Xue-Jun Li

Department of Biomedical Sciences, College of Medicine Rockford

University of Illinois

Xue-Jun Li
Associate Professor

Xue-Jun Li received her PhD in Neurobiology from Shanghai Medical College of Fudan University in 2000. To pursue her strong interests in neurodegenerative disease and regenerative medicine, she joined the Stem Cell Research Program at the University of Wisconsin-Madison, first as a postdoctoral associate and then as an assistant scientist. In 2007, she joined the Neuroscience Department at the University of Connecticut Health Center as an assistant professor. She is also a PI of the University of Connecticut Stem Cell Institute. In February 2016, Dr. Li joined the Department of Biomedical Sciences at the College of Medicine-Rockford and the Department of Bioengineering at the University of Illinois-Chicago as an associate professor. Dr. Li's research focuses on specifying neuronal subtypes from human pluripotent stem cells (hPSCs including both human embryonic stem cells and induced pluripotent stem cells) and using these stem cell-derived neurons to study motor neuron and axonal degeneration. Dr. Li has published over 40 peer reviewed manuscripts and 3 book chapters. As the lead author, she published the seminal report on the specification of spinal motor neurons from hPSCs (Nature Biotechnology, 2005). This paradigm she developed has been widely used in motor neuron research (>800 citations; Google Scholar 01/2020). Recently, her lab has successfully established human stem cell models for spinal muscular atrophy (Cell Research, 2013; Disease Models & Mechanisms, 2016) and hereditary spastic paraplegias (Stem Cells, 2014; Human Molecular Genetics, 2014 & 2018). Her research is supported by grant funding from the National Institute of Health, the Spastic Paraplegia Foundation, the Blazer Foundation, the Connecticut Stem Cell Research Program and the ALS Association. By combining cellular, molecular, bioengineering and system approaches, research in her lab aims to understand the pathogenic mechanisms of motor neuron diseases and to develop therapeutics for the treatment of these debilitating diseases.

Publications