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Abstract

We present a modified native chromatin immunoprecipitation sequencing (ChIP-seq) experimental protocol compatible with a Gaussian mixture
distribution based analysis methodology (nucleosome density ChIP-seq; ndChIP-seq) that enables the generation of combined measurements
of micrococcal nuclease (MNase) accessibility with histone modification genome-wide. Nucleosome position and local density, and the
posttranslational modification of their histone subunits, act in concert to regulate local transcription states. Combinatorial measurements of
nucleosome accessibility with histone modification generated by ndChIP-seq allows for the simultaneous interrogation of these features. The
ndChIP-seq methodology is applicable to small numbers of primary cells inaccessible to cross-linking based ChIP-seq protocols. Taken together,
ndChIP-seq enables the measurement of histone modification in combination with local nucleosome density to obtain new insights into shared
mechanisms that regulate RNA transcription within rare primary cell populations.

Video Link

The video component of this article can be found at https://www.jove.com/video/56085/

Introduction

The eukaryotic genome is packaged into chromatin via repeating nucleosome structures that consist of two copies of four histone proteins (e.g.,
H2A, H2B, H3, and H4) circumscribed by 146 base pairs of DNA1,2. Chromatin remodeling complexes control nucleosome position within gene
promoter boundaries and participate in the regulation of gene expression by altering accessibility of the DNA to transcription factors and to the
RNA polymerase machinery3,4.

Amino terminal tails of histones within the nucleosome are subjected to various covalent modifications, including acetylation, methylation,
phosphorylation, ubiquitylation, sumoylation, formylation, and hydroxylation of specific amino acids5,6,7,8. Positions and degrees of these
modifications dictate a chromatin state that influence chromatin structure and control access of the molecular complexes that allow activation of
transcription7. Given that both nucleosome density and histone modification play a role in the local control of gene transcription, we developed a
native ChIP approach that enables the simultaneous measurement of nucleosome density and histone modification9,10.

Native ChIP-seq takes advantage of the endonuclease micrococci nuclease (MNase) to digest intact chromatin in its native state within the
nucleus11,12, a property that has been leveraged to map nucleosome positioning13,14,15. Nucleosome density ChIP-seq (ndChIP-seq) takes
advantage of the property of preferential access of MNase to open regions of chromatin to generate measurements that combine MNase
accessibility with histone modification10. ndChIP-seq is suitable for the profiling of histone modifications in rare primary cells, tissues, and
cultured cells. Here, we present a detailed protocol that enables the generation of sequence datasets suitable for a previously described
analytical frame work10 that integrates fragment size post immunoprecipitation, determined by paired-end read boundaries, to simultaneously
investigate MNase accessibility with histone modification measurements. Previously, application of this protocol to 10,000 primary human
cord blood derived CD34+ cells and human embryonic stem cells revealed unique relationships between chromatin structure and histone
modifications within these cell types10. Given its ability to simultaneously measure nucleosome accessibility and histone modification, ndChIP-
seq is capable of revealing epigenomic features in a cell population at a single nucleosome level, and resolving heterogeneous signatures
into their constituent elements. An example of the exploration of heterogeneous cellular populations by ndChIP-seq is investigation of bivalent
promoters, where both H3K4me3, an active mark, and H3K27me3, a repressive mark, are present10.
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Protocol

NOTE: The minimum input for this protocol is 10,000 cells per single immuno-precipitation (IP) reaction. Print out the supplied experimental
worksheet and utilize as a guideline to plan out the experiment. Incubations at room temperature are assumed to be at ~22 °C. All of the buffer
recipes are provided in Table 1. All of the buffers should be stored at 4 °C and kept on ice during the procedure, unless stated otherwise.

1. Cell Preparation

1. Cultured cells
1. Wash the cells with 1 mL of phosphate buffer saline (PBS) and accurately determine the cell concentration using a hemocytometer. If

there are more than one million cells, increase the volume of PBS.
2. Based on the cell count, aliquot an equivalent of 70,000-100,000 cells into a sterile 1.5 mL tube, and spin down at 500 x g for 6 min at

4 °C. Using a pipette, slowly remove and discard the supernatant (without disturbing the cell pellet) and resuspend the pellet in ice-cold
lysis buffer + 1x protease inhibitor cocktail (PIC) to a concentration of 1,000 cells/µL. Mix well by pipetting up and down 20-30 times. It
is critical that cell clumps are disrupted. Try not to create bubbles.

3. Proceed directly to Day 1 (Section 2) of the ndChIP-seq protocol or flash freeze the cell pellet in liquid nitrogen and store at -80 °C.

2. Sorted cells
1. Collect 70,000-100,000 sorted16 cells into a 1.5 mL tube with 350 µL of Hank's buffered salt solution (HBSS), or PBS + 2% fetal bovine

serum (FBS).
2. Spin down each cell aliquot at 500 x g for 6 min at 4 °C. Using a pipette, slowly remove the supernatant (without disturbing the cell

pellet) and resuspend in ice-cold lysis buffer + 1x PIC to a final concentration of 1,000 cells/µL. Mix well in lysis buffer by pipetting up
and down 20-30 times. Ensure that the cell clumps are disrupted. Try not to create bubbles.

3. Proceed directly to Day 1 (Section 2) of the ndChIP-seq protocol, or flash freeze the cell pellet in liquid nitrogen and store at -80 °C.

2. DAY 1: ndChIP-seq

1. Preparation of the antibody-bead complex
1. Prepare a 37 °C water bath and an ice bucket. Working on ice, prepare 1x IP buffer/1x PIC and 1x antibody (Ab) dilution buffer, and

keep them on ice. Retrieve Protein A (or G) magnetic beads (see Discussion for selection criteria) from the 4 °C storage, and mix very
well by gentle pulse-vortexing. Keep it on ice.
 

NOTE: Pulse-vortexing means vortexing is stopped every time a full vortex is formed in the tube.
2. Transfer 24 µL of Protein A (or G) magnetic beads per IP reaction into a new 2 mL tube. Record the volume of beads and keep the

tube on ice. For example, for 7 IPs, use 24 µL x 7 = 168 µL.
3. Place the tube on the tube magnet and wait for the solution to become clear indicating bead separation. Without disturbing the beads,

carefully remove the supernatant using a pipette and discard. Take the tube off the tube magnet and place it on ice.
4. Add an equal volume (i.e., initial volume of beads) of ice-cold IP buffer + 1x PIC mix. Mix by pipetting up and down. Do not vortex.
5. Place the IP buffer+ 1x PIC + beads back onto the tube magnet and wait for the solution to become clear indicating bead separation.

Without disturbing the beads, carefully remove the supernatant using a pipette and discard. Repeat cold IP buffer + 1X PIC wash two
more times for a total of 3 washes.

6. After the final wash, resuspend the beads in an equal volume (i.e., initial volume of beads) of ice-cold IP buffer + 1x PIC mix. Mix by
pipetting up and down. Do not vortex. Keep the tube on ice.

7. On ice, pour 10 mL of IP buffer + PIC into a 25 mL V-shaped reservoir. Using a multichannel pipette, add 130 µL of ice-cold IP buffer +
1x PIC mix into individual wells of a clean V-bottom 96-well plate. Fill one well per IP. Label the plate as "Ab-bead complex".

8. Add 12 µL of the washed Protein A (or G) magnetic beads into each well containing IP buffer + PIC, and mix by pipetting up and down.
Keep the remaining washed beads on ice.

9. Obtain validated antibodies from their cold storage and thaw on ice, if required. Working on ice, dilute the antibodies with 1x Ab dilution
buffer to the concentrations shown in Table 2.

10. To each well of the Ab-bead complex plate, add 1 µL of the appropriate, diluted antibody (Table 1). Record the well to the antibody key.
Using multichannel pipette, mix each row by pipetting up and down 20 times. Change tips between rows. Seal the Ab-bead complex
plate very well with an aluminum plate cover and incubate at 4 °C on a rotating platform for at least 2 h.
 

NOTE: This incubation can proceed until ready to start step 2.4.

2. Cell lysis and chromatin digestion
1. Working on ice, prepare 1x lysis buffer + 1x PIC and 1 mL of MNase I dilution buffer (Table 3) and keep them on ice .
2. Retrieve the cell pellets from their -80 °C storage (or from ice, if freshly prepared). Thaw each cell pellet in a 37 °C water bath for a 10

s, then transfer to ice.
3. To each cell pellet immediately add ice-cold 1x lysis buffer + 1x PIC to a final concentration of 10,000 cells/20 µL, and mix 10 times by

pipetting up and down, without creating bubbles. For example, for 70,000 cells the final volume is 140 µL.
4. Working on ice, aliquot 20 µL/well of the resulting lysates into a 96-well plate. Cover the plate with a plastic seal and incubate on ice for

20 min. Label the plate "MNase digestion" and record the wells to a template key. In order to assure an exact timing of the chromatin
digestion reaction, do not proceed to the digestion with more than 2 rows of samples at a time.

5. Just before the 20 min lysis is complete, dilute the MNase I enzyme with MNase I dilution buffer, to a final concentration of 20 U/µL,
and keep it on ice.
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6. Working on ice, prepare the MNase I digestion master mix according to Table 4 and aliquot 20 µL of the mix per each row of samples
plus 5 µL dead volume into one row of a 96-well reservoir plate and keep it on ice. For two rows, the volume should be: (20 µL x 2) + 5
µL = 45 µL.

7. After the lysates finish incubating, remove the MNase digestion plate from ice. Using a multichannel pipette, add 20 µL of MNase I
digestion master mix into each row of samples, and mix 10 times by pipetting up and down. Change tips between rows. Incubate at
room temperature for exactly 5 min.

8. After 5 min, to stop the reaction, use a multichannel pipette to add 6 µL of 250 µM ethylenediaminetetraacetic acid (EDTA) into each
row of samples and mix up and down a few times. Change tips between rows. After EDTA addition, switch the setting of the pipette to
20 µL and mix 10 times by pipetting up and down to assure a complete stop of the digestion reaction. Change tips between rows.

9. Using a multichannel pipette, to each row of the MNase digested samples, add 6 µL of 10x lysis buffer and mix well by pipetting up and
down 10 times. Cover with a plastic seal and incubate on ice for 15 min.

3. Input separation and pre-clearing
1. Following the 15 min incubation, working on ice, pool all wells for the same cell pellet/template into one sterile, pre-chilled on ice, 1.5

mL tube (pre-labeled with the template ID) and mix thoroughly but slowly using a pipette to avoid detergent foaming.
2. For each cell pellet/template, transfer 8 µL of the digested chromatin into a new sterile, 0.5 mL tube (pre-labeled with the template ID),

and store at 4 °C overnight. This will serve as the input control.
3. Distribute the remaining volume of the digested chromatin in 48 µL aliquots, into a new 96-well plate. Cell pellet/template 1 goes into

wells A01-A06, cell pellet/template 2 goes into wells A07-A12, etc. Record the wells to a template key. Label the plate "Pre-clearing".
4. Using a multichannel pipette, add 120 µL of 1x IP Buffer + 1x PIC and 12 µL of washed Protein A (or G) magnetic beads into each well

of the Pre-clearing plate from step 2.3.3. Mix each row by pipetting up and down 10 times. Change tips between rows. Seal the plate
very well with an aluminum plate cover and incubate on a rotating platform at 4 °C for a minimum of 2 h.

4. Immunoprecipitation reaction
1. Before starting this step make sure that the Ab-bead complex plate (step 2.1.10) and the Pre-clearing plate (step 2.3.4) have incubated

for at least 2 h. Quick spin both plates by centrifuging for 10 s at 200 x g.
2. Place the Ab-bead complex plate (from step 2.1.10) on a plate magnet and wait 15 s for the solution to become clear. Carefully remove

and discard the supernatant using a pipette without disturbing the beads. Remove the plate from the plate magnet and keep it on ice.
3. Place the Pre-clearing reaction plate (from step 2.3.4) on a plate magnet and wait 15 s for the beads to separate and for the solution

to become clear. Without disturbing the beads, carefully transfer the supernatant using a pipette to the corresponding wells of the Ab-
bead complex plate kept on ice and mix gently 15 times by pipetting up and down. Seal the plate well with an aluminum plate cover and
incubate overnight (12-18 h) at 4 °C on a rotating platform. Re-label the plate "IP reaction".

3. DAY 2: ndCHIP-seq

1. Washes and elution
1. Set the heating mixer to 65 °C. On ice, prepare a low-salt wash buffer and high-salt wash buffer. Quick spin the IP reaction plate from

step 2.4.3 for 10 s at 200 x g.
2. Place the IP reaction plate on a plate magnet and wait 15 s for the solution to become clear. Using a multichannel pipette, without

disturbing the beads, carefully remove and discard the supernatant. Take the plate off the plate magnet and place it on ice.
3. To each row of samples in the IP reaction plate, add 150 µL of ice-cold low-salt wash buffer and mix slowly 10 times up and down to

fully resuspend the beads.
4. Place the IP reaction plate back onto the plate magnet, wait for the beads to separate, and using a multichannel pipette, without

disturbing the beads remove and discard the supernatant. Place the plate back on ice and repeat steps 3.1.3 and 3.1.4 for a total of 2
washes.

5. On ice, to each row of samples in the IP reaction plate, add 150 µL of the high salt wash buffer and mix slowly 10 times by pipetting up
and down to fully resuspend the beads.

6. Place the IP reaction plate back onto the plate magnet, wait for the beads to separate, and using a multichannel pipette, without
disturbing the beads remove and discard the supernatant. Place the IP reaction plate on ice and pre-chill a new 96-well plate beside it.

7. To each row of samples in the IP reaction plate, add 150 µL of the high salt wash buffer and mix slowly 10 times by pipetting up and
down to fully resuspend the beads. After resuspension, transfer each row of samples to the corresponding row of the new, pre-chilled,
96-well plate. Label the plate "IP reaction". Discard the old plate.

8. Place the new IP reaction plate on the plate magnet and wait for the beads to separate. Using a multichannel pipette, without disturbing
the beads, carefully remove and discard the supernatant. Keep the plate at room temperature.

9. To each row of samples in the IP reaction plate, add 30 µL of the ChIP elution buffer (EB) and mix slowly 10 times by pipetting up and
down. Make sure to prevent bubble formation.

10. Seal the plate well with a PCR cover and incubate in a heating mixer at 65 °C for 1.5 h with a mixing speed of 1,350 rpm.
11. After 1.5 h incubation, spin down the IP reaction plate at 200 x g for 1 min at 4 °C. Change the setting of the heating mixer to 50 °C.
12. After the spin, place the IP reaction plate on a plate magnet and wait for the solution to clear. Using a multichannel pipette, without

disturbing the beads, carefully transfer 30 µL of the supernatant into a new 96-well plate. Use fresh tips for each row. Label the plate
"IP reaction" and keep it at room temperature.

2. Protein digestion
1. Retrieve 30% PEG/1 M NaCl magnetic bead17 (buffer composition table) solution from the 4 °C refrigerator and keep it at room

temperature for at least 30 min. Critical: Ensure that the bead solution fully reaches room temperature before proceeding.
2. Retrieve input control samples from 4 °C storage (step 2.3.2) and quick spin. Measure the volume using a pipette and add ultrapure

water to each input control for a final volume of 30 µL. Transfer the input control samples to the pre-selected input wells (empty wells)
in the IP reaction plate (step 3.1.12). Record the well to the sample key.
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3. On ice, prepare the Protein Digestion Master Mix as shown in Table 5 and aliquot equal volume into one row of a 96-well reservoir
plate.

4. Using a multichannel pipette, to each row of samples in the IP reaction plate, add 40 µL of the Protein Digestion Master Mix and mix
slowly 10 times up and down. Seal the plate well with a PCR cover, spin down at 200 x g for 1 min, and incubate in a heating mixer at
50 °C for 30 min set at 650 rpm. While the plate is incubating, prepare fresh 70% ethanol (EtOH) and keep it at room temperature.

5. After the 30 min incubation is complete, spin the IP reaction plate at 200 x g for 1 min, 4 °C. Keep the plate at room temperature.
 

NOTE: The total volume should be now ~70 µL/well.

3. Bead clean-up using 30% PEG/1 M NaCl magnetic bead solution
1. Aliquot the room temperature 30% of PEG/1 M NaCl magnetic bead solution into one row of a clean 96-well reservoir plate (75 µL per

sample x # of rows).
2. Working at room temperature, using a multichannel pipette, add 70 µL (1:1 ratio) of the 30% PEG/1 M NaCl magnetic bead solution to

each row of samples in the IP reaction plate and mix 10 times by pipetting up and down. Change tips between rows. Incubate the plate
for 15 min at room temperature.

3. Place the plate on the plate magnet and incubate for 5 min to allow the beads to separate.
4. Using a pipette, without disturbing the beads, carefully remove and discard the supernatant. Keep the beads.
5. While the IP reaction plate is still on the plate magnet, using a multichannel pipette, to each row of samples, add 150 µL of room

temperature 70% EtOH and incubate for 30 s. After 30 s, using a multichannel pipette, remove and discard the supernatant. Repeat
this step one more time for a total of 2 washes.

6. After the second EtOH wash, incubate the 'dry' plate on the plate magnet for 3 min. Visually inspect the plate to make sure that all the
EtOH is evaporated. If not, incubate the plate for 1 min. Over-drying the beads results in a lower yield.

7. Take the plate off the plate magnet and using a multichannel pipette, add 35 µL EB (Table of Materials). Mix well by pipetting 10 times
up and down. Change tips between rows. Incubate at room temperature for 3 min to elute.

8. After incubation, place the IP reaction plate back onto the plate magnet and incubate for 2 min. The beads should separate and the
solution will become clear.

9. Using a multichannel pipette, without disturbing the beads, carefully transfer the supernatant into the corresponding wells of a new 96-
well plate.

10. Seal the plate with an aluminum plate cover, label "IPed + Input DNA", and store at 4 °C overnight, or at -20 °C for long term (>48 h)
storage.

4. DAY 3: Library Construction

1. End repair and phosphorylation
1. The input for the End Repair/Phosphorylation reaction is the IPed + Input plate from step 3.3.10. After thawing, spin the plate down at

200 x g for 1 min at 4 °C and keep it on ice.
2. Retrieve from -20 °C freezer all of the reagents (except enzymes) required for the End Repair/Phosphorylation reaction (Table 6) and

thaw them at room temperature, then immediately transfer to ice.
3. Working on ice, follow Table 6 to set up the End Repair/Phosphorylation Master Mix in a sterile, 1.5 mL microcentrifuge tube. After the

addition of all of the non-enzyme components, mix well by pulse-vortexing and place the tube back on ice.
4. Retrieve the relevant enzymes from their cold storage and transport to the bench in a chilled tube cool rack. Mix each enzyme by

flicking the tube, quick spin, and place it back in the chilled tube cool rack. When pipetting the enzyme, aspirate slowly to assure an
accurate volume transfer. After the addition, wash the tip in the master mix by pipetting up and down.

5. Once the enzymes are added, gently pulse-vortex the master mix 5 times to assure an even distribution of all the components, then
quick spin and immediately place the tube back on ice.

6. On ice, aliquot an appropriate volume of the End Repair/Phosphorylation Master Mix into one row of a new 96-well reservoir plate;
volume to be aliquoted: (15 µL x # of rows) + 5 µL dead volume. An example calculation for two rows: (15 µL x 2) + 5 µL = 35 µL/well.

7. Using a multichannel pipette, add 15 µL of the End Repair/Phosphorylation Master Mix to each row of samples and mix 10 times by
pipetting up and down. Change tips between rows. Seal the plate with a plastic cover, spin down at 200 x g for 1 min at 4 °C, and
incubate at room temperature for 30 min.

2. Bead clean-up after end repair and phosphorylation
1. From the 4 °C refrigerator, retrieve the 20% PEG/1 M NaCl magnetic bead solution and 30% PEG/1 M NaCl solution and incubate at

room temperature for at least 30 min.
 

NOTE: The 30% PEG/1 M NaCl solution DOES NOT contain magnetic beads.
2. After both solutions reach room temperature, for each sample prepare 80 µL of 1:2 mix of 30% PEG/1 M NaCl and 20% PEG/1 M NaCl

magnetic bead solutions. An example for 24 samples: 80 µL x 24 = 1,920 µL (640 µL of 30% PEG/1 M NaCl and 1,288 µL of 20%
PEG/1 M NaCl magnetic bead solutions).

3. Aliquot the bead solution mix, equal volume, into one row of a 96-well reservoir plate and keep it at room temperature. Aliquot EB
buffer (40 µL per sample x # of rows) into one row of a clean 96-well reservoir plate. An example for two rows: 40 µL x 2 = 80 µL/well.

4. Using a multichannel pipette, add 75 µL of the bead mix prepared in step 4.2.2 into each row of samples from step 4.1.7 and mix up
and down 10 times. Change tips between rows. Incubate at room temperature for 15 min. Continue with the bead clean-up procedure
as outlined in steps 3.3.3-3.3.10. Cover the plate with a plastic seal, quick spin and place it on ice. Proceed to step 4.3.

3. A-Tailing reaction
1. Retrieve from the -20 °C freezer all of the reagents (except enzymes) required for the A-Tailing reaction (Table 7), thaw them at room

temperature then immediately transfer to ice.
2. Working on ice, follow Table 7 to set up the A-Tailing Master Mix in a sterile, 1.5 mL microcentrifuge tube. Follow the general enzymatic

brew setup instructions as outlined in steps 4.1.4-4.1.6.
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3. Using a multichannel pipette, add 15 µL of the A-Tailing Master Mix to each row of samples and mix 10 times by pipetting up and down.
Change tips between rows. Seal the plate with a PCR cover, spin down at 200 x g for 1 min at 4 °C, and incubate in a thermocycler at
37 °C for 30 min. After the incubation, spin the plate down at 200 x g for 1 min and keep it at room temperature.

4. Bead clean-up after A-Tailing
1. Perform the steps described in step 4.2. Cover the plate with a plastic seal, label "A-tail + BC", quick spin, and place it on ice. Proceed

to step 4.5.

5. Adaptor ligation
1. Retrieve from the -20 °C freezer all of the reagents (except enzymes) required for the adapter ligation reaction (Table 8), thaw them at

room temperature then immediately transfer to ice.
2. Retrieve 10 µM PE adapter (Supplemental Table 1) stock solution and dilute to 0.5 µM using EB. Mix well by pulse vortexing. The

volume required is 3 µL x # of samples. Working on ice, aliquot the 0.5 µM PE adapter, equal volume, into 12 wells of a clean 96-well
reservoir plate. Keep it on ice.

3. Working on ice, follow Table 8 to set up the Adapter Ligation Master Mix in a sterile, 1.5 mL microcentrifuge tube. Follow the general
enzymatic brew setup instructions as outlined in steps 4.1.4-4.1.6. Make sure that the 5X Quick Ligation Buffer is fully thawed and very
well mixed before use.

4. On ice, aliquot an appropriate volume of the Adapter Ligation Master Mix into one row of a new 96-well reservoir plate. For example,
calculation for two rows: (23 µL x 2) + 5 µL = 51 µL/well. Keep the plate on ice.

5. Using a multichannel pipette, add 2 µL of the 0.5 µM Paired End (PE) Adapter into each row of samples from step 4.4.1 and mix.
Change tips between rows.

6. Using a multichannel pipette, add 23 µL of the Adapter Ligation Master Mix to each row of samples and mix 15 times by pipetting up
and down. Change tips between rows. Seal the plate with a metal cover, label "Ligation", spin down at 200 x g for 1 min at 4 °C, and
incubate at room temperature overnight.

6. Day 4: Bead clean-up #1 after adapter ligation
1. From the 4 °C refrigerator, retrieve the 20% PEG/1 M NaCl magnetic bead solution and incubate at room temperature for at least 30

min. While the solution is equilibrating prepare fresh 70% EtOH.
2. Aliquot the 20% PEG/1 M NaCl magnetic bead solution, 55 µL per sample, into one row of a 96-well reservoir plate and keep it at room

temperature. An example for two rows: 55 µL x 2 = 110 µL/well.
3. Aliquot EB buffer, 50 µL per sample, into one row of a clean 96-well reservoir plate. An example for two rows: 50 µL x 2 = 100 µL/well.
4. Using a multichannel pipette, add 48 µL of the 20% PEG/1 M NaCl magnetic bead solution into each row of samples in the Ligation

plate from step 4.5.6 and mix up and down 10 times. Change tips between rows. Incubate at room temperature for 15 min. Continue
with the bead clean-up procedure as outlined in steps 3.3.3-3.3.7.

5. Take the plate off the plate magnet and using a multichannel pipette, add 45 µL EB (Table of Materials). Mix well by pipetting 10 times
up and down. Change tips between rows. Incubate for at room temperature for 3 min to elute.

6. After incubation, place the IP reaction plate back onto the plate magnet and incubate for 2 min. Using a multichannel pipette, without
disturbing the beads, carefully transfer the supernatant into the corresponding wells of a new 96-well plate. Label the plate "Ligation + 1
BC".

7. To each well add 5 µL of 10x PCR high fidelity buffer and mix well by pipetting up and down. Change tips between rows. Cover the
plate with a plastic seal, quick spin, and keep it at room temperature.

7. Bead clean-up #2 after adapter ligation
1. Perform bead clean-up as described in section 4.6 with the following changes: add 60 µL of 20% PEG/1 M NaCl magnetic bead

solution to each active well in the Ligation + 1 BC plate (step 4.6.7) and elute from the beads using 35 µL of EB buffer. Label the plate
"Ligation + 2 BC" and keep it on ice.

8. PCR amplification
1. Retrieve from the -20 °C freezer all the reagents (except enzymes) required for the PCR reaction (Table 9), thaw them at room

temperature then immediately place them on ice.
2. Working on ice, follow Table 9 to set up the PCR Master Mix in a sterile, 1.5 mL microcentrifuge tube. Follow the general brew set-up

instructions as outlined in steps 4.1.4-4.1.5. On ice, aliquot an appropriate volume of the PCR Master Mix into one row of a new 96-well
reservoir plate. Keep it on ice. See step 4.5.4 for sample calculations.

3. Working on ice, using a multichannel pipette, add 2 µL of each unique 12.5 µM PCR reverse indexing primer (Supplemental Table 2)
into each well in the Ligation + 2 BC plate (step 4.7.1) and mix slowly up and down. Change tips between rows. Keep the plate on ice.

4. Working on ice, using a multichannel pipette, add 23 µL of the PCR master mix into each row of samples from step 4.8.3 and mix 10
times by pipetting up and down. Seal the plate with a PCR cover, spin it down at 200 x g for 1 min, and incubate in a thermocycler (see
Table 10 for PCR cycling conditions).

9. Bead clean-up after PCR amplification
1. After PCR amplification spin the plate at 200 x g for 1 min, 4 °C. Perform the bead clean-up as described in section 4.6 with the

following changes: add 51 µL of 20% PEG/1 M NaCl magnetic bead solution to each PCR reaction and elute from the beads using 25
µL of EB buffer. Seal the plate with an aluminum cover and spin down at 200 x g for 1 min. Store the samples at -20 °C.

2. To validate constructed libraries, perform DNA quantification using a fluorescence-based assay, visualize the final product using a chip-
based capillary electrophoresis analyzer (high sensitivity assay), and run enrichment quantitative PCR (qPCR) (See Representative
Results, Validation of ndChIP-seq library quality by qPCR).
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Representative Results

Chromatin Digestion Profiles
 

Optimization of the MNase digestion is essential for the success of this protocol. It is crucial to generate a digestion profile dominated by single
nucleosome fragment sizes, while not over-digested, to allow for recovery of higher order nucleosome fragments. An ideal digestion profile
consists of a majority of single nucleosome fragments with a small fraction representing fragments smaller and larger than single nucleosomes.
Figure 1 shows examples of an ideal, over-digested, and under-digested size distribution profiles. Note that sub-optimal digestion of chromatin
will also be apparent in the profile of the sequencing library generated from the IP material (Figure 2).

Validation of ndChIP-seq Library Quality by qPCR
 

qPCR is a well-established method for assessment of the quality of ChIP18,19,20. When performing ndChIP-seq on 10,000 cells the yield of
nucleic acid after IP will be below 1 ng. Therefore, it is essential to perform qPCR after library construction to assess the relative enrichment
of target regions over background. To provide a background estimate, libraries constructed from the MNase digested chromatin (Input) are
generated. For each IP library, two sets of primers are needed (see SupplementalTable 3 for a list of primers for commonly used histone
marks). One primer set should be specific for a genomic region that is consistently associated with the histone modification of interest (positive
target) and another region that is not marked with the histone modification of interest (negative target). The quality of the ChIP-seq library will
be assessed as fold enrichment with respect to input library. Fold enrichment can be calculated using the following equation that assumes
exponential amplification of the target genomic region: 2Ct

input
- Ct

IP. Our custom made R statistical software package, qcQpcr_v1.2, is suitable for
qPCR enrichment analysis of low input native ChIP-seq libraries (Supplemental Code Files). Figure 3 represents a qPCR result for successful
and unsuccessful ChIP-seq libraries. The minimum expected fold enrichment value for good quality ndChIP-seq libraries are 16 for narrow
marks, such as H3K4me3, and 7 for broad marks, for example H3K27me3.

Modeling MNase Accessibility
 

Computational analysis of ChIP-seq is complex and unique for each experimental setting. A set of guidelines established by International
Human Epigenomic Consortium (IHEC) and The Encyclopedia of DNA Elements (ENCODE) can be used to assess the quality of the ChIP-
seq libraries21. It is important to note that the sequencing depth of the libraries impacts the detection and resolution of enriched regions20. The
number of peaks detected increase and approaches a plateau as read depth increases. We recommend ndChIP-seq libraries to be sequenced
in accordance with the IHEC recommendations of 50 million paired-reads (25 million fragments) for narrow marks (e.g., H3K4me3) and 100
million paired-reads (50 million fragments) for broad marks (e.g., H3K27me3) and input22. These sequencing depths provide sufficient sequence
alignments for detection of the most significant peaks using widely used ChIP-seq peak callers, such as MACS2 and HOMER, without reaching
saturation23,24. A high quality mammalian ndChIP-seq library has a PCR duplicate rate of <10% and reference genome alignment rate of >
90% (including duplicated reads). Successful ndChIP-seq libraries will contain highly correlated replicates with a significant portion (> 40%) of
aligned reads within MACS222 identified enriched peaks and inspection of aligned reads on a genome browser should reveal visually detectable
enrichments compared to the input library (Figure 4). In addition, ndChIP-seq can be used to assess nucleosome density by utilizing a Gaussian
mixture distribution algorithm (w1 * n(x; μ1,σ1) + w2 * n(x; μ2,σ2) = 1) at MACS2 identified enriched regions to model nucleosome density as
defined by MNase accessible boundaries. In this model, w1 represents mono-nucleosome distribution weight and w2 represents di-nucleosome
distribution weight. Where w1 is greater than w2, there is dominance of mono-nucleosome fragments and vice versa. This analysis requires
that libraries be sequenced in a paired-end fashion so that fragment sizes can be defined. In order to apply the Gaussian mixture distribution
algorithm, statistically significant enriched regions are first identified. We suggest peak calling with MACS2 using Input as a control and with
default settings for narrow marks and a q value cutoff of 0.01 for broad marks. A number of statistical packages employing a Gaussian mixture
distribution algorithm are available from widely used statistical software packages. Utilizing average fragment size, determined by paired-end
read boundaries of the IPed samples, distributions at MACS2 identified enriched promoters, and a Gaussian mixture distribution algorithm
can be applied to each promoter using the R-statistical package Mclust version 3.025 to calculate a weighted distribution. In this application,
we recommend eliminating promoters containing less than 30 aligned fragments because below this threshold the resulting weight estimates
become unreliable. A good quality ndChIP-seq library generates a Gaussian mixture distribution that consist of two major components with mean
values corresponding to mono-, di-nucleosome fragment lengths.
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Figure 1: Assessment of MNase digestion before library generation. Chip-based capillary electrophoresis analyzer profiles of an optimal
MNase digested (A), under-digested (B), and over-digested (C) chromatin. Biological replicates are shown as blue, red, and green traces.
Please click here to view a larger version of this figure.
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Figure 2: Assessment of MNase digestion after library generation. (A) Post library construction profiles of optimally digested input (biological
replicates; red, green, black) and IP (biological replicates; cyan, purple, blue) and (B) sub-optimal input (biological replicates; red, green, blue)
and IP (biological replicates; cyan, purple, orange) libraries. Please click here to view a larger version of this figure.

 

Figure 3: Post library construction quantitative PCR can be used to assess the quality of ndChIP-seq libraries. Fold enrichment of
H3K4me3 IP libraries with respect to input libraries is calculated as 2(Ct of input - Ct of IP) for positive and negative targets using qcQpcr_v1.2. Please
click here to view a larger version of this figure.
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Figure 4: Representative ndChIP-seq library constructed from 10,000 primary CD34+ cord blood cells. Pearson correlation of H3K4me3
signal (reads per million mapped reads) calculated in the promoters (TSS+/-2Kb) between 3 biological replicates, (A) replicate 1 and 2, (B)
replicate 1 and 3, (C) replicate 2 and 3. (D) UCSC browser view of the HOXA gene cluster of cross-linked ChIP-seq generated from 1 million
cells per IP, successful ndChIP-seq from 10,000 cells per IP, and unsuccessful ndChIP-seq from 10,000 cells per IP. (red: H3K27me3, green:
H3K4me3, and black: Input). (E) Fraction of mapped reads within MACS2 identified enriched regions of H3K4me3 (black) and H3K27me3 (grey).
Please click here to view a larger version of this figure.
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Buffer Composition 

A.1.  Immunoprecipitation buffer (IP)

 20 mM Tris-HCl pH 7.5

 2 mM EDTA

 150 mM NaCl

 0.1% Triton X-100

 0.1% Deoxycholate

10  mM Sodium Butyrate

A.2. Low Salt Wash buffer

 20 mM Tris-HCl pH 8.0

 2 mM EDTA

 150 mM NaCl

 1% Triton X-100

 0.1% SDS

A.3. High Salt Wash buffer

 20 mM Tris-HCl pH 8.0

 2 mM EDTA

 500 mM NaCl

 1% Triton X-100

 0.1% SDS

A.4. ChIP Elution buffer

 100 mM NaHCO3

 1% SDS

A.5. 1x Lysis buffer – 1 mL

0.1% Triton

0.1% Deoxycholate

10 mM Sodium Butyrate

A.6.  Ab dilution buffer

0.05% (w/v) Azide

0.05% broad spectrum antimicrobial (e.g. ProClin 300)

in PBS

A.7. 30% PEG/1M NaCl Magnetic Bead Solution (reference16)

30% PEG

1 M NaCl

10 mM Tris HCl pH 7.5

1 mM EDTA

1 mL of washed super-paramagnetic beads

A.8. 20% PEG/1M NaCl Magnetic Bead Solution (reference16)

30% PEG

1 M NaCl

10 mM Tris HCl pH 7.5

1 mM EDTA

1 mL of washed  super-paramagnetic beads

Table 1: ndChIP-seq buffer composition.
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Histone Modification Concentration (µg/µL)

H3K4me3 0.125

H3K4me1 0.25

H3K27me3 0.125

H3K9me3 0.125

H3K36me3 0.125

H3K27ac 0.125

Table 2: Antibody amount required for ndChIP-seq.

Reganet Volume (µL)

Ultra Pure Water 478

1 M Tris-HCl pH 7.5 10

0.5 M EDTA 10

5 M NaCl 2

Glycerol 500

Total Volume 1,000

Table 3: Recipe for MNase dilution buffer.

Reagent Volume (µL)

Ultra Pure Water 13

20 mM DTT 1

10x MNase Buffer 4

20 U/µl Mnase 2

Total Volume 20

Table 4: Recipe for MNase Master Mix.

Reagent Volume (µL)

Elution Buffer 30

Buffer G2 8

Protease 2

Total Volume 40

Table 5: Recipe for DNA Purification Master Mix.

Reagent Volume (µL)

Ultra Pure Water 3.3

10x Restriction Endonuclease Buffer (e.g. NEBuffer) 5

25 mM ATP 2

10 mM dNTPs 2

T4 Polynucleotide Kinase (10 U/µl) 1

T4 DNA polymerase (3 U/µl) 1.5

DNA polymerase I, Large (Klenow) Fragment (5 U/µl) 0.2

Total Volume 15

Table 6: Recipe for End Repair Master Mix.
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Reagent Volume (µL)

Ultra Pure Water 8

10x Restriction Endonuclease Buffer (e.g. NEBuffer) 5

10 mM dATP 1

Klenow (3'-5' exo-) 1

Total Volume 15

Table 7: Recipe for A-Tailing Master Mix.

Reagent Volume (µL)

Ultra Pure Water 4.3

5x Quick ligation buffer 12

T4 DNA ligase (2000 U/µl) 6.7

Total Volume 23

Table 8: Recipe for Adapter Ligation Master Mix.

Reagent Volume (µL)

Ultra Pure Water 7

25 uM PCR primer 1.0 2

5x HF buffer 12

DMSO 1.5

DNA Polymerase 0.5

Total Volume 23

Table 9: Recipe for PCR Master Mix.

Temprature (°C) Duration (s) Number of Cycles

98 60 1

98 30

65 15 10

72 15

72 300 1

4 hold hold

Table 10: PCR run method.

Oligo Sequence Modification

PE_adapter 1 5’- /5Phos/GAT CGG AAG AGC GGT TCA
GCA GGA ATG CCG AG -3’

5’ Modification: Phosphorylation

PE_adapter 2 5’ - ACA CTC TTT CCC TAC ACG ACG CTC
TTC CGA TC*T - 3’

3’Modification:  *T is a phosphorothioate bond

Supplemental Table 1: Oligo sequences for generation of PE adapter.
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Primer
Name

Sequence Index IndexRevC
(To be
used for
sequencing)

PCR
reverse
indexing
primer 1

CAAGCAGAAGACGGCATACGAGATCGTGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CGTGAT atcacg

PCR
reverse
indexing
primer 2

CAAGCAGAAGACGGCATACGAGATCTGATCCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CTGATC gatcag

PCR
reverse
indexing
primer 3

CAAGCAGAAGACGGCATACGAGATGGGGTTCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GGGGTT aacccc

PCR
reverse
indexing
primer 4

CAAGCAGAAGACGGCATACGAGATCTGGGTCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CTGGGT acccag

PCR
reverse
indexing
primer 5

CAAGCAGAAGACGGCATACGAGATAGCGCTCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT AGCGCT agcgct

PCR
reverse
indexing
primer 6

CAAGCAGAAGACGGCATACGAGATCTTTTGCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CTTTTG caaaag

PCR
reverse
indexing
primer 7

CAAGCAGAAGACGGCATACGAGATTGTTGGCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT TGTTGG ccaaca

PCR
reverse
indexing
primer 8

CAAGCAGAAGACGGCATACGAGATAGCTAGCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT AGCTAG ctagct

PCR
reverse
indexing
primer 9

CAAGCAGAAGACGGCATACGAGATAGCATCCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT AGCATC gatgct

PCR
reverse
indexing
primer 10

CAAGCAGAAGACGGCATACGAGATCGATTACGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CGATTA taatcg

PCR
reverse
indexing
primer 11

CAAGCAGAAGACGGCATACGAGATCATTCACGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CATTCA tgaatg

PCR
reverse
indexing
primer 12

CAAGCAGAAGACGGCATACGAGATGGAACTCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GGAACT agttcc

PCR
reverse
indexing
primer 13

CAAGCAGAAGACGGCATACGAGATACATCGCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT ACATCG cgatgt

PCR
reverse
indexing
primer 14

CAAGCAGAAGACGGCATACGAGATAAGCTACGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT AAGCTA tagctt
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PCR
reverse
indexing
primer 15

CAAGCAGAAGACGGCATACGAGATCAAGTTCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CAAGTT aacttg

PCR
reverse
indexing
primer 16

CAAGCAGAAGACGGCATACGAGATGCCGGTCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GCCGGT accggc

PCR
reverse
indexing
primer 17

CAAGCAGAAGACGGCATACGAGATCGGCCTCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CGGCCT aggccg

PCR
reverse
indexing
primer 18

CAAGCAGAAGACGGCATACGAGATTAGTTGCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT TAGTTG caacta

PCR
reverse
indexing
primer 19

CAAGCAGAAGACGGCATACGAGATGCGTGGCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GCGTGG ccacgc

PCR
reverse
indexing
primer 20

CAAGCAGAAGACGGCATACGAGATGTATAGCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GTATAG ctatac

PCR
reverse
indexing
primer 21

CAAGCAGAAGACGGCATACGAGATCCTTGCCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT CCTTGC gcaagg

PCR
reverse
indexing
primer 22

CAAGCAGAAGACGGCATACGAGATGCTGTACGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT GCTGTA tacagc

PCR
reverse
indexing
primer 23

CAAGCAGAAGACGGCATACGAGATATGGCACGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT ATGGCA tgccat

PCR
reverse
indexing
primer 24

CAAGCAGAAGACGGCATACGAGATTGACATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT TGACAT atgtca

Supplemental Table 2: PCR reverse indexing primer sequences.
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Primers Sequence

ZNF333_genic_H3K9me3_F 5'-AGCCTTCAATCAGCCATCATCCCT-3'

ZNF333_genic_H3K9me3_R 5'-TCTGGTATGGGTTCGCAGATGTGT-3'

HOXA9-10_F 5'-ACTGAAGTAATGAAGGCAGTGTCGT-3'

HOXA9-10_R 5'-GCAGCAYCAGAACTGGTCGGTG-3'

GAPDH_genic_H3K36me3_F 5'-AGGCAACTAGGATGGTGTGG-3'

GAPDH_genic_H3K36me3_R 5'-TTGATTTTGGAGGGATCTCG-3'

GAPDH-F 5'-TACTAGCGGTTTTACGGGCG-3'

GAPDH-R 5'-TCGAACAGGAGGAGCAGAGAGCGA-3'

Histone modification Positive Target Negative Target

H3K4me3 GAPDH HOXA9-10

H3K4me1 GAPDH_genic ZNF333

H3K27me3 HOXA9-10 ZNF333

H3K27ac GAPDH ZNF333

H3K9me3 ZNF333 HOXA9-10

H3K36me3 GAPDH_genic ZNF333

Supplemental Table 3: A list of primers for commonly used histone marks (H3K4me3, H3K4me1, H3K27me3, H3K27ac, H3K9me3, and
H3K36me3).

Supplemental File 1: ndChIP-seq WorkSheet. Please click here to download this file.

Supplemental Code Files: qcQpcr_v1.2. R statistical software package for qPCR enrichment analysis of low input native ChIP-seq libraries.
Please click here to download this file.

Discussion

Given the combinatorial nature of chromatin modification and nucleosome positioning in transcriptional regulation, a method that enables
simultaneous measurements of these features is likely to provide new insights into epigenetic regulation. The ndChIP-seq protocol presented
here is a native ChIP-seq protocol optimized to enable simultaneous interrogation of histone modification and nucleosome density in rare primary
cells9,10. ndChIP-seq utilizes enzymatic digestion of chromatin that, when coupled to paired-end massively parallel sequencing and a Gaussian
mixture distribution model, allows for the investigation histone modifications at single nucleosome level and the deconvolution of epigenomic
profiles driven by heterogeneity within a population. Using this protocol, we have previously reported a unique distribution of immuno-precipitated
fragment sizes, determined by paired-end read boundaries, associated with specific chromatin states defined by ChromHMM10,24.

The quality of a ndChIP-seq library depends on multiple factors, such as antibody specificity and sensitivity, optimal MNase digestion conditions,
and quality of the chromatin. The specificity of the antibodies used is crucial in producing successful ndChIP-seq library. An ideal antibody shows
high affinity against the epitope of interest with little cross reactivity with other epitopes. It is equally important to choose magnetic beads with the
highest affinity for the antibody of choice.

MNase digestion is a critical and time- and concentration-sensitive reaction in this protocol. Therefore, when processing multiple samples, it
is important that each reaction is incubated for an equivalent amount of time (see step 2.2). The quality of the chromatin is another factor that
significantly effects the outcome of ndChIP-seq. Fragmented chromatin leads to a sub-optimal MNase digestion profile and results in libraries
with a low signal to noise ratio. Primary samples with low cell viability or degraded chromatin, such as formalin-fixed paraffin-embedded (FFPE)
tissue are not recommended for this protocol.

The addition of a PIC during chromatin extraction reduces undesired (i.e., random) chromatin fragmentation and preserves integrity of histone
tails. As such, PIC needs to be added to lysis buffer and immunoprecipitation buffer just prior to use. While selecting cells via flow cytometry,
select for viable cells and ensure cells are sorted at a low flow rate to increase the accuracy of the cell number estimate and viability of cells.
Avoid sorting cells directly into lysis buffer. The sheath buffer will dilute the lysis buffer and prevents effective permeabilization of the cell
membrane to MNase. Depending on a type of cells or organism, titration of MNase may be required to obtain optimal digestion.

ndChIP-seq on mammalian cells requires a minimum sequencing depth of 50 million paired-reads (25 million fragments) for narrow marks
and 100 million paired-reads (50 million fragments) for broad marks and input. The Gaussian mixture distribution algorithm will not perform
optimally on libraries that have been sequenced to a depth significantly below this recommendation. ndChIP-seq will not classify promoters
with little separation between the weighted distribution value for mono- and di-nucleosome fragment lengths into mono- or di-nucleosome
dominated promoters. Therefore, these promoters must be removed in the subsequent analysis. Biological replicates can be generated to
increase confidence in predicted distributions and identify technical variability in the MNase digestion and library construction.

Unlike previous iterations of native ChIP-seq protocols, ndChIP-seq provides the means to investigate combinatorial effect of chromatin structure
and histone modification by utilizing fragment size post immunoprecipitation to integrate nucleosome density, determined by MNase accessibility,
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with histone modification measurements. Application of ndChIP-seq to primary cells and tissues will provide novel insights into the integrative
nature of epigenetic regulation and permit identification of epigenetic signatures due to heterogeneity within the population.
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