Skip to content
Articles by Vinh D. Pham in JoVE
Other articles by Vinh D. Pham on PubMed
-
Mutations Affecting Predation Ability of the Soil Bacterium Myxococcus Xanthus
Microbiology (Reading, England).
Jun, 2005 |
Pubmed ID: 15941994 Myxococcus xanthus genetic mutants with characterized phenotypes were analysed for the ability to prey on susceptible bacteria. Quantification of predatory ability was scored by a newly developed method under conditions in which prey bacteria provided the only source of nutrients. These results were corroborated by data derived using a previously published protocol that measures predation in the presence of limited external nutrients. First, early developmental regulatory mutants were examined, because their likely functions in assessing the local nutrient status were predicted to be also important for predation. The results showed that predation efficiency is reduced by 64-80 % for mutants of three A-signalling components, AsgA, AsgC and AsgE, but not for AsgB. This suggests that an Asg regulon function that is separate from A-signal production is needed for predation. Besides the Asg components, mutations in the early developmental genes sdeK and csgA were also consistently observed to reduce predatory efficacy by 36 and 33 %, respectively. In contrast, later developmental components, such as DevRS, 4406 and PhoP4, did not appear to play significant roles in predation. The predatory abilities of mutants defective for motility were also tested. The data showed that adventurous, but not social, motility is required for predation in the assay. Also, mutants for components in the chemotaxis-like Frz system were found to be reduced in predation efficiency by between 62 and 85 %. In sum, it was demonstrated here that defects in development and development-related processes affect the ability of M. xanthus to prey on other bacteria.
-
-
-
The Response Regulator PhoP4 is Required for Late Developmental Events in Myxococcus Xanthus
Microbiology (Reading, England).
Jun, 2006 |
Pubmed ID: 16735725 Phosphate regulation is complex in the developmental prokaryote Myxococcus xanthus, and requires at least four two-component systems (TCSs). Here, the identification and characterization of a member of one TCS, designated PhoP4, is reported. phoP4 insertion and in-frame deletion strains caused spore viability to be decreased by nearly two orders of magnitude, and reduced all three development-specific phosphatase activities by 80-90 % under phosphate-limiting conditions. Microarray and quantitative PCR analyses demonstrated that PhoP4 is also required for appropriate expression of the predicted pstSCAB-phoU operon of inorganic phosphate assimilation genes. Unlike the case for the other three M. xanthus Pho TCSs, the chromosomal region around phoP4 does not contain a partner histidine kinase gene. Yeast two-hybrid analyses reveal that PhoP4 interacts reciprocally with PhoR2, the histidine kinase of the Pho2 TCS; however, the existence of certain phenotypic differences between phoP4 and phoR2 mutants suggests that PhoP4 interacts with another, as-yet unidentified, histidine kinase.
-
Phylogenetic Analyses of Ribosomal DNA-containing Bacterioplankton Genome Fragments from a 4000 M Vertical Profile in the North Pacific Subtropical Gyre
Environmental Microbiology.
Sep, 2008 |
Pubmed ID: 18494796 High-throughput identification of rRNA gene-containing clones in large insert metagenomic libraries is difficult, because of the high background of host ribosomal RNA (rRNA) and rRNA genes. To address this challenge, a membrane hybridization method was developed to identify all bacterial small subunit rRNA-containing fosmid clones of microbial community DNA from seven different depths in the North Pacific Subtropical Gyre. Out of 101,376 clones screened, 751 rDNA-containing clones were identified that grouped in approximately 60 different clades. Several rare sequences only remotely related to known groups were detected, including a Wolbachia-related sequence containing a putative intron or intervening sequence, as well as seven sequences from Order Myxococcales not previously detected in pelagic habitats. Stratified, depth-specific population structure was evident within both cultured and uncultured lineages. Conversely, some eurybathyal members of the genera Alcanivorax and Rhizobium shared identical small subunit ribosomal DNA sequences that were distributed from surface waters to the 4000 m depth. Comparison with similar analyses in Monterey Bay microbial communities revealed previously recognized, as well as some distinctive, depth-stratified partitioning that distinguished coastal from open ocean bacterioplankton populations. While some bias was evident in fosmid clone recovery in a few particular lineages, the overall phylogenetic group recovery and distributions were consistent with previous studies, as well as with direct shotgun sequence data from the same source DNA.
-
Characterizing Microbial Diversity in Production Water from an Alaskan Mesothermic Petroleum Reservoir with Two Independent Molecular Methods
Environmental Microbiology.
Jan, 2009 |
Pubmed ID: 18771500 The phylogenetic diversity of Bacteria and Archaea within a biodegraded, mesothermic petroleum reservoir in the Schrader Bluff Formation of Alaska was examined by two culture-independent methods based on fosmid and small-subunit rRNA gene PCR clone libraries. Despite the exclusion of certain groups by each method, there was overall no significant qualitative difference in the diversity of phylotypes recovered by the two methods. The resident Bacteria belonged to at least 14 phylum-level lineages, including the polyphyletic Firmicutes, which accounted for 36.2% of all small-subunit rRNA gene-containing (SSU(+)) fosmid clones identified. Members of uncultured divisions were also numerous and made up 35.2% of the SSU(+) fosmid clones. Clones from domain Archaea accounted for about half of all SSU(+) fosmids, suggesting that their cell numbers were comparable to those of the Bacteria in this microbial community. In contrast to the Bacteria, however, nearly all archaeal clones recovered by both methods were related to methanogens, especially acetoclastic methanogens, while the plurality of bacterial fosmid clones was affiliated with Synergistes-like acetogenic Firmicutes that possibly degrade longer-chain carboxylic acid components in the crude oil to acetate. These data suggest that acetate may be a key intermediary metabolite in this subsurface anaerobic food chain, which leads to methane production as the primary terminal electron sink.
-
Time-series Analyses of Monterey Bay Coastal Microbial Picoplankton Using a 'genome Proxy' Microarray
Environmental Microbiology.
Jan, 2011 |
Pubmed ID: 20695878 To investigate the temporal, spatial and phylogenetic resolution of marine microbial community structure and variability, we designed and expanded a genome proxy array (an oligonucleotide microarray targeting marine microbial genome fragments and genomes), evaluated it against metagenomic sequencing, and applied it to time-series samples from the Monterey Bay. The expanded array targeted 268 microbial genotypes across much of the known diversity of cultured and uncultured marine microbes. The target abundances measured by the array were highly correlated to pyrosequence-based abundances (linear regression R(2) = 0.85-0.91, P < 0.0001). Fifty-seven samples from ∼4 years in Monterey Bay were examined with the array, spanning the photic zone (0 m), the base of the surface mixed layer (30 m) and the subphotic zone (200 m). A significant portion of the expanded genome proxy array's targets showed signal (95 out of 268 targets present in ≥ 1 sample). The multi-year community survey showed the consistent presence of a core group of common and abundant targeted taxa at each depth in Monterey Bay, higher variability among shallow than deep samples, and episodic occurrences of more transient marine genotypes. The abundance of the most dominant genotypes peaked after strong episodic upwelling events. The genome-proxy array's ability to track populations of closely related genotypes indicated population shifts within several abundant target taxa, with specific populations in some cases clustering by depth or oceanographic season. Although 51 cultivated organisms were targeted (representing 19% of the array) the majority of targets detected and of total target signal (85% and ∼92% respectively) were from uncultivated genotypes, often those derived from Monterey Bay. The array provided a relatively cost-effective approach (∼$15 per array) for surveying the natural history of uncultivated lineages.
Get cutting-edge science videos from JoVE sent straight to your inbox every month.