In JoVE (1)

Other Publications (20)

Articles by Seddon Y. Thomas in JoVE

Other articles by Seddon Y. Thomas on PubMed

CD1d-restricted NKT Cells Express a Chemokine Receptor Profile Indicative of Th1-type Inflammatory Homing Cells

Journal of Immunology (Baltimore, Md. : 1950). Sep, 2003  |  Pubmed ID: 12928408

CD1d-restricted T cells (NKT cells) are innate memory cells activated by lipid Ags and play important roles in the initiation and regulation of the immune response. However, little is known about the trafficking patterns of these cells or the tissue compartment in which they exert their regulatory activity. In this study, we determined the chemokine receptor profile expressed by CD1d-restricted T cells found in the peripheral blood of healthy volunteers as well as CD1d-restricted T cell clones. CD1d-restricted T cells were identified by Abs recognizing the invariant Valpha24 TCR rearrangement or by binding to CD1d-Fc fusion tetramers loaded with alpha-GalCer. CD1d-restricted T cells in the peripheral blood and CD1d-restricted T cell clones expressed high levels of CXCR3, CCR5, and CCR6; intermediate levels of CXCR4 and CXCR6; and low levels of CXCR1, CCR1, CCR2, and CX(3)CR1, a receptor pattern often associated with tissue-infiltrating effector Th1 cells and CD8+ T cells. Very few of these cells expressed the lymphoid-homing receptors CCR7 or CXCR5. CCR4 was expressed predominantly on CD4+, but not on double-negative CD1d-restricted T cells, which may indicate differential trafficking patterns for these two functionally distinct subsets. CD1d-restricted T cell clones responded to chemokine ligands for CXCR1/2, CXCR3, CXCR4, CXCR6, CCR4, and CCR5 in calcium flux and/or chemotaxis assays. These data indicate that CD1d-restricted T cells express a chemokine receptor profile most similar to Th1 inflammatory homing cells and suggest that these cells perform their function in peripheral tissue sites rather than in secondary lymphoid organs.

HIV-1 Specific CD8+ T Cells with an Effector Phenotype and Control of Viral Replication

Lancet (London, England). Mar, 2004  |  Pubmed ID: 15031033

Most people infected with HIV-1 cannot control viral replication despite the presence of virus-specific CD8+ T cells. It has been postulated that this inability is related to the failure of these cells to mature into fully differentiated effector cells. We tested this hypothesis by comparing the maturation phenotype of virus-specific CD8+ T cells in people who could control viral replication off anti-retroviral therapy with those who could not. In five patients with treated acute HIV-1-infection, structured treatment interruption (STI) induced control of viral replication was associated with expansion of virus-specific CD8+ T cells with a fully differentiated effector phenotype. These effector cells were also expanded in treatment-naive chronically infected individuals who spontaneously controlled viral replication, and augmented expression of perforin was noted in both settings. Our data show that full maturation of virus-specific CD8+ T cells is possible in the context of HIV-1-infection, and suggest that such maturation might be important in viral control.

Defective Immune Function of Primary Effusion Lymphoma Cells is Associated with Distinct KSHV Gene Expression Profiles

Leukemia & Lymphoma. Jun, 2004  |  Pubmed ID: 15360006

Primary effusion lymphomas (PEL) are uniformly infected with Kaposi's sarcoma-associated herpesvirus (KSHV), and thus likely present both tumor and viral antigens to the immune system. In order to grow unrestricted and cause disease, multiple immune evasion strategies may be utilized by PEL to evade immune surveillance. Using six well-established PEL cell lines and comparing these to Epstein-Barr virus-transformed B cell lines and peripheral blood B cells, significant differences were found in the surface expression of molecules involved in antigen presentation, T cell activation and cell-cell adhesion. Significantly reduced stimulation of cytotoxic T lymphocytes, lowered sensitivity to natural killer cell-mediated lysis and impaired function as antigen presenting cells in mixed leukocyte reactions were found for three PEL cell lines with particularly low CD54, CD58 and CD81 expression. Comparative microarray analysis demonstrated specific patterns of KSHV-encoded gene expression that were associated with the different immune functions of these cell lines. Thus, the present data suggest that distinct patterns of KSHV gene expression may be associated with particular phenotypic and functional characteristics of PEL cells, which may influence PEL pathogenesis.

BLT1-mediated T Cell Trafficking is Critical for Rejection and Obliterative Bronchiolitis After Lung Transplantation

The Journal of Experimental Medicine. Jul, 2005  |  Pubmed ID: 15998790

Leukotriene B4 is a lipid mediator that recently has been shown to have potent chemotactic activity for effector T lymphocytes mediated through its receptor, BLT1. Here, we developed a novel murine model of acute lung rejection to demonstrate that BLT1 controls effector CD8+ T cell trafficking into the lung and that disruption of BLT1 signaling in CD8+ T cells reduces lung inflammation and mortality in the model. In addition, we used BLT1-deficient mice and a BLT1 antagonist in two tracheal transplant models of lung transplantation to demonstrate the importance of BLT1 for the recruitment of T cells into tracheal allografts. We also show that BLT1-mediated CD8+ T cell recruitment plays an important role in the development of airway fibroproliferation and obliteration. Finally, in human studies of lung transplant recipients, we found that BLT1 is up-regulated on T lymphocytes isolated from the airways of patients with obliterative bronchiolitis. These data demonstrate that BLT1 contributes to the development of lung rejection and obliterative bronchiolitis by mediating effector T lymphocyte trafficking into the lung. This is the first report that describes a pathologic role for BLT1-mediated T lymphocyte recruitment in disease and identifies BLT1 as a potential therapeutic target after lung transplantation.

Chemokine Receptor CCR7 Guides T Cell Exit from Peripheral Tissues and Entry into Afferent Lymphatics

Nature Immunology. Sep, 2005  |  Pubmed ID: 16116469

T cell circulation between peripheral tissues and the lymphoid compartment is critical for immunosurveillance and host defense. However, the factors that determine whether T cells remain in peripheral tissue or return to the circulation are undefined. Here we demonstrate that the chemokine receptor CCR7 is a critical signal that determines T cell exit from peripheral tissue. Both CCR7(-) and CCR7(+) effector T cells entered mouse asthmatic lung and while CCR7(-) T cells accumulated, CCR7(+) T cells continued to migrate into afferent lymph. Delivery of both CCR7(+) and CCR7(-) T cells directly into the airways showed that only CCR7(+) T cells exited the lung and entered draining lymph nodes. Our study establishes a molecular basis for T cell exit from peripheral tissues.

Pathogenic T-cell Recruitment into the Airway in Human Disease

Annals of the New York Academy of Sciences. Dec, 2005  |  Pubmed ID: 16461804

Effector T cells significantly contribute to inflammatory diseases. These cells are recruited into tissue, where they orchestrate an inflammatory response that can either protect against infection or sometimes stimulate human disease. The recruitment of T cells into tissue from the blood and lymphoid compartments is an active process controlled by chemokines and the chemokine receptors expressed on distinct effector T-cell subsets. Thus, the chemokines secreted in the tissue will determine the specific types of T lymphocyte recruited into that tissue based on the chemokine receptors expressed on these cells. It follows that the chemokine receptor profile on T cells isolated from the lungs of patients with inflammatory pulmonary disease will define the subtype of pathogenic T lymphocytes mediating the disease process and will identify the mechanisms that recruit these cells into the lung. This article reviews data from both human and animal studies that define the chemokine receptors involved in the recruitment of T lymphocytes into the lung in various inflammatory pulmonary diseases, including asthma, obliterative bronchiolitis, sarcoidosis, and chronic eosinophilic pneumonia. We then speculate on the potential role of these chemokine receptors in the pathogenesis of these disorders and potential novel therapeutic approaches suggested by these data.

The Leukotriene B4 Lipid Chemoattractant Receptor BLT1 Defines Antigen-primed T Cells in Humans

Blood. Jan, 2006  |  Pubmed ID: 16179368

We have recently shown that the leukotriene B(4) (LTB(4))-BLT1 pathway is important in early effector T-cell recruitment in mouse models of inflammation. Here we characterize the phenotype and function of human peripheral blood BLT1(+) T cells in health and illustrate their involvement in asthma and acute infection. In healthy individuals, BLT1(+) T cells are a rare peripheral blood T-cell population enriched for the activation markers CD38 and HLA-DR. Compared with BLT1(-) T cells, a larger proportion of peripheral blood BLT1(+) T cells express the effector cytokines IFNgamma and IL-4 and inflammatory chemokine receptors, CCR1, CCR2, CCR6, and CXCR1. Consequently, in healthy individuals peripheral blood BLT1(+) T cells are a rare antigen-primed T-cell subset with unique phenotypic, migratory, and functional properties. BLT1 expression on T cells is tightly regulated by inflammation and only transiently expressed after naive T-cell activation by dendritic cells. Although rare in the peripheral blood of healthy individuals, BLT1(+) T cells are markedly increased in frequency in the peripheral blood in response to acute Epstein-Barr virus (EBV) infection and moderately increased in the airways of asymptomatic allergic asthmatics. Our studies provide novel insights into the LTB(4)-BLT1 lipid chemoattractant pathway in human T-cell responses, and how it may link innate and adaptive immunity.

STAT1 in Peripheral Tissue Differentially Regulates Homing of Antigen-specific Th1 and Th2 Cells

Journal of Immunology (Baltimore, Md. : 1950). Apr, 2006  |  Pubmed ID: 16585592

Th1 and Th2 effector CD4+ T cells orchestrate distinct counterregulatory biological responses. To deliver effective tissue Th1- and Th2-type responses, Th1 and Th2 cell recruitment into tissue must be differentially regulated. We show that tissue-derived STAT1 controls the trafficking of adoptively transferred, Ag-specific, wild-type Th1 cells into the lung. Trafficking of Th1 and Th2 cells is differentially regulated as STAT6, which regulates Th2 cell trafficking, had no effect on the trafficking of Th1 cells and STAT1 deficiency did not alter Th2 cell trafficking. We demonstrate that STAT1 control of Th1 cell trafficking is not mediated through T-bet. STAT1 controls the recruitment of Th1 cells through the induction of CXCL9, CXCL10, CXCL11, and CXCL16, whose expression levels in the lung were markedly decreased in STAT1-/- mice. CXCL10 replacement partially restored Th1 cell trafficking in STAT1-deficient mice in vivo, and deficiency in CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, impaired the trafficking of adoptively transferred Th1 cells in wild-type mice. Our work identifies that STAT1 in peripheral tissue regulates the homing of Ag-specific Th1 cells through the induction of a distinct subset of chemokines and establishes that Th1 and Th2 cell trafficking is differentially controlled in vivo by STAT1 and STAT6, respectively.

Invariant Natural Killer T Cells in Bronchial Asthma

The New England Journal of Medicine. Jun, 2006  |  Pubmed ID: 16775244

CCR5 is Essential for NK Cell Trafficking and Host Survival Following Toxoplasma Gondii Infection

PLoS Pathogens. Jun, 2006  |  Pubmed ID: 16789839

The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK) cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/-) mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.

Multiple Chemokine Receptors, Including CCR6 and CXCR3, Regulate Antigen-induced T Cell Homing to the Human Asthmatic Airway

Journal of Immunology (Baltimore, Md. : 1950). Aug, 2007  |  Pubmed ID: 17641057

Human allergic asthma is a chronic inflammatory disease of the airways thought to be driven by allergen-specific Th2 cells, which are recruited into the lung in response to inhaled allergen. To identify chemoattractant receptors that control this homing pattern, we used endobronchial segmental allergen challenge in human atopic asthmatics to define the pattern of chemoattractant receptor expression on recruited T cells as well as the numbers of recruited CD1d-restricted NKT cells and levels of chemokines in the bronchoalveolar (BAL) fluid. CD1d-restricted NKT cells comprised only a small minority of BAL T cells before or after Ag challenge. BAL T cells were enriched in their expression of specific chemoattractant receptors compared with peripheral blood T cells prechallenge, including CCR5, CCR6, CXCR3, CXCR4, and BLT1. Surprisingly, following segmental allergen challenge, no chemoattractant receptor was specifically increased. However, CCR6 and CXCR3, which were expressed on virtually all CD4(+) BAL T cells prechallenge, were markedly decreased on all recruited BAL T cells following Ag challenge, suggesting that these receptors were internalized following encounter with ligand in the airway. Our data therefore suggests a role for CCR6 and CXCR3, in conjunction with other chemoattractant receptors, in the recruitment of inflammatory T cells into the BAL during the allergic asthmatic response.

T Cell Trafficking in Allergic Asthma: the Ins and Outs

Annual Review of Immunology. 2008  |  Pubmed ID: 18304002

T cells are critical mediators of the allergic airway inflammation seen in asthma. Pathogenic allergen-specific T cells are generated in regional lymph nodes and are then recruited into the airway by chemoattractants produced by the asthmatic lung. These recruited effector T cells and their products then mediate the cardinal features of asthma: airway eosinophilia, mucus hypersecretion, and airway hyperreactivity. There has been considerable progress in delineating the molecular mechanisms that control T cell trafficking into peripheral tissue, including the asthmatic lung. In this review, we summarize these advances and formulate them into a working model that proposes that T cell trafficking into and out of the allergic lung is controlled by several discrete regulatory pathways that involve the collaboration of innate and acquired immune cells.

Chemokine Receptor CXCR3 and Its Ligands CXCL9 and CXCL10 Are Required for the Development of Murine Cerebral Malaria

Proceedings of the National Academy of Sciences of the United States of America. Mar, 2008  |  Pubmed ID: 18347328

Cerebral malaria is a significant cause of global mortality, causing an estimated two million deaths per year, mainly in children. The pathogenesis of this disease remains incompletely understood. Chemokines have been implicated in the development of cerebral malaria, and the IFN-inducible CXCR3 chemokine ligand IP-10 (CXCL10) was recently found to be the only serum biomarker that predicted cerebral malaria mortality in Ghanaian children. We show that the CXCR3 chemokine ligands IP-10 and Mig (CXCL9) were highly induced in the brains of mice with murine cerebral malaria caused by Plasmodium berghei ANKA. Mice deficient in CXCR3 were markedly protected against cerebral malaria and had far fewer T cells in the brain compared with wild-type mice. In competitive transfer experiments, CXCR3-deficient CD8(+) T cells were 7-fold less efficient at migrating into the infected brains than wild-type CD8(+) T cells. Adoptive transfer of wild-type CD8(+) effector T cells restored susceptibility of CXCR3-deficient mice to cerebral malaria and also restored brain proinflammatory cytokine and chemokine production and recruitment of T cells, independent of CXCR3. Mice deficient in IP-10 or Mig were both partially protected against cerebral malaria mortality when infected with P. berghei ANKA. Brain immunohistochemistry revealed Mig staining of endothelial cells, whereas IP-10 staining was mainly found in neurons. These data demonstrate that CXCR3 on CD8(+) T cells is required for T cell recruitment into the brain and the development of murine cerebral malaria and suggest that the CXCR3 ligands Mig and IP-10 play distinct, nonredundant roles in the pathogenesis of this disease.

CD11b+ Myeloid Cells Are the Key Mediators of Th2 Cell Homing into the Airway in Allergic Inflammation

Journal of Immunology (Baltimore, Md. : 1950). Jan, 2009  |  Pubmed ID: 19109196

STAT6-mediated chemokine production in the lung is required for Th2 lymphocyte and eosinophil homing into the airways in allergic pulmonary inflammation, and thus is a potential therapeutic target in asthma. However, the critical cellular source of STAT6-mediated chemokine production has not been defined. In this study, we demonstrate that STAT6 in bone marrow-derived myeloid cells was sufficient for the production of CCL17, CCL22, CCL11, and CCL24 and for Th2 lymphocyte and eosinophil recruitment into the allergic airway. In contrast, STAT6 in airway-lining cells did not mediate chemokine production or support cellular recruitment. Selective depletion of CD11b(+) myeloid cells in the lung identified these cells as the critical cellular source for the chemokines CCL17 and CCL22. These data reveal that CD11b(+) myeloid cells in the lung help orchestrate the adaptive immune response in asthma, in part, through the production of STAT6-inducible chemokines and the recruitment of Th2 lymphocytes into the airway.

Natural Killer T Cells Are Not the Predominant T Cell in Asthma and Likely Modulate, Not Cause, Asthma

The Journal of Allergy and Clinical Immunology. May, 2010  |  Pubmed ID: 20304475

Asthma is a multifactorial disease of the airways characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. Conventional MHC class II-restricted CD4(+) T cells are considered a key cell in asthma pathogenesis because they have a broad T-cell receptor repertoire, providing specificity and reactivity to diverse protein allergens. This notion was challenged when a study found that invariant Natural Killer (NK) T cells were the predominant T cells in the lung and bronchoalveolar lavage fluid of all asthmatic subjects studied. This finding was provocative because invariant NKT cells have a very limited T-cell receptor repertoire and are specific for a restricted set of lipid antigens that bind to CD1d, a nonpolymorphic MHC-like molecule. However, multiple subsequent studies failed to replicate the initial study and instead found that invariant NKT cells are present as a small fraction of the total T cells in the asthmatic lung. Thus, we believe that although CD1d-restricted NKT cells might play a role in modulating the asthmatic phenotype, they are not the critical drivers of the asthmatic response, a role we believe is still held by conventional MHC class II-restricted CD4(+) T cells.

PLZF Induces an Intravascular Surveillance Program Mediated by Long-lived LFA-1-ICAM-1 Interactions

The Journal of Experimental Medicine. Jun, 2011  |  Pubmed ID: 21624939

Innate-like NKT cells conspicuously accumulate within the liver microvasculature of healthy mice, crawling on the luminal side of endothelial cells, but their general recirculation pattern and the mechanism of their intravascular behavior have not been elucidated. Using parabiotic mice, we demonstrated that, despite their intravascular location, most liver NKT cells failed to recirculate. Antibody blocking experiments established that they were retained locally through constitutive LFA-1-intercellular adhesion molecule (ICAM) 1 interactions. This unprecedented lifelong intravascular residence could be induced in conventional CD4 T cells by the sole expression of promyelocytic leukemia zinc finger (PLZF), a transcription factor specifically expressed in the NKT lineage. These findings reveal the unique genetic and biochemical pathway that underlies the innate intravascular surveillance program of NKT cells.

Airborne Lipid Antigens Mobilize Resident Intravascular NKT Cells to Induce Allergic Airway Inflammation

The Journal of Experimental Medicine. Sep, 2011  |  Pubmed ID: 21930768

Airborne exposure to microbial cell wall lipids such as lipopolysaccharide triggers innate immune responses that regulate susceptibility to allergic airway inflammation. α-Glycosylceramides represent another widespread class of microbial lipids that directly stimulate innate-like, IL-4- and IL-13-producing, CD1d-restricted NKT cells. In this study, we demonstrate that NKT cells constitutively accumulate and reside in the microvasculature of the mouse lung. After a single airborne exposure to lipid antigen, they promptly extravasate to orchestrate the formation of peribronchiolar and interstitial lymphohistiocytic granulomas containing numerous eosinophils. Concomitant airborne exposure to ovalbumin (OVA) induces the priming of OVA-specific Th2 cells and IgE antibodies by the same dendritic cell coexpressing CD1d and MHC class II. Although NKT cell activation remains confined to the lipid-exposed lung and draining lymph nodes, Th2 cells recirculate and seed the lung of a parabiotic partner, conferring susceptibility to OVA challenge months after the initial exposure, in a manner independent of NKT cells and CD1d. Thus, transient recruitment and activation of lung-resident intravascular NKT cells can trigger long-term susceptibility to allergic airway inflammation.

Distinct APCs Explain the Cytokine Bias of α-galactosylceramide Variants in Vivo

Journal of Immunology (Baltimore, Md. : 1950). Apr, 2012  |  Pubmed ID: 22393151

α-Galactosylceramide represents a new class of vaccine adjuvants and immunomodulators that stimulate NKT cells to secrete Th1 and Th2 cytokines. Synthetic variants with short or unsaturated acyl chains exhibit a striking Th2 bias in vivo but no evidence of defect in TCR signaling or stimulation of NKT cells in vitro. Using cd1d1(fl/fl) mice, we demonstrated that distinct APC types explained the cytokine bias in vivo. Whereas NKT stimulation by α-Galactosylceramide required CD1d expression by dendritic cells (DCs), presentation of the Th2 variants was promiscuous and unaffected by DC-specific ablation of CD1d. This DC-independent stimulation failed to activate the feedback loop between DC IL-12 and NK cell IFN-γ, explaining the Th2 bias. Conversely, forced presentation of the Th2 variants by DC induced high IL-12. Thus, lipid structural variations that do not alter TCR recognition can activate distinct Th1 or Th2 cellular networks by changing APC targeting in vivo.

Modulation of Distinct Asthmatic Phenotypes in Mice by Dose-dependent Inhalation of Microbial Products

Environmental Health Perspectives. Jan, 2014  |  Pubmed ID: 24168764

Humans with asthma display considerable heterogeneity with regard to T helper (Th) 2-associated eosinophilic and Th17-associated neutrophilic inflammation, but the impact of the environment on these different forms of asthma is poorly understood.

Inhaled House Dust Programs Pulmonary Dendritic Cells to Promote Type 2 T-cell Responses by an Indirect Mechanism

American Journal of Physiology. Lung Cellular and Molecular Physiology. Nov, 2015  |  Pubmed ID: 26386119

The induction of allergen-specific T helper 2 (Th2) cells by lung dendritic cells (DCs) is a critical step in allergic asthma development. Airway delivery of purified allergens or microbial products can promote Th2 priming by lung DCs, but how environmentally relevant quantities and combinations of these factors affect lung DC function is unclear. Here, we investigated the ability of house dust extract (HDE), which contains a mixture of environmental adjuvants, to prime Th2 responses against an innocuous inhaled antigen. Inhalational exposure to HDE conditioned lung conventional DCs, but not monocyte-derived DCs, to induce antigen-specific Th2 differentiation. Conditioning of DCs by HDE was independent of Toll-like receptor 4 signaling, indicating that environmental endotoxin is dispensable for programming DCs to induce Th2 responses. DCs directly treated with HDE underwent maturation but were poor stimulators of Th2 differentiation. In contrast, DCs treated with bronchoalveolar lavage fluid (BALF) from HDE-exposed mice induced robust Th2 differentiation. DC conditioning by BALF was independent of the proallergic cytokines IL-25, IL-33, and thymic stromal lymphopoietin. BALF treatment of DCs resulted in upregulation of CD80 but low expression of CD40, CD86, and IL-12p40, which was associated with Th2 induction. These findings support a model whereby environmental adjuvants in house dust indirectly program DCs to prime Th2 responses by triggering the release of endogenous soluble factor(s) by airway cells. Identifying these factors could lead to novel therapeutic targets for allergic asthma.

simple hit counter