In JoVE (1)

Other Publications (4)

Articles by Malena E. Skogman in JoVE

Other articles by Malena E. Skogman on PubMed

Evaluation of Antibacterial and Anti-biofilm Activities of Cinchona Alkaloid Derivatives Against Staphylococcus Aureus

Natural Product Communications. Sep, 2012  |  Pubmed ID: 23074900

Bacterial biofilms are resistant to most of the commonly available antibacterial chemotherapies. Thus, an enormous need exists to meet the demands of effective anti-biofilm therapy. In this study, a small library of cinchona alkaloids, including the naturally occurring compounds cinchonidine and cinchonine, as well as various synthetic derivatives and analogues was screened for antibacterial and anti-biofilm activity against the Staphylococcus aureus biofilm producing strain ATCC 25923. Two methods were used to evaluate activity against biofilms, namely crystal violet staining to measure biomass and resazurin assay to measure biofilms viability. Cinchonidine was found to be inactive, whereas a synthetic derivative, 11-triphenylsilyl-10,11-dihydrocinchonidine (11-TPSCD), was effective against planktonic bacteria as well as in preventing biofilm formation at low micromolar concentrations. Higher concentrations were required to eradicate mature biofilms.

New Derivatives of Dehydroabietic Acid Target Planktonic and Biofilm Bacteria in Staphylococcus Aureus and Effectively Disrupt Bacterial Membrane Integrity

European Journal of Medicinal Chemistry. Sep, 2015  |  Pubmed ID: 26241878

The combination of the dehydroabietic acid scaffold with different amino acids resulted in the discovery of a new class of hybrid compounds that targets both planktonic and biofilms bacteria in Staphylococcus aureus strains and are far more potent anti-biofilm agents than conventional antibiotics. Unlike dehydroabietic acid, these compounds can disrupt biofilms within a short time period and compromise the integrity of the bacterial membrane. Two of the compounds identified in our study are the most potent abietane-type anti-biofilm agents reported so far and display robust activity against pre-formed biofilms at concentrations only 3-6-fold higher than those required to inhibit biofilm formation. Their easy preparation based on proteolysis-resistant d- and unusual amino acids makes them useful chemical probes to gain a deeper understanding of bacterial biofilms and outstanding candidates for further development into new drugs to fight infections.

Bioactive Glass Combined with Bisphosphonates Provides Protection Against Biofilms Formed by the Periodontal Pathogen Aggregatibacter Actinomycetemcomitans

International Journal of Pharmaceutics. Mar, 2016  |  Pubmed ID: 26854428

Biofilms play a pivotal role in the progression of periodontitis and they can be treated with antiseptics (i.e. chlorhexidine) or antibiotics, but these therapeutic alternatives are unable of ameliorating periodontal alveolar bone loss, which has been, on the other hand, successfully treated with bone-preserving agents. The improved bone formation achieved in animal models by the combination of two such agents: bioactive glass (BAG) and bisphosphonates has attracted the interest for further exploring dental applications. However, the antimicrobial effects that may result from combining them have not been yet investigated. Here, our aim was to explore the anti-biofilm effects that could result from combining BAG with bisphosphonates, particularly in a dental biofilm model. The experiments were performed with an oral cavity single-specie (Aggregatibacter actinomycetemcomitans) biofilm assay, which was optimized in this contribution. Risedronate displayed an intrinsic anti-biofilm effect, and all bisphosphonates, except clodronate, reduced biofilm formation when combined with BAG. In particular, the anti-biofilm activity of risedronate was significantly increased by the combination with BAG. Since it has been proposed that some of the antimicrobial effects of BAG are caused by local pH changes, studies of pH variations were performed to gain a mechanistic understanding. However, the observed anti-biofilm effects could not be explained with lowered pHs. Overall, these results do provide further support for the promising use of bisphosphonate-BAG combinations in dental applications. These findings are particularly relevant for patients undergoing cancer chemotherapy, or osteoporotic patients, which are known to be more vulnerable to periodontitis. In such cases, bisphosphonate treatment could play a double positive effect: local treatment of periodontitis (in combination with BAG) and systemic treatment of osteoporosis, prevention of hypercalcemia and metastases.

Flavones As Quorum Sensing Inhibitors Identified by a Newly Optimized Screening Platform Using Chromobacterium Violaceum As Reporter Bacteria

Molecules (Basel, Switzerland). Sep, 2016  |  Pubmed ID: 27626397

Quorum sensing (QS) is the process by which bacteria produce and detect signal molecules to coordinate their collective behavior. This intercellular communication is a relevant target for anti-biofilm therapies. Here we have optimized a screening-applicable assay to search for new quorum sensing inhibitors from natural compound libraries. In this system, QS is correlated with the production of violacein, which is directly controlled by the LuxI/LuxR system in Chromobacterium violaceum ATCC 31532. The parallel use of C. violaceum Tn5-mutant CV026, which depends on auto-inducer addition, allows simultaneous discrimination of compounds that act as quenchers of the AHL signal (quorum quenchers). The incorporation of a redox stain into the platform allowed further distinction between QS inhibitors, quorum quenchers and antibacterial compounds. A pilot screening was performed with 465 natural and synthetic flavonoids. All the most active compounds were flavones and they displayed potencies (IC50) in the range of 3.69 to 23.35 μM. These leads were particularly promising as they inhibited the transition from microcolonies into mature biofilms from Escherichia coli and Pseudomonas aeruginosa strains. This approach can be very effective in identifying new antimicrobials posing lesser risks of resistance.

simple hit counter