 1 (Ipc1) regulates melanin production through the generation of diacylglycerol (DAG), which was found to activate in vitro protein kinase C1 (Pkc1). Here, we investigated the molecular mechanisms by which DAG regulates Pkc1 in vivo and the effect of this regulation on laccase activity and melanin synthesis. To this end we deleted the putative DAG binding C1 domain of C. neoformans Pkc1 and found that the C1 deletion abolished the activation of Pkc1 by DAG. Deletion of the C1 domain repressed laccase activity and, consequently, melanin production. Finally, we show that these biological effects observed in the C1 deletion mutant are mediated by alteration of cell wall integrity and displacement of laccase from the cell wall. These studies define novel molecular mechanisms addressing Pkc1-laccase regulation by the sphingolipid pathway of C. neoformans, with important implications for understanding and targeting the Ipc1-Pkc1-laccase cascade as a regulator of virulence of this important human pathogen.

Role of Sphingolipids in Microbial Pathogenesis

Infection and Immunity. Jan, 2006  |  Pubmed ID: 16368954

Compartment-specific and Sequential Role of MyD88 and CARD9 in Chemokine Induction and Innate Defense During Respiratory Fungal Infection

PLoS Pathogens. Jan, 2015  |  Pubmed ID: 25621893

Aspergillus fumigatus forms ubiquitous airborne conidia that humans inhale on a daily basis. Although respiratory fungal infection activates the adaptor proteins CARD9 and MyD88 via C-type lectin, Toll-like, and interleukin-1 family receptor signals, defining the temporal and spatial pattern of MyD88- and CARD9-coupled signals in immune activation and fungal clearance has been difficult to achieve. Herein, we demonstrate that MyD88 and CARD9 act in two discrete phases and in two cellular compartments to direct chemokine- and neutrophil-dependent host defense. The first phase depends on MyD88 signaling because genetic deletion of MyD88 leads to delayed induction of the neutrophil chemokines CXCL1 and CXCL5, delayed neutrophil lung trafficking, and fatal pulmonary damage at the onset of respiratory fungal infection. MyD88 expression in lung epithelial cells restores rapid chemokine induction and neutrophil recruitment via interleukin-1 receptor signaling. Exogenous CXCL1 administration reverses murine mortality in MyD88-deficient mice. The second phase depends predominately on CARD9 signaling because genetic deletion of CARD9 in radiosensitive hematopoietic cells interrupts CXCL1 and CXCL2 production and lung neutrophil recruitment beyond the initial MyD88-dependent phase. Using a CXCL2 reporter mouse, we show that lung-infiltrating neutrophils represent the major cellular source of CXCL2 during CARD9-dependent recruitment. Although neutrophil-intrinsic MyD88 and CARD9 function are dispensable for neutrophil conidial uptake and killing in the lung, global deletion of both adaptor proteins triggers rapidly progressive invasive disease when mice are challenged with an inoculum that is sub-lethal for single adapter protein knockout mice. Our findings demonstrate that distinct signal transduction pathways in the respiratory epithelium and hematopoietic compartment partially overlap to ensure optimal chemokine induction, neutrophil recruitment, and fungal clearance within the respiratory tract.

Deploying FLAREs to Visualize Functional Outcomes of Host-Pathogen Encounters

PLoS Pathogens. Jul, 2015  |  Pubmed ID: 26158781

DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus Neoformans

Infection and Immunity. Jun, 2016  |  Pubmed ID: 27068093

Cryptococcus neoformans is an opportunistic fungal pathogen that is inhaled into the lungs and can lead to life-threatening meningoencephalitis in immunocompromised patients. Currently, the molecular mechanisms that regulate the mammalian immune response to respiratory cryptococcal challenge remain poorly defined. DAP12, a signaling adapter for multiple pattern recognition receptors in myeloid and natural killer (NK) cells, has been shown to play both activating and inhibitory roles during lung infections by different bacteria and fungi. In this study, we demonstrate that DAP12 plays an important inhibitory role in the immune response to C. neoformans Infectious outcomes in DAP12(-/-) mice, including survival and lung fungal burden, are significantly improved compared to those in C57BL/6 wild-type (WT) mice. We find that eosinophils and macrophages are decreased while NK cells are increased in the lungs of infected DAP12(-/-) mice. In contrast to WT NK cells, DAP12(-/-) NK cells are able to repress C. neoformans growth in vitro Additionally, DAP12(-/-) macrophages are more highly activated than WT macrophages, with increased production of tumor necrosis factor (TNF) and CCL5/RANTES and more efficient uptake and killing of C. neoformans These findings suggest that DAP12 acts as a brake on the pulmonary immune response to C. neoformans by promoting pulmonary eosinophilia and by inhibiting the activation and antifungal activities of effector cells, including NK cells and macrophages.

Waiting
simple hit counter