In JoVE (1)

Other Publications (13)

Articles by Mauricio A. Martins in JoVE

Other articles by Mauricio A. Martins on PubMed

Sm21.6 a Novel EF-hand Family Protein Member Located on the Surface of Schistosoma Mansoni Adult Worm That Failed to Induce Protection Against Challenge Infection but Reduced Liver Pathology

Vaccine. Jun, 2009  |  Pubmed ID: 19409948

Schistosomiasis continues to be a significant public health problem that affects 200 million people worldwide. This is one of the most important parasitic diseases, and one whose effective control is unlikely in the absence of a vaccine. In this study, we have isolated a cDNA clone encoding the Schistosoma mansoni Sm21.6 protein that has 45% and 44% identity with Sm22.6 and Sj21.7 EF-hand containing antigens, respectively. Confocal microscopy analysis revealed that Sm21.6 is a membrane-associated protein localized on the S. mansoni adult worm. Mouse immunization with rSm21.6 induced a mixed Th1/Th2 cytokine profile and no protection against infection. However, vaccination with rSm21.6 reduced by 28% of liver granuloma numbers, 21% of granuloma area and 34% of fibrosis. Finally, rSm21.6 was recognized by sera from individuals resistant to reinfection compared with patients susceptible to reinfection and this molecule should be further studied as potential biomarker for disease resistance. In conclusion, Sm21.6 is a new tegument protein from S. mansoni that plays an important role in reducing pathology induced by parasite infection.

Gag- and Nef-specific CD4+ T Cells Recognize and Inhibit SIV Replication in Infected Macrophages Early After Infection

Proceedings of the National Academy of Sciences of the United States of America. Jun, 2009  |  Pubmed ID: 19478057

The precise immunological role played by CD4(+) T cells in retroviral infections is poorly defined. Here, we describe a new function of these cells, the elimination of retrovirus-infected macrophages. After experimental CD8(+) cell depletion, elite controlling macaques with set-point viral loads < or = 500 viral RNA copies/mL mounted robust Gag- and Nef-specific CD4(+) T cell responses during reestablishment of control with > or = 54% of all virus-specific CD4(+) T cells targeting these 2 proteins. Ex vivo, these simian immunodeficiency virus (SIV)-specific CD4(+) T cells neither recognized nor suppressed viral replication in SIV-infected CD4(+) T cells. In contrast, they recognized SIV-infected macrophages as early as 2 h postinfection because of presentation of epitopes derived from virion-associated Gag and Nef proteins. Furthermore, virus-specific CD4(+) T cells displayed direct effector function and eliminated SIV-infected macrophages. These results suggest that retrovirus-specific CD4(+) T cells may contribute directly to elite control by inhibiting viral replication in macrophages.

Recombinant Yellow Fever Vaccine Virus 17D Expressing Simian Immunodeficiency Virus SIVmac239 Gag Induces SIV-specific CD8+ T-cell Responses in Rhesus Macaques

Journal of Virology. Apr, 2010  |  Pubmed ID: 20089645

Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.

T-cell Correlates of Vaccine Efficacy After a Heterologous Simian Immunodeficiency Virus Challenge

Journal of Virology. May, 2010  |  Pubmed ID: 20164222

Determining the "correlates of protection" is one of the challenges in human immunodeficiency virus vaccine design. To date, T-cell-based AIDS vaccines have been evaluated with validated techniques that measure the number of CD8(+) T cells in the blood that secrete cytokines, mainly gamma interferon (IFN-gamma), in response to synthetic peptides. Despite providing accurate and reproducible measurements of immunogenicity, these methods do not directly assess antiviral function and thus may not identify protective CD8(+) T-cell responses. To better understand the correlates of vaccine efficacy, we analyzed the immune responses elicited by a successful T-cell-based vaccine against a heterologous simian immunodeficiency virus challenge. We searched for correlates of protection using a viral suppression assay (VSA) and an IFN-gamma enzyme-linked immunospot assay. While the VSA measured in vitro suppression, it did not predict the outcome of the vaccine trial. However, we found several aspects of the vaccine-induced T-cell response that were associated with improved outcome after challenge. Of note, broad vaccine-induced prechallenge T-cell responses directed against Gag and Vif correlated with lower viral loads and higher CD4(+) lymphocyte counts. These results may be relevant for the development of T-cell-based AIDS vaccines since they indicate that broad epitope-specific repertoires elicited by vaccination might serve as a correlate of vaccine efficacy. Furthermore, the present study demonstrates that certain viral proteins may be more effective than others as vaccine immunogens.

CD8+ Gamma-delta TCR+ and CD4+ T Cells Produce IFN-γ at 5-7 Days After Yellow Fever Vaccination in Indian Rhesus Macaques, Before the Induction of Classical Antigen-specific T Cell Responses

Vaccine. Nov, 2010  |  Pubmed ID: 20939995

The yellow fever 17D (YF-17D) vaccine is one of the most efficacious vaccines developed to date. Interestingly, vaccination with YF-17D induces IFN-γ production early after vaccination (days 5-7) before the development of classical antigen-specific CD8(+) and CD4(+) T cell responses. Here we investigated the cellular source of this early IFN-γ production. At days 5 and 7 post-vaccination activated CD8(+) gamma-delta TCR T cells produced IFN-γ and TNF-α. Activated CD4(+) T cells produced IFN-γ and TNF-α at day 7 post-vaccination. This early IFN-γ production was also induced after vaccination with recombinant YF-17D (rYF-17D), but was not observed after recombinant Adenovirus type 5 (rAd5) vaccination. Early IFN-γ production, therefore, might be an important aspect of yellow fever vaccination.

GagCM9-specific CD8+ T Cells Expressing Limited Public TCR Clonotypes Do Not Suppress SIV Replication in Vivo

PloS One. 2011  |  Pubmed ID: 21887264

Several lines of evidence suggest that HIV/SIV-specific CD8(+) T cells play a critical role in the control of viral replication. Recently we observed high levels of viremia in Indian rhesus macaques vaccinated with a segment of SIVmac239 Gag (Gag(45-269)) that were subsequently infected with SIVsmE660. These seven Mamu-A*01(+) animals developed CD8(+) T cell responses against an immunodominant epitope in Gag, GagCM9, yet failed to control virus replication. We carried out a series of immunological and virological assays to understand why these Gag-specific CD8(+) T cells could not control virus replication in vivo. GagCM9-specific CD8(+) T cells from all of the animals were multifunctional and were found in the colonic mucosa. Additionally, GagCM9-specific CD8(+) T cells accessed B cell follicles, the primary residence of SIV-infected cells in lymph nodes, with effector to target ratios between 20-250 GagCM9-specific CD8(+) T cells per SIV-producing cell. Interestingly, vaccinated animals had few public TCR clonotypes within the GagCM9-specific CD8(+) T cell population pre- and post-infection. The number of public TCR clonotypes expressed by GagCM9-specific CD8(+) T cells post-infection significantly inversely correlated with chronic phase viral load. It is possible that these seven animals failed to control viral replication because of the narrow TCR repertoire expressed by the GagCM9-specific CD8(+) T cell population elicited by vaccination and infection.

Dengue Virus-specific CD4+ and CD8+ T Lymphocytes Target NS1, NS3 and NS5 in Infected Indian Rhesus Macaques

Immunogenetics. Feb, 2012  |  Pubmed ID: 21881953

Every year, Dengue virus (DENV) infects approximately 100 million people. There are currently several vaccines undergoing clinical studies, but most target the induction of neutralizing antibodies. Unfortunately, DENV infection can be enhanced by subneutralizing levels of antibodies that bind virions and deliver them to cells of the myeloid lineage, thereby increasing viral replication (termed antibody-dependent enhancement [ADE]). T lymphocyte-based vaccines may offer an alternative that avoids ADE. The goal of our study was to describe the cellular immune response generated after primary DENV infection in Indian rhesus macaques. We infected eight rhesus macaques with 10⁵ plaque-forming units (PFU) of DENV serotype 2 (DENV2) New Guinea C (NGC) strain, and monitored viral load and the cellular immune response to the virus. Viral replication peaked at day 4 post-infection and was resolved by day 10. DENV-specific CD4+ and CD8+ T lymphocytes targeted nonstructural (NS) 1, NS3 and NS5 proteins after resolution of peak viremia. DENV-specific CD4+ cells expressed interferon-gamma (IFN-γ) along with tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and macrophage inflammatory protein-1 beta (MIP-1β). In comparison, DENV-specific CD8+ cells expressed IFN-γ in addition to MIP-1β and TNF-α and were positive for the degranulation marker CD107a. Interestingly, a fraction of the DENV-specific CD4+ cells also stained for CD107a, suggesting that they might be cytotoxic. Our results provide a more complete understanding of the cellular immune response during DENV infection in rhesus macaques and contribute to the development of rhesus macaques as an animal model for DENV vaccine and pathogenicity studies.

The Majority of Freshly Sorted Simian Immunodeficiency Virus (SIV)-specific CD8(+) T Cells Cannot Suppress Viral Replication in SIV-infected Macrophages

Journal of Virology. Apr, 2012  |  Pubmed ID: 22318140

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) primarily infect activated CD4(+) T cells but can infect macrophages. Surprisingly, ex vivo tetramer-sorted SIV-specific CD8(+) T cells that eliminated and suppressed viral replication in SIV-infected CD4(+) T cells failed to do so in SIV-infected macrophages. It is possible, therefore, that while AIDS virus-infected macrophages constitute only a small percentage of all virus-infected cells, they may be relatively resistant to CD8(+) T cell-mediated lysis and continue to produce virus over long periods of time.

Vaccine-induced CD8+ T Cells Control AIDS Virus Replication

Nature. Nov, 2012  |  Pubmed ID: 23023123

Developing a vaccine for human immunodeficiency virus (HIV) may be aided by a complete understanding of those rare cases in which some HIV-infected individuals control replication of the virus. Most of these elite controllers express the histocompatibility alleles HLA-B*57 or HLA-B*27 (ref. 3). These alleles remain by far the most robust associations with low concentrations of plasma virus, yet the mechanism of control in these individuals is not entirely clear. Here we vaccinate Indian rhesus macaques that express Mamu-B*08, an animal model for HLA-B*27-mediated elite control, with three Mamu-B*08-restricted CD8(+) T-cell epitopes, and demonstrate that these vaccinated animals control replication of the highly pathogenic clonal simian immunodeficiency virus (SIV) mac239 virus. High frequencies of CD8(+) T cells against these Vif and Nef epitopes in the blood, lymph nodes and colon were associated with viral control. Moreover, the frequency of the CD8(+) T-cell response against the Nef RL10 epitope (Nef amino acids 137-146) correlated significantly with reduced acute phase viraemia. Finally, two of the eight vaccinees lost control of viral replication in the chronic phase, concomitant with escape in all three targeted epitopes, further implicating these three CD8(+) T-cell responses in the control of viral replication. Our findings indicate that narrowly targeted vaccine-induced virus-specific CD8(+) T-cell responses can control replication of the AIDS virus.

Immunogenicity of Seven New Recombinant Yellow Fever Viruses 17D Expressing Fragments of SIVmac239 Gag, Nef, and Vif in Indian Rhesus Macaques

PloS One. 2013  |  Pubmed ID: 23336000

An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV). Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D) has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (r)YF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIV)mac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5) vectors resulted in robust expansion of SIV-specific CD8(+) T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4(+) cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D - a clinically relevant vaccine vector - can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D-based vaccine regimens to ensure maximum delivery of all immunogens in a multivalent vaccine.

Vaccination with Gag, Vif, and Nef Gene Fragments Affords Partial Control of Viral Replication After Mucosal Challenge with SIVmac239

Journal of Virology. Jul, 2014  |  Pubmed ID: 24741098

Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication.

Nef Is Dispensable for Resistance of Simian Immunodeficiency Virus-Infected Macrophages to CD8+ T Cell Killing

Journal of Virology. Oct, 2015  |  Pubmed ID: 26269172

Simian immunodeficiency virus (SIV)-specific CD8(+) T cells kill SIV-infected CD4(+) T cells in an major histocompatibility complex class I (MHC-I)-dependent manner. However, they are reportedly less efficient at killing SIV-infected macrophages. Since the viral accessory protein Nef has been shown to downregulate MHC-I molecules and enhance cytotoxic T lymphocyte (CTL) evasion in human immunodeficiency virus type 1 (HIV-1)-infected CD4(+) T cells, we examined whether Nef played a role in protecting SIV-infected macrophages from killing by SIV-specific CD8(+) T cells. To explore the role of Nef in CD8(+) T cell evasion, we compared the ability of freshly sorted SIV-specific CD8(+) T cells to readily suppress viral replication or eliminate CD4(+) T cells or monocyte-derived macrophages infected with SIV variants containing wild-type (WT) or mutated nef genes. As expected, SIV-specific CD8(+) T cells suppressed viral replication and eliminated the majority of SIV-infected CD4(+) T cells, and this killing was enhanced in CD4(+) T cells infected with the nef variants. However, macrophages infected with nef variants that disrupt MHC-I downregulation did not promote rapid killing by freshly isolated CD8(+) T cells. These results suggest that mechanisms other than Nef-mediated MHC-I downregulation govern the resistance of SIV-infected macrophages to CD8(+) T cell-mediated killing. This study has implications for viral persistence and suggests that macrophages may afford primate lentiviruses some degree of protection from immune surveillance.

Vaccine-Induced Simian Immunodeficiency Virus-Specific CD8+ T-Cell Responses Focused on a Single Nef Epitope Select for Escape Variants Shortly After Infection

Journal of Virology. Nov, 2015  |  Pubmed ID: 26292326

Certain major histocompatibility complex class I (MHC-I) alleles (e.g., HLA-B*27) are enriched among human immunodeficiency virus type 1 (HIV-1)-infected individuals who suppress viremia without treatment (termed "elite controllers" [ECs]). Likewise, Mamu-B*08 expression also predisposes rhesus macaques to control simian immunodeficiency virus (SIV) replication. Given the similarities between Mamu-B*08 and HLA-B*27, SIV-infected Mamu-B*08(+) animals provide a model to investigate HLA-B*27-mediated elite control. We have recently shown that vaccination with three immunodominant Mamu-B*08-restricted epitopes (Vif RL8, Vif RL9, and Nef RL10) increased the incidence of elite control in Mamu-B*08(+) macaques after challenge with the pathogenic SIVmac239 clone. Furthermore, a correlate analysis revealed that CD8(+) T cells targeting Nef RL10 was correlated with improved outcome. Interestingly, this epitope is conserved between SIV and HIV-1 and exhibits a delayed and atypical escape pattern. These features led us to postulate that a monotypic vaccine-induced Nef RL10-specific CD8(+) T-cell response would facilitate the development of elite control in Mamu-B*08(+) animals following repeated intrarectal challenges with SIVmac239. To test this, we vaccinated Mamu-B*08(+) animals with nef inserts in which Nef RL10 was either left intact (group 1) or disrupted by mutations (group 2). Although monkeys in both groups mounted Nef-specific cellular responses, only those in group 1 developed Nef RL10-specific CD8(+) T cells. These vaccine-induced effector memory CD8(+) T cells did not prevent infection. Escape variants emerged rapidly in the group 1 vaccinees, and ultimately, the numbers of ECs were similar in groups 1 and 2. High-frequency vaccine-induced CD8(+) T cells focused on a single conserved epitope and therefore did not prevent infection or increase the incidence of elite control in Mamu-B*08(+) macaques.

simple hit counter