In JoVE (1)

Other Publications (28)

Articles by Serena Danti in JoVE

 JoVE Bioengineering

Mesenchymal Stromal Cell Culture and Delivery in Autologous Conditions: A Smart Approach for Orthopedic Applications

1Dept. of Clinical and Experimental Medicine, University of Pisa, 2OtoLab, Azienda Ospedaliero-Universitaria Pisana (AOUP), 3Dept. of Civil and Industrial Engineering, University of Pisa, 4Immunohematology Operative Unit, Azienda Ospedaliero-Universitaria Pisana (AOUP), 5Dept. Of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 6II Orthopedic and Traumatologic Clinic, Azienda Ospedaliero-Universitaria Pisana (AOUP)

JoVE 54845

Other articles by Serena Danti on PubMed

Morphological Evaluation of Bioartificial Hydrogels As Potential Tissue Engineering Scaffolds

Journal of Materials Science. Materials in Medicine. Dec, 2004  |  Pubmed ID: 15747183

Poly(vinyl alcohol) hydrogels prepared by freeze-thawing procedure represent synthetic systems widely investigated as non-biodegradable scaffolds for tissue regeneration. In order to improve the biocompatibility properties of pure poly(vinyl alcohol) (PVA) hydrogels, blends of PVA with different biological macromolecules, such hyaluronic acid, dextran, and gelatin were prepared and used to produce "bioartificial hydrogels". The porosity characteristics of these hydrogels were investigated by scanning electron microscopy and mercury intrusion porosimetry. The morphology of bioartificial hydrogels was evaluated and compared with that of pure PVA hydrogels. In particular the effect exerted by each biological component on pore size and distribution was investigated. The obtained results indicate that when a natural macromolecule is added to PVA the internal structure of the material changes. A small amount of biopolymer induces the structural elements of PVA matrix to take on a well evident lamellar appearance and an apparent preferential orientation. Comparing the results of SEM and mercury intrusion porosimetry it was concluded that hydrogels containing 20% of biological component have the most regular structure and at the same time the lowest total porosity. On the contrary samples with the highest content of natural polymer (40%) show the less regular structure and the highest total porosity.

Gelatine/PLLA Sponge-like Scaffolds: Morphological and Biological Characterization

Journal of Materials Science. Materials in Medicine. Dec, 2006  |  Pubmed ID: 17143751

Biodegradable synthetic polymers such as poly(lactic acid) are widely used to prepare scaffolds for cell transplantation and tissue growth, using different techniques set up for the purpose. However the poor hydrophilicity of these polymers represents the main limitation to their use as scaffolds because it causes a low affinity for the cells. An effective way to solve this problem could be represented by the addition of biopolymers that are in general highly hydrophilic. The present work concerns porous biodegradable sponge-like systems based on poly(L-lactic acid) and gelatine. Morphology and porosity characteristics of the sponges were studied by scanning electron microscopy and mercury intrusion porosimetry respectively. Blood compatibility was investigated by bovine plasma fibrinogen adsorption test and platelet adhesion test. The cell culture method was used in order to evaluate the ability of the matrices to work as scaffolds for tissue regeneration. The obtained results indicate that the sponges have interesting porous characteristics, good blood compatibility and above all good ability to support cell adhesion and growth. In fact viable and metabolically active animal cells were found inside the sponges after 8 weeks in culture. On this basis the systems produced seem to be good candidates as scaffolds for tissue regeneration.

Gelatine/PLLA Sponge-like Scaffolds: Morphological and Biological Characterization

Journal of Materials Science. Materials in Medicine. Jul, 2007  |  Pubmed ID: 17277980

Biodegradable synthetic polymers such as poly(lactic acid) (PLA) are widely used to prepare scaffolds for cell transplantation and tissue growth, using different techniques set up for the purpose. However the poor hydrophilicity of these polymers represents the main limitation to their use as scaffolds because it causes a low affinity for the cells. An effective way to solve this problem could be represented by the addition of biopolymers that are in general highly hydrophilic. The present work concerns porous biodegradable sponge-like systems based on poly(L-lactic acid) (PLLA) and gelatine. Morphology and porosity characteristics of the sponges were studied by scanning electron microscopy and mercury intrusion porosimetry respectively. Blood compatibility was investigated by bovine plasma fibrinogen (BPF) adsorption test and platelet adhesion test (PAT). The cell culture method was used in order to evaluate the ability of the matrices to work as scaffolds for tissue regeneration. The obtained results indicate that the sponges have interesting porous characteristics, good blood compatibility and above all good ability to support cell adhesion and growth. In fact viable and metabolically active animal cells were found inside the sponges after 8 weeks in culture. On this basis the systems produced seem to be good candidates as scaffolds for tissue regeneration.

A Micro/nanoscale Surface Mechanical Study on Morpho-functional Changes in Multilineage-differentiated Human Mesenchymal Stem Cells

Macromolecular Bioscience. May, 2007  |  Pubmed ID: 17477443

In recent years MSCs have become a very attractive tool in tissue engineering and regenerative medicine because of their ability to be committed along several lineages through chemical or physical stimuli. Nevertheless their therapeutic potential and plasticity are not yet totally understood. This report describes the use of AFM together with conventional microscopies to obtain mechanical information on cell surfaces and deposited extra cellular matrix molecules, after inducing the differentiation of human MSCs towards three typical mesoderm phenotypes. The aim is to correlate morphological, functional, and mechanical aspects of human MSCs to obtain a deeper understanding of their great potential.

Morpho-functional Characterization of Human Mesenchymal Stem Cells from Umbilical Cord Blood for Potential Uses in Regenerative Medicine

Stem Cells and Development. Mar, 2009  |  Pubmed ID: 18444788

Mesenchymal stem cells (MSCs) represent a promising source of progenitor cells having the potential to repair and to regenerate diseased or damaged skeletal tissues. Bone marrow (BM) has been the first source reported to contain MSCs. However, BM-derived cells are not always acceptable, due to the highly invasive drawing and the decline in MSC number and differentiative capability with increasing age. Human umbilical cord blood (UCB), obtainable by donation with a noninvasive method, has been introduced as an alternative source of MSCs. Here human UCB-derived MSCs isolation and morpho-functional characterization are reported. Human UCB-derived mononuclear cells, obtained by negative immunoselection, exhibited either an osteoclast-like or a mesenchymal-like phenotype. However, we were able to obtain homogeneous populations of MSCs that displayed a fibroblast-like morphology, expressed mesenchym-related antigens and showed differentiative capacities along osteoblastic and early chondroblastic lineages. Furthermore, this study is one among a few papers investigating human UCB-derived MSC growth and differentiation on three-dimensional scaffolds focusing on their potential applications in regenerative medicine and tissue engineering. UCB-derived MSCs were proved to grow on biodegradable microfiber meshes; additionally, they were able to differentiate toward mature osteoblasts when cultured inside human plasma clots, suggesting their potential application in orthopedic surgery.

Novel Biological/biohybrid Prostheses for the Ossicular Chain: Fabrication Feasibility and Preliminary Functional Characterization

Biomedical Microdevices. Aug, 2009  |  Pubmed ID: 19294514

Alternatives for ossicular replacements were fabricated in order to overcome persisting rejections in middle ear prosthetization. Unlike the synthetic prostheses in fashion, we propose biological and biohybrid replacements containing extra cellular matrix (ECM) molecules to improve biointegration. In this study, ECM-containing devices shaped as Partial Ossicular Replacement Prostheses (PORPs) were fabricated reproducing the current synthetic models. Biological PORPs were obtained from human decellularized cortical bone allografts by computer numerically controlled ultraprecision micromilling. Moreover, porous PORP-like scaffolds were produced and cultured with osteoinduced human mesenchymal stromal cells to generate in vitro bone ECM within the scaffold porosity (biohybrid PORPs). The acoustic responses of such devices were investigated and compared to those of commercial prostheses. Results showed that biological PORPs transmit mechanical signals with appropriate frequencies, amplitudes, and with early extinction time. Although signal transmission in biohybrid PORPs showed insufficient amplitude, we believe that tissue engineered constructs represent the new challenge in ossiculoplasty.

Development of Tissue-engineered Substitutes of the Ear Ossicles: PORP-shaped Poly(propylene Fumarate)-based Scaffolds Cultured with Human Mesenchymal Stromal Cells

Journal of Biomedical Materials Research. Part A. Mar, 2010  |  Pubmed ID: 19353559

This is a novel study aimed at exploring possible tissue engineering (TE) options for fabricating middle ear ossicle replacements. Alternatives to prosthetic replacements currently used in ossiculoplasty are desirable, considering that current devices are known to suffer from a persistent rejection phenomenon, known as extrusion. In this study a biocompatible and biodegradable polymer, poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA), was chosen to assess the fabrication feasibility of highly porous devices shaped as partial ossicular replacement prostheses (PORPs). PORP-like scaffolds were produced, and their poral features (porosity and pore interconnectivity) were evaluated via micro-CT. In addition, their capability to support human mesenchymal stromal cell (hMSC) colonization and osteoblastic differentiation in vitro was investigated with both quantitative and qualitative analyses. This report summarizes and discusses all the fundamental issues associated with ossicle prosthetization as well as the challenging opportunities potentially offered to middle ear reconstruction by TE; moreover it demonstrates that PPF/PPF-DA PORP-like scaffolds can be appropriately fabricated to allow both the colonization of hMSCs and their osteoblastic maturation in vitro. Specifically, the expression patterns of the main osteogenic markers (alkaline phosphatase, calcium) and of various matrix biomolecules (glycoproteins, glycosaminoglycans, collagen I) were studied. These preliminarily obtained outcomes may launch a new trend in otology dedicated to TE ossicle development to improve on the performance of current prosthetic replacements.

Assessing Cytotoxicity of Boron Nitride Nanotubes: Interference with the MTT Assay

Biochemical and Biophysical Research Communications. Apr, 2010  |  Pubmed ID: 20226164

Thanks to a non-covalent wrapping with glycol-chitosan, highly biocompatible and highly concentrated dispersions of boron nitride nanotubes were obtained and tested on human neuroblastoma cells. A systematic investigation of the cytotoxicity of these nanovectors with several complementary qualitative and quantitative assays allowed a strong interference with the MTT metabolic assay to be highlighted, similar to a phenomenon already observed for carbon nanotubes, that would wrongly suggest toxicity of boron nitride nanotubes. These results confirm the high complexity of these new nanomaterials, and the needing of extensive investigations on their exciting potential applications in the biomedical field.

Barium Titanate Nanoparticles: Highly Cytocompatible Dispersions in Glycol-chitosan and Doxorubicin Complexes for Cancer Therapy

Nanoscale Research Letters. 2010  |  Pubmed ID: 20596329

In the latest years, innovative nanomaterials have attracted a dramatic and exponentially increasing interest, in particular for their potential applications in the biomedical field. In this paper, we reported our findings on the cytocompatibility of barium titanate nanoparticles (BTNPs), an extremely interesting ceramic material. A rational and systematic study of BTNP cytocompatibility was performed, using a dispersion method based on a non-covalent binding to glycol-chitosan, which demonstrated the optimal cytocompatibility of this nanomaterial even at high concentration (100 μg/ml). Moreover, we showed that the efficiency of doxorubicin, a widely used chemotherapy drug, is highly enhanced following the complexation with BTNPs. Our results suggest that innovative ceramic nanomaterials such as BTNPs can be realistically exploited as alternative cellular nanovectors.

Enhancement of Neurite Outgrowth in Neuronal-like Cells Following Boron Nitride Nanotube-mediated Stimulation

ACS Nano. Oct, 2010  |  Pubmed ID: 20925390

In this paper, we propose an absolutely innovative technique for the electrical stimulation of cells, based on piezoelectric nanoparticles. Ultrasounds are used to impart mechanical stress to boron nitride nanotubes incubated with neuronal-like PC12 cells. By virtue of their piezoelectric properties, these nanotubes can polarize and convey electrical stimuli to the cells. PC12 stimulated with the present method exhibit neurite sprout 30% greater than the control cultures after 9 days of treatment.

Good Manufacturing Practices--grade Preformed Ossicular Prostheses from Banked Bone Via Computer Numerically Controlled Micromilling

The Annals of Otology, Rhinology, and Laryngology. Jan, 2011  |  Pubmed ID: 21370675

The aim of this study was the fabrication of ossicular replacement prostheses (ORPs) from decellularized banked cortical bone via computer numerically controlled (CNC) ultraprecision micromilling, in order to obtain preformed clinical-grade tissue products, reproducing shape, size, and details perfectly comparable to those of synthetic devices.

Evaluation of Cytocompatibility and Cell Response to Boron Nitride Nanotubes

Methods in Molecular Biology (Clifton, N.J.). 2012  |  Pubmed ID: 22042681

While in the last years applications of carbon nanotubes in the field of biotechnology have been largely proposed, so far biomedical applications of boron nitride nanotubes (BNNTs) are still totally unexplored. BNNTs show very interesting physical properties that might be exploited in the nanomedicine field. To fill up the lack of biocompatibility studies on BNNTs, our group has recently begun a rational investigation on interactions between BNNTs and different cell lines. This chapter reports on preliminary cytocompatibility studies carried out on human neuroblastoma (SH-SY5Y) and on mouse myoblast (C2C12) cell lines as model of neural and skeletal muscle cells, respectively, highlighting the methods that allowed us to evaluate the main parameters of interests for cytocompatibility, such as cell viability, metabolism, apoptosis, and differentiation.

Pilot in Vivo Toxicological Investigation of Boron Nitride Nanotubes

International Journal of Nanomedicine. 2012  |  Pubmed ID: 22275819

Boron nitride nanotubes (BNNTs) have attracted huge attention in many different research fields thanks to their outstanding chemical and physical properties. During recent years, our group has pioneered the use of BNNTs for biomedical applications, first of all assessing their in vitro cytocompatibility on many different cell lines. At this point, in vivo investigations are necessary before proceeding toward realistic developments of the proposed applications. In this communication, we report a pilot toxicological study of BNNTs in rabbits. Animals were injected with a 1 mg/kg BNNT solution and blood tests were performed up to 72 hours after injection. The analyses aimed at evaluating any acute alteration of hematic parameters that could represent evidence of functional impairment in blood, liver, and kidneys. Even if preliminary, the data are highly promising, as they showed no adverse effects on all the evaluated parameters, and therefore suggest the possibility of the realistic application of BNNTs in the biomedical field.

Histologic Characterization of Human Ear Ossicles for the Development of Tissue-engineered Replacements

Otology & Neurotology : Official Publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. Oct, 2012  |  Pubmed ID: 22975908

Precise knowledge of the expression and distribution of extracellular matrix (ECM) molecules and osteochondrogenic markers helps target the proper in vitro regeneration of novel ossicular chain (OC) replacements via tissue engineering (TE).

Biocompatibility of Boron Nitride Nanotubes: an Up-date of in Vivo Toxicological Investigation

International Journal of Pharmaceutics. Feb, 2013  |  Pubmed ID: 23357257

Boron nitride nanotubes (BNNTs) represent an innovative and extremely intriguing class of nanomaterials, and preliminar but encouraging studies about their applications in biomedicine have emerged in the latest years. As a consequence, a systematic investigation of their biosafety has become of fundamental importance in the biomedical research. Extending our previous pilot in vivo study, here we present biocompatibility data of BNNTs injected in rabbits at a dose up to 10mg/kg. No significant adverse effects were found up to 7 days since their administration, and no impairments in blood, liver and kidney functionality were highlighted. Moreover, a terminal half-life circulation of about 90min was found. All the collected data are very promising, suggesting the optimal biocompatibility of BNNTs, and thus enabling their exploitation in nanomedicine as nanotransducers and nanocarriers.

Boron Nitride Nanotubes: Biocompatibility and Potential Spill-over in Nanomedicine

Small (Weinheim an Der Bergstrasse, Germany). May, 2013  |  Pubmed ID: 23423826

Boron nitride nanotubes (BNNTs) represent an innovative and extremely intriguing class of nanomaterials. Thanks to their special chemical and physical characteristics, they have already found a large number of applications in the field of nanotechnology, and recent studies have shown their possible exploitation in the biomedical domain, both as nanocarriers and, more interestingly, as nanotransducers. In this review, the latest findings on the interactions between BNNTs and living systems are summarized, starting with the major issues of their stabilization in physiological media and their functionalization with bioactive molecules. Thereafter the biocompatibility data which have so far been made available are discussed, and the need for further extensive and standardized tests is highlighted. Finally, the appealing diagnostic and therapeutic opportunities offered by BNNT-based systems are described, envisioning the potential spill-over effects of such 'smart' and 'active' nanoparticles in nanomedicine.

Growing Bone Tissue-engineered Niches with Graded Osteogenicity: an in Vitro Method for Biomimetic Construct Assembly

Tissue Engineering. Part C, Methods. Dec, 2013  |  Pubmed ID: 23537352

The traditional bone tissue-engineering approach exploits mesenchymal stem cells (MSCs) to be seeded once only on three-dimensional (3D) scaffolds, hence, differentiated for a certain period of time and resulting in a homogeneous osteoblast population at the endpoint. However, after achieving terminal osteodifferentiation, cell viability is usually markedly compromised. On the other hand, naturally occurring osteogenesis results from the coexistence of MSC progenies at distinct differentiative stages in the same microenvironment. This diversification also enables long-term viability of the mature tissue. We report an easy and tunable in vitro method to engineer simple osteogenic cell niches in a biomimetic fashion. The niches were grown via periodic reseeding of undifferentiated MSCs on MSC/scaffold constructs, the latter undergoing osteogenic commitment. Time-fractioning of the seeded cell number during differentiation time of the constructs allowed graded osteogenic cell populations to be grown together on the same scaffolds (i.e., not only terminally differentiated osteoblasts). In such cell-dynamic systems, the overall differentiative stage of the constructs could also be tuned by varying the cell density seeded at each inoculation. In this way, we generated two different biomimetic niche models able to host good reservoirs of preosteoblasts and other osteoprogenitors after 21 culture days. At that time, the niche type resulting in 40.8% of immature osteogenic progenies and only 59.2% of mature osteoblasts showed a calcium content comparable to the constructs obtained with the traditional culture method (i.e., 100.03 ± 29.30 vs. 78.51 ± 28.50 pg/cell, respectively; p=not significant), the latter colonized only by fully differentiated osteoblasts showing exhausted viability. This assembly method for tissue-engineered constructs enabled a set of important parameters, such as viability, colonization, and osteogenic yield of the MSCs to be balanced on 3D scaffolds, thus achieving biomimetic in vitro models with graded osteogenicity, which are more complex and reliable than those currently used by tissue engineers.

Use of Autologous Human Mesenchymal Stromal Cell/fibrin Clot Constructs in Upper Limb Non-unions: Long-term Assessment

PloS One. 2013  |  Pubmed ID: 24023694

Tissue engineering appears to be an attractive alternative to the traditional approach in the treatment of fracture non-unions. Mesenchymal stromal cells (MSCs) are considered an appealing cell source for clinical intervention. However, ex vivo cell expansion and differentiation towards the osteogenic lineage, together with the design of a suitable scaffold have yet to be optimized. Major concerns exist about the safety of MSC-based therapies, including possible abnormal overgrowth and potential cancer evolution.

Boron Nitride Nanotubes and Primary Human Osteoblasts: in Vitro Compatibility and Biological Interactions Under Low Frequency Ultrasound Stimulation

Nanotechnology. Nov, 2013  |  Pubmed ID: 24150892

In this paper we investigated a novel and non-invasive approach for an endogenous osteoblast stimulation mediated by boron nitride nanotubes (BNNTs). Specifically, following the cellular uptake of the piezoelectric nanotubes, cultures of primary human osteoblasts (hOBs) were irradiated with low frequency ultrasound (US), as a simple method to apply a mechanical input to the cells loaded with BNNTs. This in vitro study was aimed at investigating the main interactions between hOBs and BNNTs and to study the effects of the 'BNNTs + US' stimulatory method on the osteoblastic function and maturation.A non-cytotoxic BNNT concentration to be used in vitro with hOB cultures was established. Moreover, investigation with transmission electron microscopy/electron energy loss spectroscopy (TEM/EELS) confirmed that BNNTs were internalized in membranal vesicles. The panel of investigated osteoblastic markers disclosed that BNNTs were capable of fostering the expression of late-stage bone proteins in vitro, without using any mineralizing culture supplements. In our samples, the maximal osteopontin expression, with the highest osteocalcin and Ca(2+) production, in the presence of mineral matrix with nodular morphology, was observed in the samples treated with BNNTs + US. In this group was also shown a significantly enhanced synthesis of TGF-β1, a molecule sensitive to electric stimulation in bone. Finally, gene deregulations of the analyzed osteoblastic genes leading to depletive cellular effects were not detected. Due to their piezoelectricity, BNNT-based therapies might disclose advancements in the treatment of bone diseases.

Processing Large-diameter Poly(L-lactic Acid) Microfiber Mesh/mesenchymal Stromal Cell Constructs Via Resin Embedding: an Efficient Histologic Method

Biomedical Materials (Bristol, England). Aug, 2014  |  Pubmed ID: 25029413

In this study, we performed a complete histologic analysis of constructs based on large diameter ( >100 μm) poly-L-lactic acid (PLLA) microfibers obtained via dry-wet spinning and rat Mesenchymal Stromal Cells (rMSCs) differentiated towards the osteogenic lineage, using acrylic resin embedding. In many synthetic polymer-based microfiber meshes, ex post processability of fiber/cell constructs for histologic analysis may face deterring difficulties, leading to an incomplete investigation of the potential of these scaffolds. Indeed, while polymeric nanofiber (fiber diameter = tens of nanometers)/cell constructs can usually be embedded in common histologic media and easily sectioned, preserving the material structure and the antigenic reactivity, histologic analysis of large polymeric microfiber/cell constructs in the literature is really scant. This affects microfiber scaffolds based on FDA-approved and widely used polymers such as PLLA and its copolymers. Indeed, for such constructs, especially those with fiber diameter and fiber interspace much larger than cell size, standard histologic processing is usually inefficient due to inhomogeneous hardness and lack of cohesion between the synthetic and the biological phases under sectioning. In this study, the microfiber/MSC constructs were embedded in acrylic resin and the staining/reaction procedures were calibrated to demonstrate the possibility of successfully employing histologic methods in tissue engineering studies even in such difficult cases. We histologically investigated the main osteogenic markers and extracellular matrix molecules, such as alkaline phosphatase, osteopontin, osteocalcin, TGF-β1, Runx2, Collagen type I and the presence of amorphous, fibrillar and mineralized matrix. Biochemical tests were employed to confirm our findings. This protocol permitted efficient sectioning of the treated constructs and good penetration of the histologic reagents, thus allowing distribution and expression of almost all the tested molecules to be revealed. Our results demonstrated that it is possible to perform histologic analyses of large-diameter PLLA-based microfiber scaffold/MSC constructs that face the failure of standard histologic procedures.

Plasticity of Human Dental Pulp Stromal Cells with Bioengineering Platforms: a Versatile Tool for Regenerative Medicine

Micron (Oxford, England : 1993). Dec, 2014  |  Pubmed ID: 25180486

In recent years, human dental pulp stromal cells (DPSCs) have received growing attention due to their characteristics in common with other mesenchymal stem cells, in addition to the ease with which they can be harvested. In this study, we demonstrated that the isolation of DPSCs from third molar teeth of healthy individuals allowed the recovery of dental mesenchymal stem cells that showed self-renewal and multipotent differentiation capability. DPSCs resulted positive for CD73, CD90, CD105, STRO-1, negative for CD34, CD45, CD14 and were able to differentiate into osteogenic and chondrogenic cells. We also assayed the angiogenic potential of DPSCs, their capillary tube-like formation was assessed using an in vitro angiogenesis assay and the uptake of acetylated low-density lipoprotein was measured as a marker of endothelial function. Based on these results, DPSCs were capable of differentiating into cells with phenotypic and functional features of endothelial cells. Furthermore, this study investigated the growth and differentiation of human DPSCs under a variety of bioengineering platforms, such as low frequency ultrasounds, tissue engineering and nanomaterials. DPSCs showed an enhanced chondrogenic differentiation under ultrasound application. Moreover, DPSCs were tested on different scaffolds, poly(vinyl alcohol)/gelatin (PVA/G) sponges and human plasma clots. We showed that both PVA/G and human plasma clot are suitable scaffolds for adhesion, growth and differentiation of DPSCs toward osteoblastic lineages. Finally, we evaluated the interactions of DPSCs with a novel class of nanomaterials, namely boron nitride nanotubes (BNNTs). From our investigation, DPSCs have appeared as a highly versatile cellular tool to be employed in regenerative medicine.

Interfacing Polymeric Scaffolds with Primary Pancreatic Ductal Adenocarcinoma Cells to Develop 3D Cancer Models

Biomatter. 2014  |  Pubmed ID: 25482337

We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs.

Boron Nitride Nanotube-functionalised Myoblast/microfibre Constructs: a Nanotech-assisted Tissue-engineered Platform for Muscle Stimulation

Journal of Tissue Engineering and Regenerative Medicine. Jul, 2015  |  Pubmed ID: 24596180

In this communication, we introduce boron nitride nanotube (BNNT)-functionalised muscle cell/microfibre mesh constructs, obtained via tissue engineering, as a three-dimensional (3D) platform to study a wireless stimulation system for electrically responsive cells and tissues. Our stimulation strategy exploits the piezoelectric behaviour of some classes of ceramic nanoparticles, such as BNNTs, able to polarize under mechanical stress, e.g. using low-frequency ultrasound (US). In the microfibre scaffolds, C2C12 myoblasts were able to differentiate into viable myotubes and to internalize BNNTs, also upon US irradiation, so as to obtain a nanotech-assisted 3D in vitro model. We then tested our stimulatory system on 2D and 3D cellular models by investigating the expression of connexin 43 (Cx43), as a molecule involved in cell crosstalk and mechanotransduction, and myosin, as a myogenic differentiation marker. Cx43 gene expression revealed a marked model dependency. In control samples (without US and/or BNNTs), Cx43 was upregulated under 2D culture conditions (10.78 ± 1.05-fold difference). Interactions with BNNTs increased Cx43 expression in 3D samples. Cx43 mRNA dropped in 2D under the 'BNNTs + US' regimen, while it was best enhanced in 3D samples (3.58 ± 1.05 vs 13.74 ± 1.42-fold difference, p = 0.0001). At the protein level, the maximal expressions of Cx43 and myosin were detected in the 3D model. In contrast with the 3D model, in 2D cultures, BNNTs and US exerted a synergistic depletive effect upon myosin synthesis. These findings indicate that model dimensionality and stimulatory regimens can strongly affect the responses of signalling and differentiation molecules, proving the importance of developing proper in vitro platforms for biological modelling.

Poly(vinyl Alcohol)/gelatin Hydrogels Cultured with HepG2 Cells As a 3D Model of Hepatocellular Carcinoma: A Morphological Study

Journal of Functional Biomaterials. Jan, 2015  |  Pubmed ID: 25590431

It has been demonstrated that three-dimensional (3D) cell culture models represent fundamental tools for the comprehension of cellular phenomena both for normal and cancerous tissues. Indeed, the microenvironment affects the cellular behavior as well as the response to drugs. In this study, we performed a morphological analysis on a hepatocarcinoma cell line, HepG2, grown for 24 days inside a bioartificial hydrogel composed of poly(vinyl alcohol) (PVA) and gelatin (G) to model a hepatocellular carcinoma (HCC) in 3D. Morphological features of PVA/G hydrogels were investigated, resulting to mimic the trabecular structure of liver parenchyma. A histologic analysis comparing the 3D models with HepG2 cell monolayers and tumor specimens was performed. In the 3D setting, HepG2 cells were viable and formed large cellular aggregates showing different morphotypes with zonal distribution. Furthermore, β-actin and α5β1 integrin revealed a morphotype-related expression; in particular, the frontline cells were characterized by a strong immunopositivity on a side border of their membrane, thus suggesting the formation of lamellipodia-like structures apt for migration. Based on these results, we propose PVA/G hydrogels as valuable substrates to develop a long term 3D HCC model that can be used to investigate important aspects of tumor biology related to migration phenomena.

Multiscale Fabrication of Biomimetic Scaffolds for Tympanic Membrane Tissue Engineering

Biofabrication. May, 2015  |  Pubmed ID: 25947357

The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE.

Ossicular Replacement Prostheses from Banked Bone with Ergonomic and Functional Geometry

Journal of Biomedical Materials Research. Part B, Applied Biomaterials. Sep, 2016  |  Pubmed ID: 27661455

This study shows the fabrication of innovative ossicular replacement prostheses (ORPs) based on banked cortical bone using computer numerically controlled ultraprecision micromilling, as a substantial improvement of "second generation" ORPs. Our aim is to combine optimal middle ear compatibility and surgical manageability in a single device, by releasing off-the-shelf homograft ORPs provided with the appealing features of synthetic ORPs, such as lightness, safety, measurement accuracy, surface decoration, and geometric plasticity. The new total ORP prototype was 13.1 ± 0.1 mg, leading to 81% weight reduction with respect to the previous model. Surface motifs of the head plate were applied to prevent slipping and migration after surgery, as shown by finite element modeling analysis. In addition, bone ORPs were provided with holed head plates to facilitate their surgical positioning while reducing their mass. A comparative measurement of acoustic responses of bone against synthetic partial ORPs in the 250-8000 Hz frequency range demonstrated their superior behavior. This study showed that banked compact bone can be optimally manufactured, eventually enabling the fabrication of light, standardized, and highly performant ORPs. The new bone ORPs may represent the ideal combination of biocompatibility and technology which can ultimately accomplish unmet otosurgical needs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

Bovine Bone Matrix/poly(l-lactic-co-ε-caprolactone)/gelatin Hybrid Scaffold (SmartBone(®)) for Maxillary Sinus Augmentation: A Histologic Study on Bone Regeneration

International Journal of Pharmaceutics. Oct, 2016  |  Pubmed ID: 27769886

The ideal scaffold for bone regeneration is required to be highly porous, non-immunogenic, biostable until the new tissue formation, bioresorbable and osteoconductive. This study aimed at investigating the process of new bone formation in patients treated with granular SmartBone(®) for sinus augmentation, providing an extensive histologic analysis. Five biopsies were collected at 4-9 months post SmartBone(®) implantation and processed for histochemistry and immunohistochemistry. Histomorphometric analysis was performed. Bone-particle conductivity index (BPCi) was used to assess SmartBone(®) osteoconductivity. At 4 months, SmartBone(®) (12%) and new bone (43.9%) were both present and surrounded by vascularized connective tissue (37.2%). New bone was grown on SmartBone(®) (BPCi=0.22). At 6 months, SmartBone(®) was almost completely resorbed (0.5%) and new bone was massively present (80.8%). At 7 and 9 months, new bone accounted for a large volume fraction (79.3% and 67.4%, respectively) and SmartBone(®) was resorbed (0.5% and 0%, respectively). Well-oriented lamellae and bone scars, typical of mature bone, were observed. In all the biopsies, bone matrix biomolecules and active osteoblasts were visible. The absence of inflammatory cells confirmed SmartBone(®) biocompatibility and non-immunogenicity. These data indicate that SmartBone(®) is osteoconductive, promotes fast bone regeneration, leading to mature bone formation in about 7 months.

Biomaterial-Based Implantable Devices for Cancer Therapy

Advanced Healthcare Materials. Nov, 2016  |  Pubmed ID: 27886461

This review article focuses on the current local therapies mediated by implanted macroscaled biomaterials available or proposed for fighting cancer and also highlights the upcoming research in this field. Several authoritative review articles have collected and discussed the state-of-the-art as well as the advancements in using biomaterial-based micro- and nano-particle systems for drug delivery in cancer therapy. On the other hand, implantable biomaterial devices are emerging as highly versatile therapeutic platforms, which deserve an increased attention by the healthcare scientific community, as they are able to offer innovative, more effective and creative strategies against tumors. This review summarizes the current approaches which exploit biomaterial-based devices as implantable tools for locally administrating drugs and describes their specific medical applications, which mainly target resected brain tumors or brain metastases for the inaccessibility of conventional chemotherapies. Moreover, a special focus in this review is given to innovative approaches, such as combined delivery therapies, as well as to alternative approaches, such as scaffolds for gene therapy, cancer immunotherapy and metastatic cell capture, the later as promising future trends in implantable biomaterials for cancer applications.

simple hit counter