In JoVE (1)

Other Publications (4)

Articles by Sara Correia Carreira in JoVE

 JoVE Bioengineering

Synthesis of Cationized Magnetoferritin for Ultra-fast Magnetization of Cells

1Bristol Centre for Functional Nanomaterials, University of Bristol, 2Department of Materials, Imperial College London, 3Self Assembly Group, CIC nanoGUNE, 4Ikebasque, Basque Foundation for Science, 5School of Cellular and Molecular Medicine, University of Bristol, 6H.H. Wills Physics Laboratory, University of Bristol

JoVE 54785

Other articles by Sara Correia Carreira on PubMed

Chlorpyrifos and Neurodevelopmental Effects: a Literature Review and Expert Elicitation on Research and Policy

Environmental Health : a Global Access Science Source. Jun, 2012  |  Pubmed ID: 22759505

Organophosphate pesticides are widely used on food crops grown in the EU. While they have been banned from indoor use in the US for a decade due to adverse health effects, they are still the most prevalent pesticides in the EU, with Chlorpyrifos (CPF) being the most commonly applied. It has been suggested CPF affects neurodevelopment even at levels below toxicity guidelines. Younger individuals may be more susceptible than adults due to biological factors and exposure settings.

The Toxicity, Transport and Uptake of Nanoparticles in the in Vitro BeWo B30 Placental Cell Barrier Model Used Within NanoTEST

Nanotoxicology. May, 2015  |  Pubmed ID: 23927440

Despite the rapid ongoing expansion in the use of nanomaterials, we still know little about their biological interaction and biodistribution within the human body. If medically relevant nanoparticles can cross specific cell barriers they may disseminate through the body beyond the original target and may reach particularly sensitive areas such as the foetus. This study utilised an in vitro barrier model of the placenta to explore toxicity, uptake and transport of iron oxide and silica nanoparticles. The findings indicate that these nanoparticles can transfer extensively across the placental barrier model but physico-chemical characteristics such as surface chemistry impact upon both uptake and transport. Iron oxide cytotoxicity was evident at lower doses and shorter exposure compared with silica and may be of clinical relevance. In vivo correlation of in vitro findings is essential but in vitro models may provide worst case-exposure estimates to help reduce the amount of testing required.

Suitability of Human and Mammalian Cells of Different Origin for the Assessment of Genotoxicity of Metal and Polymeric Engineered Nanoparticles

Nanotoxicology. May, 2015  |  Pubmed ID: 25923348

Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.

In Vitro Models of the Human Placental Barrier--In Regione Caecorum Rex Est Luscus

Nanotoxicology. May, 2015  |  Pubmed ID: 25923350

simple hit counter