In JoVE (1)

Other Publications (4)

Articles by Reiko T. Roppongi in JoVE

Other articles by Reiko T. Roppongi on PubMed

Selective Reduction of Drebrin and Actin in Dendritic Spines of Hippocampal Neurons by Activation of 5-HT(2A) Receptors

Neuroscience Letters. Jun, 2013  |  Pubmed ID: 23684573

Abnormal architecture of dendritic spines is associated with neurodevelopmental and neurodegenerative diseases. The 5-HT(2A) receptor is a potential therapeutic target for mental illnesses and it is functionally and genetically associated with many types of psychiatric disorders. It has been reported that 5-HT(2A) receptor activation alters spine architecture. Although actin cytoskeleton has a key role in the regulation of spine architecture, it is not clarified whether 5-HT(2A)+ receptor activation affect the actin cytoskeleton in dendritic spines. In the present study, we examined the effect of 5-HT(2A) receptor activation on the actin cytoskeleton in dendritic spines of mature hippocampal neurons in low-density culture. Immunocytochemical analysis showed that 15 min exposure of 5-HT(2A) receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) significantly decreased the cluster densities of drebrin (control, 37.0±6.9 per 100 μm, DOI, 12.5±2.9) and F-actin (control, 18.3±4.9; DOI, 7.7±2.1) at dendritic spines without any detectable changes in the cluster densities of synapsin I and PSD-95. At the same time period DOI exposure did not affect spine architecture (spine density: control, 38.3±5.1 per 100 μm; DOI, 25.6±3.5; spine length: control, 1.99±0.18; DOI, 2.00±0.29; spine width: control, 0.72±0.06; DOI, 0.77±0.11). Thus, it is indicated that decrease of drebrin and F-actin can occur at the dendritic spines without morphological changes. Together our data suggest that 5-HT(2A) receptors activation is involved in the regulation of distribution of cytoskeleton in the dendritic spines.

Spikar, a Novel Drebrin-binding Protein, Regulates the Formation and Stabilization of Dendritic Spines

Journal of Neurochemistry. Feb, 2014  |  Pubmed ID: 24117785

Dendritic spines are small, actin-rich protrusions on dendrites, the development of which is fundamental for the formation of neural circuits. The actin cytoskeleton is central to dendritic spine morphogenesis. Drebrin is an actin-binding protein that is thought to initiate spine formation through a unique drebrin-actin complex at postsynaptic sites. However drebrin overexpression in neurons does not increase the final density of dendritic spines. In this study, we have identified and characterized a novel drebrin-binding protein, spikar. Spikar is localized in cell nuclei and dendritic spines, and accumulation of spikar in dendritic spines directly correlates with spine density. A reporter gene assay demonstrated that spikar acts as a transcriptional co-activator for nuclear receptors. We found that dendritic spine, but not nuclear, localization of spikar requires drebrin. RNA-interference knockdown and overexpression experiments demonstrated that extranuclear spikar regulates dendritic spine density by modulating de novo spine formation and retraction of existing spines. Unlike drebrin, spikar does not affect either the morphology or function of dendritic spines. These findings indicate that drebrin-mediated postsynaptic accumulation of spikar regulates spine density, but is not involved in regulation of spine morphology.

Early-stage Development of Human Induced Pluripotent Stem Cell-derived Neurons

Journal of Neuroscience Research. Dec, 2015  |  Pubmed ID: 26346430

Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Differentiated neurons from hiPSCs are expected to be useful for developing novel methods of treatment for various neurological diseases. However, the detailed process of functional maturation of hiPSC-derived neurons (hiPS neurons) remains poorly understood. This study analyzes development of hiPS neurons, focusing specifically on early developmental stages through 48 hr after cell seeding; development was compared with that of primary cultured neurons derived from the rat hippocampus. At 5 hr after cell seeding, neurite formation occurs in a similar manner in both neuronal populations. However, very few neurons with axonal polarization were observed in the hiPS neurons even after 48 hr, indicating that hiPS neurons differentiate more slowly than rat neurons. We further investigated the elongation speed of axons and found that hiPS neuronal axons were slower. In addition, we characterized the growth cones. The localization patterns of skeletal proteins F-actin, microtubule, and drebrin were similar to those of rat neurons, and actin depolymerization by cytochalasin D induced similar changes in cytoskeletal distribution in the growth cones between hiPS neurons and rat neurons. These results indicate that, during the very early developmental stage, hiPS neurons develop comparably to rat hippocampal neurons with regard to axonal differentiation, but the growth of axons is slower.

Role of LRRTMs in Synapse Development and Plasticity

Neuroscience Research. Mar, 2017  |  Pubmed ID: 27810425

Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs) are a family of four synapse organizing proteins critical for the development and function of excitatory synapses. The genes encoding LRRTMs and their binding partners, neurexins and HSPGs, are strongly associated with multiple psychiatric disorders. Here, we review the literature covering their structural features, expression patterns in the developing and adult brains, evolutionary origins, and discovery as synaptogenic proteins. We also discuss their role in the development and plasticity of excitatory synapses as well as their disease associations.

Waiting
simple hit counter