In JoVE (1)

Other Publications (7)

Articles by Thomas Kohnke in JoVE

 JoVE Bioengineering

Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

1Jülich Centre for Neutron Science Outstation at MLZ, Forschungszentrum Jülich GmbH, 2Department of Chemistry, Louisiana State University, 3Jülich Centre for Neutron Science JCNS-1 & Institute of Complex Systems ICS-1, Forschungszentrum Jülich GmbH, 4Central Institute of Engineering, Electronics and Analytics — Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 5Central Institute of Engineering, Electronics and Analytics — Engineering and Technology (ZEA-1), Forschungszentrum Jülich GmbH


JoVE 54639

Other articles by Thomas Kohnke on PubMed

Reduction of Inflammation and Chronic Tissue Damage by Omega-3 Fatty Acids in Fat-1 Transgenic Mice with Pancreatitis

Biochimica Et Biophysica Acta. Nov, 2008  |  Pubmed ID: 18832028

Pancreatitis is a severe debilitating disease with high morbidity and mortality. Treatment is mostly supportive, and until now there are no clinically useful strategies for anti-inflammatory therapy. Although omega-3 polyunsaturated fatty acids (n-3 PUFA) are known to have anti-inflammatory effects, the utility of these fatty acids in the alleviation of pancreatitis remained to be investigated. The aim of this study was to examine the effect of n-3 PUFA on both acute and chronic pancreatitis in a well-controlled experimental system. We used the fat-1 transgenic mouse model, characterized by endogenously increased tissue levels of n-3 PUFA, and their wild-type littermates to examine the effect of n-3 PUFA on both acute and chronic cerulein-induced pancreatitis. Disease activity and inflammatory status were assessed by both histology and molecular methods. In acute pancreatitis, fat-1 mice showed a trend towards decreased necrosis and significantly reduced levels of plasma IL-6 levels as well as reduced neutrophil infiltration in the lung. In chronic pancreatitis there was less pancreatic fibrosis and collagen content accompanied by decreased pancreatic stellate cell activation in the fat-1 animals with increased n-3 PUFA tissue levels as compared to wild-type littermates with high levels of omega-6 (n-6) PUFA in their tissues. Our data provide evidence for a reduction of systemic inflammation in acute pancreatitis and of tissue fibrosis in chronic pancreatitis by increasing the tissue content of omega-3 polyunsaturated fatty acids. These results suggest a beneficial potential for n-3 PUFA supplementation in acute and particularly chronic pancreatitis.

Acetylsalicylic Acid Reduces the Severity of Dextran Sodium Sulfate-induced Colitis and Increases the Formation of Anti-inflammatory Lipid Mediators

BioMed Research International. 2013  |  Pubmed ID: 24083240

The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation.

CD33 Target Validation and Sustained Depletion of AML Blasts in Long-term Cultures by the Bispecific T-cell-engaging Antibody AMG 330

Blood. Jan, 2014  |  Pubmed ID: 24300852

Antibody-based immunotherapy represents a promising strategy to target and eliminate chemoresistant leukemic cells. Here, we evaluated the CD33/CD3-bispecific T cell engaging (BiTE) antibody (AMG 330) for its suitability as a therapeutic agent in acute myeloid leukemia (AML). We first assessed CD33 expression levels by flow cytometry and found expression in >99% of patient samples (n = 621). CD33 was highest expressed in AMLs with NPM1 mutations (P < .001) and lower in AMLs with complex karyotypes and t(8;21) translocations (P < .001). Furthermore, leukemic stem cells within the CD34(+)/CD38(-) compartment displayed CD33 at higher levels than healthy donor stem cells (P = .047). In MS-5 feeder cell-based long-term cultures that supported the growth of primary AML blasts for up to 36 days, AMG 330 efficiently recruited and expanded residual CD3(+)/CD45RA(-)/CCR7(+) memory T cells within the patient sample. Even at low effector to target ratios, the recruited T cells lysed autologous blasts completely in the majority of samples and substantially in the remaining samples in a time-dependent manner. This study provides the first correlation of CD33 expression levels with AML genotype in a comprehensive analysis of adult patients. Targeting CD33 ex vivo using AMG 330 in primary AML samples led to T cell recruitment and expansion and remarkable antibody-mediated cytotoxicity, suggesting efficient therapeutic potential in vivo.

Molecular Response Assessment by Quantitative Real-time Polymerase Chain Reaction After Induction Therapy in NPM1-mutated Patients Identifies Those at High Risk of Relapse

Haematologica. Aug, 2014  |  Pubmed ID: 24816240

Monitoring minimal residual disease is an important way to identify patients with acute myeloid leukemia at high risk of relapse. In this study we investigated the prognostic potential of minimal residual disease monitoring by quantitative real-time polymerase chain reaction analysis of NPM1 mutations in patients treated in the AMLCG 1999, 2004 and 2008 trials. Minimal residual disease was monitored - in aplasia, after induction therapy, after consolidation therapy, and during follow-up - in 588 samples from 158 patients positive for NPM1 mutations A, B and D (with a sensitivity of 10(-6)). One hundred and twenty-seven patients (80.4%) achieved complete remission after induction therapy and, of these, 56 patients (44.1%) relapsed. At each checkpoint, minimal residual disease cut-offs were calculated. After induction therapy a cut-off NPM1 mutation ratio of 0.01 was associated with a high hazard ratio of 4.26 and the highest sensitivity of 76% for the prediction of relapse. This was reflected in a cumulative incidence of relapse after 2 years of 77.8% for patients with ratios above the cut-off versus 26.4% for those with ratios below the cut-off. In the favorable subgroup according to European LeukemiaNet, the cut-off after induction therapy also separated the cohort into two prognostic groups with a cumulative incidence of relapse of 76% versus 6% after 2 years. Our data demonstrate that in addition to pre-therapeutic factors, the course of minimal residual disease in an individual is an important prognostic factor and could be included in clinical trials for the guidance of post-remission therapy. The trials from which data were obtained were registered at www.clinicaltrials.gov (#NCT01382147, #NCT00266136) and at the European Leukemia Trial Registry (#LN_AMLINT2004_230).

Virus Infection in HLA-haploidentical Hematopoietic Stem Cell Transplantation: Incidence in the Context of Immune Recovery in Two Different Transplantation Settings

Annals of Hematology. Oct, 2015  |  Pubmed ID: 26055139

We retrospectively compared the incidence of virus infections and outcome in the context of immune reconstitution in two different HLA-haploidentical transplantation (haplo-HSCT) settings. The first was a combined T-cell-replete and T-cell-deplete approach using antithymocyte globulin (ATG) prior to transplantation in patients with hematological diseases (cTCR/TCD group, 28 patients; median age 31 years). The second was a T-cell-replete (TCR) approach using high-dose posttransplantation cyclophosphamide (TCR/PTCY group, 27 patients; median age 43 years). The incidence of herpesvirus infection was markedly lower in the TCR/PTCY (22 %) than in the cTCR/TCD group (93 %). Recovery of CD4+ T cells on day +100 was faster in the TCR/PTCY group. CMV reactivation was 30 % in the TCR/PTCY compared to 57 % in the cTCR/TCD group, and control with antiviral treatment was superior after TCR/PTCY transplantation (100 vs 50 % cTCR/TCD). Twenty-five percent of the patients in the cTCR/TCD group but no patient in the TCR/PTCY group developed PTLD. While 1-year OS was not different (TCR/PTCY 59 % vs cTCR/TCD 39 %; p = 0.28), virus infection-related mortality (VIRM) was significantly lower after TCR/PTCY transplantation (1-year VIRM, 0 % TCR/PTCY vs 29 % cTCR/TCD; p = 0.009). On day +100, predictors of better OS were lymphocytes >300/μl, CD3+ T cells >200/μl, and CD4+ T cells >150/μl, whereas the application of steroids >1 mg/kg was correlated with worse outcome. Our results suggest that by presumably preserving antiviral immunity and allowing fast immune recovery of CD4+ T cells, the TCR approach using posttransplantation cyclophosphamide is well suited to handle the important issue of herpesvirus infection after haplo-HSCT.

Immunotherapy for Acute Myeloid Leukemia

Seminars in Hematology. Jul, 2015  |  Pubmed ID: 26111468

Despite longstanding efforts in basic research and clinical studies, the prognosis for patients with acute myeloid leukemia (AML) remains poor. About half of the patients are not medically fit for intensive induction therapy to induce a complete remission and are treated with palliative treatment concepts. The patients medically fit for intensive induction therapy have a high complete remission rate but the majority suffers from relapse due to chemo-refractory leukemic cells. Allogeneic stem cell transplantation as post-remission therapy can significantly reduce the likelihood of relapse, but it is associated with a high rate of morbidity and mortality. Novel therapeutic concepts are therefore urgently sought after. During recent years, the focus has shifted towards the development of novel immunotherapeutic strategies. Some of the most promising are drug-conjugated monoclonal antibodies, T-cell engaging antibody constructs, adoptive transfer with chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination. Here, we review recent progress in these four fields and speculate about the optimal time points during the course of AML treatment for their application.

Increase of PD-L1 Expressing B-precursor ALL Cells in a Patient Resistant to the CD19/CD3-bispecific T Cell Engager Antibody Blinatumomab

Journal of Hematology & Oncology. Oct, 2015  |  Pubmed ID: 26449653

The bispecific T cell engager blinatumomab has shown encouraging clinical activity in B-precursor acute lymphoblastic leukemia (ALL). However, about half of relapsed/refractory patients do not respond to therapy. Here, we present the case of a 32-year-old male patient with refractory B-precursor ALL who was resistant to treatment with blinatumomab. Bone marrow immunohistochemistry revealed T cell infiltrates and an increase in programmed death-ligand 1 (PD-L1)-positive ALL cells as a potential immune escape mechanism. We were able to recapitulate the clinical observation in vitro by showing that blinatumomab was not able to mediate cytotoxicity of CD19-positive ALL cells using autologous T cells. In contrast, the addition of healthy donor T cells led to lysis of ALL cells.These results strongly encourage further systematic evaluation of checkpoint molecules in cases of blinatumomab treatment failure and might highlight a possible mechanism to overcome resistance to this otherwise highly effective treatment.

Waiting
simple hit counter