Yong Chen

Institute for Integrated Cell-Material Sciences (WPI-iCeMS)

Kyoto University

Yong Chen has not added a biography.

If you are Yong Chen and would like to personalize this page please email our Author Liaison for assistance.

Publications

Tillverkning av en multiplexade konstgjorda cellulära mikromiljö Array

1Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, 2Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 3Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 4Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 5Institute for Chemical Research, Kyoto University, 6Ecole Normale Supérieure

JoVE 57377

 Bioengineering

Series and Parallel Resistors

JoVE 10289

Source: Yong P. Chen, PhD, Department of Physics & Astronomy, College of Science, Purdue University, West Lafayette, IN

This experiment demonstrates how current is distributed in resistors connected in series or parallel, and thus describes how to calculate the total "effective" resistance. Using Ohm's law, it possible to convert between the voltage and current through a resistance, if the resistance is known.

For two resistors connected in series, (meaning that they are wired one after the other), the same current will flow through them. The voltages will add up to a "total voltage", and thus, the total "effective resistance" is the sum of the two resistances. This is sometimes called a "voltage divider" because the total voltage is divided between the two resistors in proportion to their individual resistances.

For two resistors connected in parallel, (meaning that they are both wired between two shared terminals), the current is split between the two while they share the same voltage. In this case, the reciprocal of the total effective resistance will equal the sum of the reciprocals of the two resistances.

Series and parallel resistors are a key component to most circuits and influence how electricity is used in most applications.

 Physics II

Capacitance

JoVE 10296

Source: Yong P. Chen, PhD, Department of Physics & Astronomy, College of Science, Purdue University, West Lafayette, IN

This experiment will use commercial capacitors and a parallel plate capacitor to demonstrate the concept of capacitance. A capacitor stores opposite charges on two conductors, for example two opposite metal plates, leading to a potential difference (voltage drop) between the two conductors. The amount of charge on each conductor is proportional to this voltage drop, with the capacitance as the proportionality factor. If the voltage is changing with time, the current flowing into the capacitor will be proportional to the rate of that change, and again the capacitance is the proportionality factor.

The capacitance of the parallel plate capacitor is the product of the dielectric constant with the distance between the plates divided by the area of the plate. This experiment will demonstrate the proportionality with distance by first depositing some charge onto the capacitor and then using a high-impedance voltmeter (electrometer) to monitor the voltage between the plates as the distance is increased. The voltage change will also be monitored with a dielectric material, such as a plastic plate inserted into the space between the metal plates.

A capacitance meter will be used to directly measure the capacitance, as well as to measure parallel and series connections of commercially-available capacitors and to study how the total capacitance is related to individual capacitances.

 Physics II

RC/RL/LC Circuits

JoVE 10318

Source: Yong P. Chen, PhD, Department of Physics & Astronomy, College of Science, Purdue University, West Lafayette, IN

Capacitors (C), inductors (L), and resistors (R) are each an important circuit element with distinct behaviors. A resistor dissipates energy and obeys Ohm's law, with its voltage proportional to its current. A capacitor stores electrical energy, with its current proportional to the rate of change of its voltage, while an inductor stores magnetic energy, with its voltage proportional to the rate of change of its current. When these circuit elements are combined, they can cause the current or voltage to vary with time in various, interesting ways. Such combinations are commonly used to process time- or frequency-dependent electrical signals, such as in alternating current (AC) circuits, radios, and electrical filters. This experiment will demonstrate the time-dependent behaviors of the resistor-capacitor (RC), resistor-inductor (RL), and inductor-capacitor (LC) circuits. The experiment will demonstrate the transient behaviors of RC and RL circuits using a light bulb (resistor) connected in series to a capacitor or inductor, upon connecting to (and switching on) a power supply. The experiment will also demonstrate the oscillatory behavior of an LC circuit.

 Physics II

Electric Fields

JoVE 10322

Source: Yong P. Chen, PhD, Department of Physics & Astronomy, College of Science, Purdue University, West Lafayette, IN

An electric field is generated by a charged object (referred to as the source charge) in the space around it, and represents the ability to exert electric force on another charged object (referred to as the test charge). Represented by a vector at any given point in the space, the electric field is the electrical force per unit test charge placed at that point (the force on an arbitrary charge would be the charge times the electric field). The electric field is fundamental to electricity and effects of charges, and it is also closely related to other important quantities such as electrical voltage.

This experiment will use electrified powders in an oil that line up with electric fields produced by charged electrodes to visualize the electric field lines. This experiment will also demonstrate how an electric field can induce charges and how charges respond to the electric field by observing the effect of a charged rod on a nearby soda can.

 Physics II

Electric Potential

JoVE 10329

Source: Yong P. Chen, PhD, Department of Physics & Astronomy, College of Science, Purdue University, West Lafayette, IN

Electric potential, also known as "voltage", measures the electric potential energy per unit charge. Electric field is a scalar quantity and is fundamental to many electrical effects. Like potential energy, what is physically meaningful is the difference in the electric potential. For example, the spatial variation in the electric potential is related to the electric field, which gives rise to the electric force on a charge. The difference in the electric potential between two points in a resistor drives the electric current flow.

This experiment will use both a volt meter and a fluorescent tube to demonstrate the electric potential (more accurately, the potential difference between two points in space) generated by a charged sphere. The experiment will demonstrate the concept of equipotential surfaces, which are perpendicular to the electric fields.

 Physics II

Magnetic Fields

JoVE 10384

Source: Yong P. Chen, PhD, Department of Physics & Astronomy, College of Science, Purdue University, West Lafayette, IN

Magnetic fields can be generated by moving charges, such as an electrical current. The magnetic field generated by a current can be calculated from the Maxwell equation. In addition, magnetic objects such as bar magnets can also generate magnetic fields due to microscopic dynamics of charges inside the material. Magnetic fields will exert magnetic force on other moving charges or magnetic objects, with the force proportional to the magnetic field. Magnetic fields are fundamental to electromagnetism and underlie many practical applications ranging from compasses to magnetic resonance imaging.

This experiment will demonstrate magnetic fields produced by a permanent bar magnet as well as an electrical current, using small compass needle magnets that align with magnetic fields. This experiment will also demonstrate the force exerted by the magnetic fields produced by a current on another current-carrying wire.

 Physics II

Photoelectric Effect

JoVE 10413

Source: Yong P. Chen, PhD, Department of Physics && Astronomy, College of Science, Purdue University, West Lafayette, IN

Photoelectric effect refers to the emission of electrons from a metalwhen light is shining on it. In order for the electrons to be liberated from the metal, the frequency of the light needs to be sufficiently high such that the photons in the light have sufficient energy. This energy is proportional to the light frequency.The photoelectric effect provided the experimental evidence for the quantum of light that is known as photon.

This experiment will demonstrate the photoelectric effect using a charged zinc metal subject to either a regular lamp light, or ultraviolet (UV) light with higher frequency and photon energy.The zinc plate will be connected to an electroscope, an instrument that can read the presence and relative amount of charges. The experiment will demonstrate that the UV light, but not the regular lamp, can discharge the negatively charged zinc by ejecting its excess electrons.Neither light source, however, can discharge positively charged zinc, consistent with the fact that electrons that are emitted in photoelectric effect.

 Physics II

Interference and Diffraction

JoVE 10424

Source: Yong P. Chen, PhD, Department of Physics & Astronomy, College of Science, Purdue University, West Lafayette, IN

Interference and diffraction are characteristic phenomena of waves, ranging from water waves to electromagnetic waves such as light. Interference refers to the phenomenon of when two waves of the same kind overlap to give an alternating spatial variation of large and small wave amplitude. Diffraction refers to the phenomenon of when a wave passes through an aperture or goes around an object, different parts of the wave can interfere and also give rise to a spatial alternation of large and small amplitude.

This experiment will demonstrate the wave nature of the light by observing diffraction and interference of a laser light passing through a single slit and double slits, respectively. The slits are simply cut using razor blades in an aluminum foil and the characteristic diffraction and interference patterns manifest as patterns of alternating light and dark fringes on a screen placed after the foil, when the light is shone through the slit(s) on the foil. Historically, the observation of diffraction and interference of light played important roles in establishing that light is an electromagnetic wave.

 Physics II